1
|
Bao HX, Li ZY, Chen C, Li M, Zhang XN, Song K, Sun YL, Wang AJ. Unraveling the impact of perfluorooctanoic acid on sulfur-based autotrophic denitrification process. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135617. [PMID: 39213772 DOI: 10.1016/j.jhazmat.2024.135617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
PFOA has garnered heightened scrutiny for its impact on denitrification, especially given its frequent detection in secondary effluent discharged from wastewater treatment plants. However, it is still unclear what potential risk PFOA release poses to a typical advanced treatment process, especially the sulfur-based autotrophic denitrification (SAD) process. In this study, different PFOA concentration were tested to explore their impact on denitrification kinetics and microbial dynamic responses of the SAD process. The results showed that an increase PFOA concentration from 0 to 1000 μg/L resulted in a decrease in nitrate removal rate from 9.52 to 7.73 mg-N/L·h. At the same time, it increased nitrite accumulation and N2O emission by 6.11 and 2.03 times, respectively. The inhibitory effect of PFOA on nitrate and nitrite reductase activity in the SAD process was linked to the observed fluctuations in nitrate and nitrite levels. It is noteworthy that nitrite reductase was more vulnerable to the influence of PFOA than nitrate reductase. Furthermore, PFOA showed a significant impact on gene expression and microbial community. Metabolic function prediction revealed a notable decrease in nitrogen metabolism and an increase in sulfur metabolism under PFOA exposure. This study highlights that PFOA has a considerable inhibitory effect on SAD performance.
Collapse
Affiliation(s)
- Hong-Xu Bao
- College of the Environment, Liaoning University, Shenyang 110036, China
| | - Zhou-Yang Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Chen
- College of the Environment, Liaoning University, Shenyang 110036, China
| | - Min Li
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Xue-Ning Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Lu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Tong Y, Zhang Q, Li Z, Meng G, Liu B, Jiang Y, Li S. Autotrophic denitrification by sulfur-based immobilized electron donor for enhanced nitrogen removal: Denitrification performance, microbial interspecific interaction and functional traits. BIORESOURCE TECHNOLOGY 2024; 401:130747. [PMID: 38677382 DOI: 10.1016/j.biortech.2024.130747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
Sulfur-driven autotrophic denitrification (SdAD) is a promising nitrogen removing process, but its applications were generally constrained by conventional electron donors (i.e., thiosulfate (Na2S2O3)) with high valence and limited bioavailability. Herein, an immobilized electron donor by loading elemental sulfur on the surface of polyurethane foam (PFSF) was developed, and its feasibility for SdAD was investigated. The denitrification efficiency of PFSF was 97.3%, higher than that of Na2S2O3 (91.1%). Functional microorganisms (i.e., Thiobacillus and Sulfurimonas) and their metabolic activities (i.e., nir and nor) were substantially enhanced by PFSF. PFSF resulted in the enrichment of sulfate-reducing bacteria, which can reduce sulfate (SO42-). It attenuated the inhibitory effect of SO42-, whereas the generated product (hydrogen sulfide) also served as an electron donor for SdAD. According to the economic evaluation, PFSF exhibited strong market potential. This study proposes an efficient and low-cost immobilized electron donor for SdAD and provides theoretical support to its practical applications.
Collapse
Affiliation(s)
- Yangyang Tong
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, China
| | - Qin Zhang
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China
| | - Zhenghui Li
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, China
| | - Guanhua Meng
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China.
| | - Baohe Liu
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China
| | - Yongbin Jiang
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China
| | - Susu Li
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, China
| |
Collapse
|
3
|
Zhou K, Zhang H, Guo D, Gao S, Pei Y, Hou L. Amorphous Fe substrate enhances nitrogen and phosphorus removal in sulfur autotrophic process. WATER RESEARCH 2024; 256:121581. [PMID: 38614032 DOI: 10.1016/j.watres.2024.121581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
The autotrophic denitrification of coupled sulfur and natural iron ore can remove nitrogen and phosphorus from wastewater with low C/N ratios. However, the low solubility of crystalline Fe limits its bioavailability and P absorption capacity. This study investigated the effects of amorphous Fe in drinking water treatment residue (DWTR) and crystalline Fe in red mud (RM) on nitrogen and phosphorus removal during sulfur autotrophic processes. Two types of S-Fe cross-linked filler particles with three-dimensional mesh structures were obtained by combining sulfur with the DWTR/RM using the hydrogel encapsulation method. Two fixed-bed reactors, sulfur-DWTR autotrophic denitrification (SDAD) and sulfur-RM autotrophic denitrification (SRAD), were constructed and stably operated for 236 d Under a 5-8-h hydraulic retention time, the average NO3--N, TN, and phosphate removal rates of SDAD and SRAD were 99.04 %, 96.29 %, 94.03 % (SDAD) and 97.33 %, 69.97 %, 82.26 % (SRAD), respectively. It is important to note that fermentative iron-reducing bacteria, specifically Clostridium_sensu_stricto_1, were present in SDAD at an abundance of 58.17 %, but were absent from SRAD. The presence of these bacteria facilitated the reduction of Fe (III) to Fe (II), which led to the complete denitrification of the S-Fe (II) co-electron donor to produce Fe (III), completing the iron cycle in the system. This study proposes an enhancement method for sulfur autotrophic denitrification using an amorphous Fe substrate, providing a new option for the efficient treatment of low-C/N wastewater.
Collapse
Affiliation(s)
- Kebing Zhou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hao Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Dong Guo
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shuocheng Gao
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yuansheng Pei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Li'an Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|