1
|
Li ZL, Li SF, Zhang ZM, Chen XQ, Li XQ, Zu YX, Chen F, Wang AJ. Extracellular electron transfer-dependent bioremediation of uranium-contaminated groundwater: Advancements and challenges. WATER RESEARCH 2025; 272:122957. [PMID: 39708382 DOI: 10.1016/j.watres.2024.122957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
Efficient and sustainable remediation of uranium-contaminated groundwater is critical for groundwater safety and the sustainable development of nuclear energy, particularly in the context of global carbon neutrality goals. This review explores the potential of microbial reduction processes that utilize extracellular electron transfer (EET) to convert soluble uranium (U(VI)) into its insoluble form (U(IV)), presenting a promising approach to groundwater remediation. The review first outlines the key processes and factors influencing the effectiveness of dissimilatory metal-reducing bacteria (DMRB), such as Geobacter and Shewanella, during uranium bioremediation and recovery. The cutting-edge progress on the molecular mechanism of EET-driven U(VI) reduction mediated by c-type cytochromes, conductive pili, and electron mediators, is critically reviewed. Additionally, advanced strategies such as optimizing electron transfer, leveraging synthetic biology approach, and integration with machine learning are discussed to enhance the efficiency of EET-driven processes. The review also considers the integration of EET processes into practical engineering applications, highlighting the need for optimization and innovation in bioremediation technologies. By providing a comprehensive overview of current progress and challenges, this review aims to inspire novel research and practical advancements in the field of uranium-contaminated groundwater remediation.
Collapse
Affiliation(s)
- Zhi-Ling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Sheng-Fang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Meng Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xue-Qi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xi-Qi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yun-Xia Zu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fan Chen
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
2
|
Han J, Xu G, Liu X, Jiang L, Shao K, Yang H, Zhu G, Ding A, Shang Z, Chen L, Dou J. Carbonate composite materials for the leaching remediation of uranium-contaminated soils: Mechanistic insights and engineering applications. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136814. [PMID: 39662348 DOI: 10.1016/j.jhazmat.2024.136814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
In this study, a composite leaching agent consisting of Na2CO3, NaHCO3, H2O2, and deep eutectic solvents was synthesized, and its composition and application conditions were optimized to mitigate soil contamination resulting from uranium mining. Laboratory and pilot field tests revealed that the use of this agent facilitated up to 92.6 % removal of uranium from contaminated soils. Analytical characterization through X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS) revealed that CO32- readily formed complexes with uranium, increasing its mobility and desorption from soil particles. The safety of the leaching process was confirmed through plant growth tests and enzyme activity assays. Moreover, the leaching strategy not only adheres to environmentally sustainable principles but also replenishes carbon and nitrogen in the soil, thereby aiding in the restoration of its functional use.
Collapse
Affiliation(s)
- Juncheng Han
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Engineering Research Center for Groundwater Pollution Control and Remediation Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Guangming Xu
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Engineering Research Center for Groundwater Pollution Control and Remediation Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xinyao Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Engineering Research Center for Groundwater Pollution Control and Remediation Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Likun Jiang
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Kexin Shao
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Haotian Yang
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Guangsheng Zhu
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Engineering Research Center for Groundwater Pollution Control and Remediation Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Zhaorong Shang
- Nuclear and Radiation Safety Center, Ministry of Ecology and Environment, Beijing 100082, PR China
| | - Ling Chen
- China Institute of Atomic Energy, Beijing 102413, PR China
| | - Junfeng Dou
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Engineering Research Center for Groundwater Pollution Control and Remediation Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
3
|
Ge S, Wei K, Peng W, Huang R, Akinlabi E, Xia H, Shahzad MW, Zhang X, Xu BB, Jiang J. A comprehensive review of covalent organic frameworks (COFs) and their derivatives in environmental pollution control. Chem Soc Rev 2024; 53:11259-11302. [PMID: 39479879 DOI: 10.1039/d4cs00521j] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Covalent organic frameworks (COFs) have gained considerable attention due to their design possibilities as the molecular organic building blocks that can stack in an atomically precise spatial arrangement. Since the inception of COFs in 2005, there has been a continuous expansion in the product range of COFs and their derivatives. This expansion has led to the evolution of three-dimensional structures and various synthetic routes, propelling the field towards large-scale preparation of COFs and their derivatives. This review will offer a holistic analysis and comparison of the spatial structure and synthesis techniques of COFs and their derivatives. The conventional methods of COF synthesis (i.e., ultrasonic chemical, microwave, and solvothermal) are discussed alongside the synthesis strategies of new COFs and their derivatives. Furthermore, the applications of COFs and their derived materials are demonstrated in air, water, and soil pollution management such as gas capture, catalytic conversion, adsorption, and pollutant removal. Finally, this review highlights the current challenges and prospects for large-scale preparation and application of new COFs and the derived materials. In line with the United Nations Sustainable Development Goals (SDGs) and the needs of digital-enabled technologies (AI and machine learning), this review will encompass the future technical trends for COFs in environmental pollution control.
Collapse
Affiliation(s)
- Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Kexin Wei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Wanxi Peng
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Runzhou Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Esther Akinlabi
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Hongyan Xia
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Muhammad Wakil Shahzad
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Ben Bin Xu
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Jianchun Jiang
- Key Lab of Biomass Energy and Material of Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China.
| |
Collapse
|
4
|
Miller C, Neidhart A, Hess K, Ali AMS, Benavidez A, Spilde M, Peterson E, Brearley A, Wang X, Dhanapala BD, Cerrato JM, Gonzalez-Estrella J, El Hayek E. Uranium accumulation in environmentally relevant microplastics and agricultural soil at acidic and circumneutral pH. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171834. [PMID: 38521258 PMCID: PMC11141427 DOI: 10.1016/j.scitotenv.2024.171834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
The co-occurrence of microplastics (MPs) with potentially toxic metals in the environment stresses the need to address their physicochemical interactions and the potential ecological and human health implications. Here, we investigated the reaction of aqueous U with agricultural soil and high-density polyethylene (HDPE) through the integration of batch experiments, microscopy, and spectroscopy. The aqueous initial concentration of U (100 μM) decreased between 98.6 and 99.2 % at pH 5 and between 86.2 and 98.9 % at pH 7.5 following the first half hour of reaction with 10 g of soil. In similar experimental conditions but with added HDPE, aqueous U decreased between 98.6 and 99.7 % at pH 5 and between 76.1 and 95.2 % at pH 7.5, suggesting that HDPE modified the accumulation of U in soil as a function of pH. Uranium-bearing precipitates on the cracked surface of HDPE were identified by SEM/EDS after two weeks of agitation in water at both pH 5 and 7.5. Accumulation of U on the near-surface region of reacted HDPE was confirmed by XPS. Our findings suggest that the precipitation of U was facilitated by the weathering of the surface of HDPE. These results provide insights about surface-mediated reactions of aqueous metals with MPs, contributing relevant information about the mobility of metals and MPs at co-contaminated agricultural sites.
Collapse
Affiliation(s)
- Casey Miller
- Gerald May Department of Civil, Construction & Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, NM 87131, USA; Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, NM 87131, USA
| | - Andrew Neidhart
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, NM 87131, USA; Department of Chemistry and Chemical Biology, MSC03 2060, University of New Mexico, Albuquerque, NM 87131, USA
| | - Kendra Hess
- School of Civil and Environmental Engineering, EN0059, Oklahoma State University, Stillwater, OK 740784, USA
| | - Abdul-Mehdi S Ali
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA
| | - Angelica Benavidez
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, USA
| | - Michael Spilde
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA
| | - Eric Peterson
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA
| | - Adrian Brearley
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA
| | - Xuewen Wang
- School of Civil and Environmental Engineering, EN0059, Oklahoma State University, Stillwater, OK 740784, USA
| | - B Dulani Dhanapala
- College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 740784, USA
| | - José M Cerrato
- Gerald May Department of Civil, Construction & Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jorge Gonzalez-Estrella
- School of Civil and Environmental Engineering, EN0059, Oklahoma State University, Stillwater, OK 740784, USA
| | - Eliane El Hayek
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, NM 87131, USA.
| |
Collapse
|