1
|
Dueñas-Moreno J, Mora A, Narvaez-Montoya C, Mahlknecht J. Trace elements and heavy metal(loid)s triggering ecological risks in a heavily polluted river-reservoir system of central Mexico: Probabilistic approaches. ENVIRONMENTAL RESEARCH 2024; 262:119937. [PMID: 39243840 DOI: 10.1016/j.envres.2024.119937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The contamination of trace elements and heavy metal(loid)s in water bodies has emerged as a global environmental concern due to their high toxicity at low concentrations to both biota and humans. This study aimed to evaluate the ecological risk associated with the occurrence and spatial distribution of Mn, Fe, Co, Cd, Ni, Zn, Sb, As, Tl, Cu, Pb, U, and V in the heavily polluted waters of an important river-reservoir system (Atoyac River Basin) in central Mexico, using two-level tired probabilistic approaches: Risk Quotient based on Species Sensitivity Distribution (RQSSD) and Joint Probability Curves (JPCs). The concentrations of these elements varied widely, ranging from 0.055 μg L-1 to 9200 μg L-1 and from 0.056 μg L-1 to 660 μg L-1, in both total and dissolved fractions, respectively. Although geogenic and anthropogenic sources contribute to the presence of these elements in waters, the discharge of untreated or poorly treated industrial wastewater is the main source of contamination. In this regard, the RQSSD results indicated high ecological risk for Mn, Fe, Co, Ni, Zn, and Sb, and medium or low ecological risk for As, Tl, U, and V at almost all sampling sites. The highest RQSSD values were found downstream of a large industrial corridor for Co, Zn, Tl, Pb, and V, with Tl, Pb, and V escalating to higher risk levels, highlighting the negative impact of industrial contamination on biota. The JPC results for these elements are consistent with the RQSSD approach, indicating an ecological risk to species from Mn, Fe, Co, Ni, Zn, and Sb in waters of the Atoyac River Basin. Therefore, the results of this study offer a thorough assessment of pollution risk, providing valuable insights for legislators on managing and mitigating exposure.
Collapse
Affiliation(s)
- Jaime Dueñas-Moreno
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| | - Abrahan Mora
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico.
| | - Christian Narvaez-Montoya
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| | - Jürgen Mahlknecht
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| |
Collapse
|
2
|
Men S, Xu J, Yang Z, Yan Z. DEHP-Induced Glioblastoma in Zebrafish Is Associated with Circadian Dysregulation of PER3. TOXICS 2024; 12:835. [PMID: 39771050 PMCID: PMC11679192 DOI: 10.3390/toxics12120835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
DEHP is a plasticizer that is widely found in our water environment and poses a significant risk to the environment and human health. Long-term exposure to DEHP can cause endocrine disruption and interfere with the organism's normal functioning. In order to explore the potential effects of DEHP on the development of biological brain tissues, this study used bioinformatics analysis to confirm the diagnostic and prognostic value of PER3 in gliomas and further validated the neurotoxicity of DEHP using methods such as behavioral experiments and molecular biology in zebrafish. The experimental findings revealed that the expression level of PER3 in diseased tissues was significantly lower than that in the control group. In addition, the expression level of PER3 was significantly correlated with immune cell infiltration, immune checkpoint genes, and oncogenes. Moreover, the ROC curve analysis showed that PER3 could accurately differentiate between GBM tissues and adjacent normal tissues. To further validate the neurotoxicity of DEHP, we analyzed the effects of DEHP exposure on zebrafish development and PER3 expression by behavioral experiments and molecular biology. The results showed that exposure to DEHP substantially altered both the behavioral responses and the gene expression profiles within the brain tissues of zebrafish. PCR results indicate that the expression of circadian rhythm factor PER3 was significantly reduced in the brains of zebrafish in the exposed group, and circadian dysregulation had a certain promoting effect on the development of glioma. The aim of this work was to investigate the potential effects of DEHP contamination in a water environment on organism brain development. It was demonstrated that PER3 is an effective early diagnostic marker, which is of great significance in the diagnosis and clinical prognosis of glioma, and that DEHP exposure can lead to a significant reduction in PER3 expression in zebrafish brain tissue. This study further proved that DEHP has a potential carcinogenic effect, which adds scientific evidence to the carcinogenicity study of DEHP.
Collapse
Affiliation(s)
- Shuhui Men
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
| | - Jiayun Xu
- Ningbo Clinical Pathology Diagnosis Center, Ningbo 315021, China;
| | - Zhanhong Yang
- Environmental Standards Institute of Ministry of Ecology and Environment of the People’s Republic of China, Beijing 100012, China
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
| |
Collapse
|
3
|
Zhou X, Liu S, Wang T, Li Z. Seawater quality criteria derivation and ecological risk assessment for dichlorvos in China. MARINE POLLUTION BULLETIN 2024; 206:116669. [PMID: 38991609 DOI: 10.1016/j.marpolbul.2024.116669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/14/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Dichlorvos (DDVP) is a widely used organophosphorus pesticide (OPP) that has been frequently detected in the marine environment of China. Water quality criteria (WQC) is however not available for this emergent pollutant in the marine environment, which hinders its ecological risk assessment. This study, therefore, screened toxicity values of DDVP and conducted toxicity tests on six marine species to supplement toxicity data. The WQC for DDVP was derived with the species sensitivity distribution (SSD) methodology, based on which the ecological risk of DDVP in the seawater of China was assessed. The results showed that the recommended short-term (SWQC) and long-term water quality criteria (LWQC) for DDVP were 1.47 and 0.0521 μg/L, respectively. Most marine waters of China showed low or negligible risk (HQ < 1, ORP < 2 %), whereas some estuarine waters warrant further concern due to higher risk. This study provides the scientific basis for seawater quality standard formulation and ecological risk management for DDVP.
Collapse
Affiliation(s)
- Xingzheng Zhou
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuai Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Teng Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhengyan Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
4
|
Guan Y, Zhang N, Chu C, Xiao Y, Niu R, Shao C. Health impact assessment of the surface water pollution in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173040. [PMID: 38729374 DOI: 10.1016/j.scitotenv.2024.173040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
China suffers from severe surface water pollution. Health impact assessment could provide a novel and quantifiable metric for the health burden attributed to surface water pollution. This study establishes a health impact assessment method for surface water pollution based on classic frameworks, integrating the multi-pollutant city water quality index (CWQI), informative epidemiological findings, and benchmark public health information. A relative risk level assignment approach is proposed based on the CWQI, innovatively addressing the challenge in surface water-human exposure risk assessment. A case study assesses the surface water pollution-related health impact in 336 Chinese cities. The results show (1) between 2015 and 2022, total health impact decreased from 3980.42 thousand disability-adjusted life years (DALYs) (95 % Confidence Interval: 3242.67-4339.29) to 3260.10 thousand DALYs (95 % CI: 2475.88-3641.35), measured by total cancer. (2) The annual average health impacts of oesophageal, stomach, colorectal, gallbladder, and pancreatic cancers added up to 2621.20 thousand DALYs (95 % CI: 2095.58-3091.10), revealing the significant health impact of surface water pollution on digestive cancer. (3) In 2022, health impacts in the Beijing-Tianjin-Hebei and surroundings, the Yangtze River Delta, and the middle reaches of the Yangtze River added up to 1893.06 thousand DALYs (95 % CI: 1471.82-2097.88), showing a regional aggregating trend. (4) Surface water pollution control has been the primary driving factor to health impact improvement, contributing -3.49 % to the health impact change from 2015 to 2022. It is the first city-level health impact map for China's surface water pollution. The methods and findings will support the water management policymaking in China and other countries suffering from water pollution.
Collapse
Affiliation(s)
- Yang Guan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Nannan Zhang
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100041, China
| | - Chengjun Chu
- Center of Environmental Status and Plan Assessment, Chinese Academy of Environmental Planning, Beijing 100041, China
| | - Yang Xiao
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100041, China; The Center for Beautiful China, Chinese Academy of Environmental Planning, Beijing 100041, China
| | - Ren Niu
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100041, China
| | - Chaofeng Shao
- Department of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
5
|
Sudarsan JS, Dogra K, Kumar R, Raval NP, Leifels M, Mukherjee S, Trivedi MH, Jain MS, Zang J, Barceló D, Mahlknecht J, Kumar M. Tricks and tracks of prevalence, occurrences, treatment technologies, and challenges of mixtures of emerging contaminants in the environment: With special emphasis on microplastic. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104389. [PMID: 38941876 DOI: 10.1016/j.jconhyd.2024.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
This paper aims to emphasize the occurrence of various emerging contaminant (EC) mixtures in natural ecosystems and highlights the primary concern arising from the unregulated release into soil and water, along with their impacts on human health. Emerging contaminant mixtures, including pharmaceuticals, personal care products, dioxins, polychlorinated biphenyls, pesticides, antibiotics, biocides, surfactants, phthalates, enteric viruses, and microplastics (MPs), are considered toxic contaminants with grave implications. MPs play a crucial role in transporting pollutants to aquatic and terrestrial ecosystems as they interact with the various components of the soil and water environments. This review summarizes that major emerging contaminants (ECs), like trimethoprim, diclofenac, sulfamethoxazole, and 17α-Ethinylestradiol, pose serious threats to public health and contribute to antimicrobial resistance. In addressing human health concerns and remediation techniques, this review critically evaluates conventional methods for removing ECs from complex matrices. The diverse physiochemical properties of surrounding environments facilitate the partitioning of ECs into sediments and other organic phases, resulting in carcinogenic, teratogenic, and estrogenic effects through active catalytic interactions and mechanisms mediated by aryl hydrocarbon receptors. The proactive toxicity of ECs mixture complexation and, in part, the yet-to-be-identified environmental mixtures of ECs represent a blind spot in current literature, necessitating conceptual frameworks for assessing the toxicity and risks with individual components and mixtures. Lastly, this review concludes with an in-depth exploration of future scopes, knowledge gaps, and challenges, emphasizing the need for a concerted effort in managing ECs and other organic pollutants.
Collapse
Affiliation(s)
- Jayaraman Sethuraman Sudarsan
- School of Energy and Environment, NICMAR (National Institute of Construction Management and Research) University, Pune 411045, India
| | - Kanika Dogra
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Nirav P Raval
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Andhra Pradesh 522 240, India
| | - Mats Leifels
- Division Water Quality and Health, Karl Landsteiner University for Health Sciences, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems an der Donau, Austria
| | - Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India.
| | - Mrugesh H Trivedi
- Department of Earth and Environmental Science, KSKV Kachchh University, Bhuj-Kachchh, Gujarat 370001, India
| | - Mayur Shirish Jain
- Department of Civil Engineering, Indian Institute of Technology Indore, Simrol, 453552, India
| | - Jian Zang
- School of Civil Engineering, Chongqing University, Chongqing, China
| | - Damià Barceló
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Chemistry and Physics Department, University of Almeria, Ctra Sacramento s/n, 04120, Almería, Spain
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, Nuevo Leon 64849, Mexico
| | - Manish Kumar
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, Nuevo Leon 64849, Mexico.
| |
Collapse
|
6
|
Lykos C, Tsalpatouros K, Fragkos G, Konstantinou I. Synthesis, characterization, and application of Cu-substituted LaNiO 3 perovskites as photocatalysts and/or catalysts for persulfate activation towards pollutant removal. CHEMOSPHERE 2024; 352:141477. [PMID: 38387662 DOI: 10.1016/j.chemosphere.2024.141477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
The presence of emerging contaminants in environmental aqueous matrices is an ever-growing problem, since conventional wastewater treatment methods fail to adequately remove them. Therefore, the application of non-conventional methodologies such as advanced oxidation processes is of great importance to tackle this modern problem. Photocatalysis as well as catalytic activation of persulfates are promising techniques in this field as they are capable of eliminating various emerging contaminants, and current research aims to develop new materials that can be utilized for both processes. In this light, the present study focused on the use of a simple sol-gel-combustion methodology to synthesize Cu-substituted LaNiO3 perovskite materials in an attempt to improve the photocatalytic and catalytic performance of pure LaNiO3, using molar ratios of Cu:Ni that have not been previously reported in the literature. The morphological, structural, and optical features of the synthesized materials were characterized by a series of analytical techniques (e.g., X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, diffuse reflectance spectroscopy, etc.). Also, their performance as photocatalysts, persulfate anion activators and simultaneously as photocatalysts/persulfate anion activators (hybrid) was evaluated by conducting laboratory-scale experiments using phenol (phenolics) as a model emerging contaminant. Interestingly, the results revealed that LaCu0.25Ni0.75O3 exhibited the best efficiency in all the applied processes, which was mainly attributed to the introduction of oxygen vacancies in the structure of the substituted material. The contribution of selected reactive species in the hybrid photocatalytic/catalytic experiments utilizing LaCu0.25Ni0.75O3 as a (photo)catalyst was investigated using appropriate scavengers, and the results suggested that singlet oxygen is the most dominant. Additionally, the stability of all synthesized perovskites was assessed by monitoring the concentration of the leached Cu and/or Ni cations at the end of every applied process. Finally, the reusability of LaCu0.25Ni0.75O3 was evaluated in three consecutive catalytic cycles using the hybrid experiment methodology, as this process demonstrated the best efficiency in terms of phenolics removal, and the results were rather promising.
Collapse
Affiliation(s)
- Christos Lykos
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece
| | | | - Georgios Fragkos
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece
| | - Ioannis Konstantinou
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece; Institute of Environment and Sustainable Development, University Research and Innovation Center, Ioannina 45110, Greece.
| |
Collapse
|