1
|
Yi M, Liu J, Ma M, Zhang S, Chen X, Xia X, Li Y. Effects of microplastics on sedimentary greenhouse gas emissions and underlying microbiome-mediated mechanisms: A comparison of sediments from distinct altitudes. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134735. [PMID: 38823103 DOI: 10.1016/j.jhazmat.2024.134735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
Microplastics (MPs) are emerging contaminants in aquatic ecosystems that can profoundly affect carbon and nitrogen cycling. However, the impact mechanisms of MPs on sedimentary greenhouse gas (GHG) emissions at distinct altitudes remain poorly elucidated. Here, we investigated the effects of polyvinyl chloride (PVC) and polylactic acid (PLA) on sedimentary CO2, CH4, and N2O emissions at distinct altitudes of the Yellow River. PVC increased the relative abundance of denitrifiers (e.g., Xanthobacteriaceae, Rhodocyclaceae) to promote N2O emissions, whereas PLA reduced the abundance of AOA gene and denitrifiers (e.g., Pseudomonadaceae, Sphingomonadaceae), impeding N2O emissions. Both PVC and PLA stimulated the growth of microbes (Saprospiraceae, Aquabacterium, and Desulfuromonadia) associated with complex organics degradation, leading to increased CO2 emissions. Notably, the concurrent inhibition of PLA on mcrA and pmoA genes led to its minimal impact on CH4 emissions. High-altitude MQ sediments, characterized by abundant substrate and a higher abundance of functional genes (AOA, AOB, nirK, mcrA), demonstrated higher GHG emissions. Conversely, lower microbial diversity rendered the low-altitude LJ microbial community more susceptible to PVC, leading to a more significant promotion on GHG emissions. This study unequivocally confirms that MPs exacerbate GHG emissions via microbiome-mediated mechanisms, providing a robust theoretical foundation for microplastic control to mitigate global warming.
Collapse
Affiliation(s)
- Meiling Yi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jingnan Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Maosen Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Sibo Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xin Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
2
|
Hou Z, Wang R, Chang S, Zheng Y, Ma T, Xu S, Zhang X, Shi X, Lu J, Luo D, Wang B, Du Z, Wei Y. The contribution of microbial necromass to soil organic carbon and influencing factors along a variation of habitats in alpine ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171126. [PMID: 38387574 DOI: 10.1016/j.scitotenv.2024.171126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
A growing consensus is reached that microbes contributes to regulating the formation and accumulation of soil organic carbon (SOC). Nevertheless, less is known about the role of soil microbes (necromass, biomass) in SOC accumulation in different habitat conditions in alpine ecosystems. To address this knowledge gap, the composition and distribution of amino sugars (ASs) and phospholipid fatty acids (PLFAs) as biomarkers of microbial necromass and biomass were investigated in forest, meadow and wetland soil profile (0-40 cm) of Mount Segrila, Tibet, China, as well the contribution of bacterial and fungal necromass to SOC. The results revealed that microbial necromass carbon contributed 45.15 %, 72.51 % and 78.08 % on average to SOC in 0-40 cm forest, meadow and wetland soils, respectively, and decreased with microbial biomass. Fungal necromass contributed more to SOC in these habitats than bacterial necromass. Microbial necromass increased with microbial biomass and both of them decreased with soil depth in all habitats. The necromass accumulation coefficient was significantly correlated with microbial necromass and biomass, affected by habitat and soil moisture. Structural equation model indicated that soil abiotic factors indirectly mediated the accumulation of SOC through microbial necromass and biomass. This study revealed that different habitats and soil depths control considerably soil physicochemical properties and microbial community, finally influencing SOC accumulation in alpine ecosystems, which emphasized the influence of abiotic factors on microbial necromass and biomass for SOC accumulation in alpine ecosystems.
Collapse
Affiliation(s)
- Zhuonan Hou
- Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agricultural & Animal Husbandry University), Ministry of Education, Nyingchi, Tibet 860000, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Ruihong Wang
- Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agricultural & Animal Husbandry University), Ministry of Education, Nyingchi, Tibet 860000, China
| | - Su Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yi Zheng
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Tiantian Ma
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Shaoqi Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Xinjun Zhang
- Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agricultural & Animal Husbandry University), Ministry of Education, Nyingchi, Tibet 860000, China.
| | - Xiong Shi
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China
| | - Jie Lu
- Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agricultural & Animal Husbandry University), Ministry of Education, Nyingchi, Tibet 860000, China
| | - Daqing Luo
- Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agricultural & Animal Husbandry University), Ministry of Education, Nyingchi, Tibet 860000, China
| | - Bo Wang
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
| | - Zhangliu Du
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yuquan Wei
- Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agricultural & Animal Husbandry University), Ministry of Education, Nyingchi, Tibet 860000, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China.
| |
Collapse
|