1
|
Yan R, Zhi S, Hao M, Liu Y, Wang H, Zhou S, Jiang K, Wu D. NH 2-MIL-125(Ti)/TiO 2 heterojunction with non-disturbed dual reactive centers for synchronous photocatalytic removal of Cr(VI) and organic dyes. CHEMOSPHERE 2025; 370:143935. [PMID: 39667529 DOI: 10.1016/j.chemosphere.2024.143935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Chromium (VI) (Cr(VI)) generally coexists with organic dyes in industrial effluents, posing a formidable challenge in water purification. Herein, NH2-MIL-125(Ti)/TiO2 Z-scheme heterojunction with intimate interfacial contact was synthesized for synchronous removal of pollutant in coexisting Cr(VI)/dyes system under simulated solar irradiation. Structural and optical investigations indicated that a well-defined interface was formed by establishing a Ti-N-C bond, facilitating the spatial separation of the photoexcited carriers of the Z-scheme heterojunction. The optimum NH2-MIL-125(Ti)/TiO2 nanocomposites show superior performance in photocatalytic removal of the pollutants in the Cr(VI) (5 mg/L, 97.2%)/MB (40 mg/L, 100%) coexistence systems within 120 min, which is comparable to that in the single system. The electron spin resonance (ESR) tests, radicals scavenging experiments, and density functional theory (DFT) cannulations unveiled that TiO2 could serve as oxidation centers to generate hydroxyl radicals (•OH) for MB oxidation, while the NH2-MIL-125(Ti) with exposed Ti nodes could act as reduction centers to effectively adsorb Cr2O72- and inject photo-generated electrons (e-) to accomplish the in-site photoreduction of Cr(VI) into Cr(III) under illumination. Particularly, owing to the spatial separation and non-disturbed dual reactive centers, the reduction and oxidation processes could be well accommodated, which could allow MB and Cr(VI) to be removed synchronously. This work demonstrated the great potential of applying duel reactive centers to eliminate multipollutant simultaneously in the actual scenarios for wastewater treatment.
Collapse
Affiliation(s)
- Ruifang Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China; School of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Songsong Zhi
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Mingming Hao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Yanlei Liu
- College of Physics, Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Hongju Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Shilei Zhou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Kai Jiang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Dapeng Wu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
2
|
Shu X, Qin Z, Nie C, Zhang D, Du H, Zhang Q, Dang Z. Inhibition photooxidation of pyrite under illumination via altering photogenerated carrier migration pathways: Role of DTC-TETA surface passivation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171988. [PMID: 38537811 DOI: 10.1016/j.scitotenv.2024.171988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
The oxidation of pyrite is the main cause of acidic mine drainage (AMD), which is a very serious environmental problem in numerous mining areas around the world. Previous studies have shown that passivation agents create a hydrophobic film on the surface of pyrite, effectively isolating oxygen and water. However, the presence of abundant sulfide minerals in tailings ponds may exacerbate AMD when exposed to solar radiation, due to the semiconductor properties of pyrite. It remains uncertain whether the current surface passivation coating can effectively prevent the oxidation of pyrite under light conditions. This paper is the first to investigate the passivation effect as well as the mechanism of surface passivation coating on pyrite under illumination from the perspective of materials science. The results demonstrated that the triethylenetetramine-bisdithiocarbamate (DTC-TETA) passivation coating on pyrite almost completely suppressed the photooxidation of pyrite under illumination by changing the migration path of photogenerated charge carriers. The formation of NC(S)2-Fe chelating groups provides atomic-level interface channels for DTC-TETA to transfer electrons to pyrite and creates a favorable reduction environment for pyrite. Besides, DTC-TETA coating greatly improves the electron-hole pairs recombination efficiency of pyrite, which significantly inhibits the photogenerated electron reduction of oxygen to generate reactive oxygen species (ROS). Moreover, DTC-TETA coating captures the photogenerated holes, avoiding direct oxidation of pyrite by holes. Density functional theory (DFT) calculations revealed that the DTC-TETA coating increases the adsorption energy barrier for oxygen and water. The results extend the existing knowledge on passivation mechanisms on pyrite and hold significant implications for the future screening, evaluation, and practical application of surface passivating agents.
Collapse
Affiliation(s)
- Xiaohua Shu
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, PR China
| | - ZiQi Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, PR China
| | - Changda Nie
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, PR China
| | - Dinghua Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, PR China
| | - Haijie Du
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, PR China.
| | - Qian Zhang
- School of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, Guangxi 541000, PR China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|