1
|
Rial-Berriel C, Carrillo-Hidalgo J, Luzardo OP, Martín-Cruz B, Zumbado M, Cecchetti M, Henríquez-Hernández LA. The common kestrel as an environmental bioindicator of toxic chemicals on Tenerife Island (Canary Islands, Spain). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125851. [PMID: 39952594 DOI: 10.1016/j.envpol.2025.125851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Indirect effects of toxic chemicals, such as persistent organic pollutants (POPs), affect non-target species like apex predators due to bioaccumulation in food webs. The common kestrel (Falco tinnunculus canariensis), an endemic subspecies from the Canary Islands and Madeira, was evaluated as a bioindicator to assess contamination by organic pollutants in Tenerife. A total of 390 liver samples, collected between 2003 and 2021, were analysed for 341 toxic compounds including pesticides, pharmaceuticals, and POPs like PCBs, PBDEs, PAHs and OCPs. Results revealed widespread contamination: 97.7% of kestrels had DDE, and 94.6% had PCB, with congener #180 being the most prevalent. BDE-153 was detected in 32.3% of samples and PAH, predominantly naphthalene, in 36.9%. Additionally, we identified four fungicides, five insecticides, one herbicide, and the acaricide tetradifon, marking the first report of these substances in raptors globally. Generalised Linear Models (GLM) and Linear Models (LM) indicated that adults had significantly higher levels of OCP and PCB, and PBDE exposure. Males exhibited significantly higher levels of PCBs and were more likely to be exposed to PBDEs. A decline in the concentrations and presence of OCPs, PCBs, and PBDEs was observed during the second study period (2003-2009 vs. 2017-2021). For PAHs, the null model was the best fit, indicating that the factors examined (sex, age, human density, cultivated area or period) did not have a significantly influence on exposure. This comprehensive, long-term study, represents a pioneering investigation in the Canary Islands, demonstrating the utility of the common kestrel as a bioindicator of environmental pollution.
Collapse
Affiliation(s)
- Cristian Rial-Berriel
- Toxicology Unit, University Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain.
| | - José Carrillo-Hidalgo
- Island Ecology and Biogeography Research Group, University Institute of Tropical Diseases and Public Health of the Canary Islands (IUETSPC), University of La Laguna (ULL), Tenerife, 38206, San Cristóbal de La Laguna, Canary Islands, Spain.
| | - Octavio P Luzardo
- Toxicology Unit, University Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Madrid, 28029, Spain.
| | - Beatriz Martín-Cruz
- Toxicology Unit, University Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain.
| | - Manuel Zumbado
- Toxicology Unit, University Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Madrid, 28029, Spain.
| | - Martina Cecchetti
- Toxicology Unit, University Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain; Environment and Sustainability Institute, University of Exeter. Penryn Campus, Penryn, TR10 9FE, United Kingdom.
| | - Luis Alberto Henríquez-Hernández
- Toxicology Unit, University Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Madrid, 28029, Spain.
| |
Collapse
|
2
|
Spadetto L, Gómez-Ramírez P, León-Ortega M, Zamora-López A, Díaz-García S, Zamora-Marín JM, Tecles-Vicente F, Pardo-Marín L, Fenoll J, Calvo JF, García-Fernández AJ. Exploring anticoagulant rodenticide exposure and effects in eagle owl (Bubo bubo) nestlings from a Mediterranean semiarid region. ENVIRONMENTAL RESEARCH 2025; 264:120382. [PMID: 39551374 DOI: 10.1016/j.envres.2024.120382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Anticoagulant rodenticides (ARs) are widely used for pest control, resulting in their pervasive presence in the environment and posing significant toxicological risks to a range of predatory and scavenging species. Our study mainly aimed to evaluate AR exposure and effects in nestlings of eagle owl (Bubo bubo) from the Region of Murcia (southeastern Spain). We analysed ARs in blood samples (n = 106) using high-performance liquid chromatography-triple quadrupole (HPLC-TQ), assessed the influence of potential anthropogenic (presence of livestock farms, landfills and human population density) and environmental (land uses and proximity to watercourses) variables, and measured prothrombin time (PT) and plasma biochemical parameters as biomarkers of effects. Our results showed the presence of AR residues in 91.5% of the nestlings, with 70.8% exhibiting multiple ARs (up to six compounds in a single individual). Second-generation ARs (SGARs) were the most prevalent compounds. The analysis of biochemical parameters indicated that the sampled individuals were in good physiological condition. Although PT was positively correlated with total AR concentration (ΣARs), the relationship was not significant (Rho = 0.04; p = 0.49). Regarding environmental factors, higher ΣARs were associated with the most urbanised study site and the presence of landfills, likely due to the increased availability of rodent prey. The prevalence of two SGARs (brodifacoum and difenacoum) was linked to closer proximity to riverbeds, suggesting a contamination pathway associated with inland aquatic ecosystems, where these AR compounds may concentrate due to water scarcity. This study underscores the widespread exposure of eagle owls to ARs and highlights the importance of effective monitoring and management of these pollutants to protect conservation-concern wildlife in Mediterranean semiarid regions.
Collapse
Affiliation(s)
- Livia Spadetto
- Area of Toxicology, Faculty of Veterinary, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain
| | - Pilar Gómez-Ramírez
- Area of Toxicology, Faculty of Veterinary, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain.
| | - Mario León-Ortega
- ULULA Association for Owl Study and Conservation, 30100, Murcia, Spain
| | - Antonio Zamora-López
- ULULA Association for Owl Study and Conservation, 30100, Murcia, Spain; Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Sarah Díaz-García
- ULULA Association for Owl Study and Conservation, 30100, Murcia, Spain
| | - José Manuel Zamora-Marín
- ULULA Association for Owl Study and Conservation, 30100, Murcia, Spain; Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain; Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria (CIAGRO-UMH), Miguel Hernández University of Elche, Elche, Spain
| | - Fernando Tecles-Vicente
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100, Murcia, Spain
| | - Luis Pardo-Marín
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100, Murcia, Spain
| | - José Fenoll
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, IMIDA, 30150, Murcia, Spain
| | - José Francisco Calvo
- Department of Ecology and Hydrology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | | |
Collapse
|
3
|
Picone M, Volpi Ghirardini A, Piazza R, Bonato T. First evidence of the suitability of hair for assessing wildlife exposure to anticoagulant rodenticides (ARs). ENVIRONMENTAL RESEARCH 2025; 264:120302. [PMID: 39510232 DOI: 10.1016/j.envres.2024.120302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Anticoagulant rodenticides (ARs) are potent pesticides acting as vitamin K epoxide reductase inhibitors causing haemorrhaging or external bleeding from orifices and/or skin lesions in intoxicated rodents. However, their non-selective mode of action makes them particularly harmful for non-target wildlife, which may be exposed to ARs via ingestion of AR-containing baits (primary exposure), feeding on AR-intoxicated rodents and carrions (secondary exposure), consuming AR-contaminated necrophagous species (tertiary exposure), and exposure to surface waters receiving baited sewer systems and ARs from outdoor-placed traps after heavy rain events. In the present study, we assessed the suitability of hairs as a non-invasive matrix for monitoring the possible exposure of mammals to ARs with a focus on the first-generation anticoagulant rodenticides (FGARs) warfarin, coumatetralyl, and chlorophacinone and the second-generation anticoagulant rodenticides (SGARs) brodifacoum, bromadiolone, difenacoum, flocoumafen, and difethialone. The Red fox (n = 24) was selected as the species representing the potentially exposed non-target wildlife in a littoral area of Northern Italy along the Adriatic coast (Cavallino-Treporti municipality). Half (n = 12) of the analysed hair samples were positive for at least one of the targeted ARs, with a higher prevalence of SGARs (n = 11; 46%) compared to FGARs (n = 1; 4%). The most frequently quantified ARs were brodifacoum (25%), difethialone (13%), and flocoumafen (13%), with concentrations ranging from 0.08 ng g-1 (difethialone) to 0.96 ng g-1 (brodifacoum). These data documented that a relevant part of the Red foxes living in the study area were exposed to ARs and, most importantly, provided the first evidence that hair residues can be used as a non-invasive matrix for assessing the possible exposure of mammals to ARs.
Collapse
Affiliation(s)
- Marco Picone
- Department of Environmental Sciences, Informatic, And Statistics, Ca' Foscari university Venice, Via Torino 155, 30172 Venezia-Mestre, Italy.
| | - Annamaria Volpi Ghirardini
- Department of Environmental Sciences, Informatic, And Statistics, Ca' Foscari university Venice, Via Torino 155, 30172 Venezia-Mestre, Italy
| | - Rossano Piazza
- Department of Environmental Sciences, Informatic, And Statistics, Ca' Foscari university Venice, Via Torino 155, 30172 Venezia-Mestre, Italy
| | - Tiziano Bonato
- Department of Environmental Sciences, Informatic, And Statistics, Ca' Foscari university Venice, Via Torino 155, 30172 Venezia-Mestre, Italy; Società Estense Servizi Ambientali (S.E.S.A. S.p.A.), 35042 EsteItaly
| |
Collapse
|
4
|
Martín Cruz B, Rial Berriel C, Acosta Dacal A, Carromeu-Santos A, Simbaña-Rivera K, Gabriel SI, Pastor Tiburón N, González González F, Fernández Valeriano R, Henríquez-Hernández LA, Zumbado-Peña M, Luzardo OP. Differential exposure to second-generation anticoagulant rodenticides in raptors from continental and insular regions of the Iberian Peninsula. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125034. [PMID: 39341407 DOI: 10.1016/j.envpol.2024.125034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The global impact of anticoagulant rodenticides (ARs) on non-target species is well-recognized. Birds of prey, as apex predators, are highly vulnerable to AR exposure and are widely used as biomonitors for priority pollutants in Europe. This study investigates differential SGAR exposure in raptors from insular versus continental regions, hypothesizing greater exposure in insular areas due to ecological factors like reduced prey diversity, intensive rodenticide use, and resistant rodent populations. We analyzed the livers of 190 common kestrels (Falco tinnunculus) and 104 common buzzards (Buteo buteo) across the Iberian Peninsula and its archipelagos using LC-MS/MS to assess their role as AR sentinels and the differences between insular and continental areas. Results revealed a high prevalence (>80%) of second-generation anticoagulant rodenticides (SGARs), with brodifacoum and bromadiolone, being the most frequent. Multiple SGAR detections were also common (≈50%). A binomial logistic regression showed that species and region significantly influence the likelihood of SGAR exposure. Kestrels had a greater probability of exceeding 100 ng/g wet weight (ww) compared to buzzards. Raptors from insular territories were ten times more likely to have higher SGAR concentrations than those from continental areas. However, the legal restriction on SGAR bait concentrations that came into effect in 2018 did not significantly impact exposure levels. This study highlights the need for targeted conservation efforts to mitigate AR exposure risk in vulnerable island ecosystems.
Collapse
Affiliation(s)
- Beatriz Martín Cruz
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain.
| | - Cristian Rial Berriel
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain
| | - Andrea Acosta Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain
| | - Ana Carromeu-Santos
- CESAM-Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Katherine Simbaña-Rivera
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain; Centro de Investigación para la Salud en América Latina (CISeAL), Facultad de Medicina, Pontificia Universidad Católica del Ecuador (PUCE), Quito, Ecuador
| | - Sofia I Gabriel
- CESAM-Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Natalia Pastor Tiburón
- Group of Rehabilitation of the Autochtonous Fauna and Their Habitat (GREFA), Monte del Pilar, Majadahonda, 28220, Madrid, Spain
| | - Fernando González González
- Group of Rehabilitation of the Autochtonous Fauna and Their Habitat (GREFA), Monte del Pilar, Majadahonda, 28220, Madrid, Spain; Departmental Section of Pharmacology and Toxicology, Faculty of Veterinary Science, Universidad Complutense de Madrid, 28020, Madrid, Spain
| | - Rocío Fernández Valeriano
- Group of Rehabilitation of the Autochtonous Fauna and Their Habitat (GREFA), Monte del Pilar, Majadahonda, 28220, Madrid, Spain
| | - Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Madrid, 28029, Spain
| | - Manuel Zumbado-Peña
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Madrid, 28029, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Madrid, 28029, Spain
| |
Collapse
|
5
|
Spadetto L, García-Fernández AJ, Zamora-López A, Zamora-Marín JM, León-Ortega M, Tórtola-García M, Tecles-Vicente F, Fenoll-Serrano J, Cava-Artero J, Calvo JF, Gómez-Ramírez P. Comparing anticoagulant rodenticide exposure in barn owl (Tyto alba) and common kestrel (Falco tinnunculus): A biomonitoring study in an agricultural region of southeastern Spain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124944. [PMID: 39265762 DOI: 10.1016/j.envpol.2024.124944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/31/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Second-generation anticoagulant rodenticides (SGARs) are commonly used for rodent control, affecting various non-target wildlife species. Here, blood samples from common kestrels (Falco tinnunculus, n = 70 chicks) and barn owls (Tyto alba, n = 54 chicks and 12 adults) from Southeastern Spain were analysed using HPLC-TQ. SGAR prevalence was 68.6% in kestrel chicks, 50% in barn owl chicks and 100% in adult barn owls, with multiple SGARs in both species. Prothrombin time analysis in barn owls revealed a positive correlation with blood ΣSGARs, suggesting a potential adverse effect on coagulation. Analysis of variables potentially influencing SGAR prevalence indicated that, for kestrels, it was only related to the extent of artificial surface, showing no differences across study sites. In owlets, the highest prevalence occurred in the most urbanized study site, with human population density being a key factor. This study highlights species-specific differences in SGAR exposure, likely influenced by ecological traits. Barn owls probably encounter contaminated prey near anthropized areas, with widespread SGAR use and higher presence of target rodents. Conversely, kestrels, hunting a variety of prey often near human settlements, face consistently elevated exposure from multiple sources. Understanding these variations is crucial for effective conservation and minimizing SGAR impact on non-target wildlife.
Collapse
Affiliation(s)
- Livia Spadetto
- Toxicology Research Group, Faculty of Veterinary, IMIB-Pascual Parrilla, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain.
| | - Antonio Juan García-Fernández
- Toxicology Research Group, Faculty of Veterinary, IMIB-Pascual Parrilla, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain.
| | - Antonio Zamora-López
- ULULA Association for Owl Study and Conservation, 30100, Murcia, Spain; Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - José Manuel Zamora-Marín
- ULULA Association for Owl Study and Conservation, 30100, Murcia, Spain; Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria (CIAGRO-UMH), Miguel Hernández University of Elche, Elche, Spain; Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Mario León-Ortega
- ULULA Association for Owl Study and Conservation, 30100, Murcia, Spain
| | | | - Fernando Tecles-Vicente
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100, Murcia, Spain
| | - José Fenoll-Serrano
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, IMIDA, 30150, Murcia, Spain
| | - Juana Cava-Artero
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, IMIDA, 30150, Murcia, Spain
| | - José Francisco Calvo
- Department of Ecology and Hydrology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Pilar Gómez-Ramírez
- Toxicology Research Group, Faculty of Veterinary, IMIB-Pascual Parrilla, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain
| |
Collapse
|
6
|
George S, Sharp E, Campbell S, Giela A, Senior C, Melton LM, Vyas D, Mocogni L, Galloway M. Anticoagulant rodenticide exposure in common buzzards: Impact of new rules for rodenticide use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173832. [PMID: 38879042 DOI: 10.1016/j.scitotenv.2024.173832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Rodenticides are a key component of rodent management strategies, but birds of prey are susceptible to non-target exposure. New rules on sale and use of rodenticide products were introduced across the UK in 2016 in an industry-led stewardship scheme, with the aim of reducing this risk. To determine if this intervention has achieved its aim, exposure to second generation anticoagulant rodenticides (SGARs) was measured in buzzards. Liver samples from 790 buzzards collected between 2005 and 2022 (excluding 2016 and 2017 samples) were analyzed and the percentage presence and concentrations of SGARs from pre-stewardship and post-stewardship samples were compared. There was no statistically significant decrease in the percentage of buzzards exposed to bromadiolone, difenacoum or combined SGAR residues after the introduction of stewardship. The percentage of buzzards exposed to brodifacoum increased significantly post-stewardship, from 8 % to 27 %. There were no significant decreases in the concentrations of individual SGARs post-stewardship but concentration of combined SGARs increased significantly post-stewardship. Individual buzzards were significantly more likely to be exposed to multiple SGARs post-stewardship. Rodenticide poisoning was recorded as the cause of death for 5 % of pre- and post-stewardship buzzards with detectable levels of SGARs, and 90 % of these had combined SGAR residues >0.1 mg/kg. These findings suggest that the industry-led stewardship scheme has not yet had the intended impact of reducing SGAR exposure in non-target wildlife. The study highlights a substantial increase in exposure of buzzards to brodifacoum and to multiple SGARs post-stewardship, indicating that further changes to the stewardship scheme may be necessary.
Collapse
Affiliation(s)
- Sheila George
- Wildlife Management Unit, Diagnostics, Wildlife Management and Molecular Biology, SASA, Edinburgh, UK.
| | - E Sharp
- Chemistry Dept, SASA, Edinburgh, UK
| | - S Campbell
- Wildlife Management Unit, Diagnostics, Wildlife Management and Molecular Biology, SASA, Edinburgh, UK
| | - A Giela
- Chemistry Dept, SASA, Edinburgh, UK
| | - C Senior
- Chemistry Dept, SASA, Edinburgh, UK
| | | | - D Vyas
- Chemistry Dept, SASA, Edinburgh, UK
| | | | | |
Collapse
|
7
|
Ozaki S, Movalli P, Cincinelli A, Alygizakis N, Badry A, Carter H, Chaplow JS, Claßen D, Dekker RWRJ, Dodd B, Duke G, Koschorreck J, Pereira MG, Potter E, Sleep D, Slobodnik J, Thomaidis NS, Treu G, Walker L. Significant Turning Point: Common Buzzard ( Buteo buteo) Exposure to Second-Generation Anticoagulant Rodenticides in the United Kingdom. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6093-6104. [PMID: 38545700 PMCID: PMC11008253 DOI: 10.1021/acs.est.3c09052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024]
Abstract
Second-generation anticoagulant rodenticides (SGARs) are widely used to control rodent populations, resulting in the serious secondary exposure of predators to these contaminants. In the United Kingdom (UK), professional use and purchase of SGARs were revised in the 2010s. Certain highly toxic SGARs have been authorized since then to be used outdoors around buildings as resistance-breaking chemicals under risk mitigation procedures. However, it is still uncertain whether and how these regulatory changes have influenced the secondary exposure of birds of prey to SGARs. Based on biomonitoring of the UK Common Buzzard (Buteo buteo) collected from 2001 to 2019, we assessed the temporal trend of exposure to SGARs and statistically determined potential turning points. The magnitude of difenacoum decreased over time with a seasonal fluctuation, while the magnitude and prevalence of more toxic brodifacoum, authorized to be used outdoors around buildings after the regulatory changes, increased. The summer of 2016 was statistically identified as a turning point for exposure to brodifacoum and summed SGARs that increased after this point. This time point coincided with the aforementioned regulatory changes. Our findings suggest a possible shift in SGAR use to brodifacoum from difenacoum over the decades, which may pose higher risks of impacts on wildlife.
Collapse
Affiliation(s)
- Shinji Ozaki
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | - Paola Movalli
- Naturalis
Biodiversity Center, Darwinweg 2, 2333 CR Leiden, Netherlands
| | - Alessandra Cincinelli
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Florence, Italy
| | - Nikiforos Alygizakis
- Environmental
Institute, Okružná
784/42, 97241 Koš, Slovak Republic
- Department
of Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece
| | - Alexander Badry
- German Environment
Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Roßlau, Germany
| | - Heather Carter
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | - Jacqueline S. Chaplow
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | - Daniela Claßen
- German Environment
Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Roßlau, Germany
| | | | - Beverley Dodd
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | - Guy Duke
- UK
Centre for Ecology and Hydrology, MacLean Bldg, Benson Ln, Crowmarsh Gifford, Wallingford OX10 8BB, United Kingdom
| | - Jan Koschorreck
- German Environment
Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Roßlau, Germany
| | - M. Glória Pereira
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | - Elaine Potter
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | - Darren Sleep
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | | | - Nikolaos S. Thomaidis
- Department
of Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece
| | - Gabriele Treu
- German Environment
Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Roßlau, Germany
| | - Lee Walker
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| |
Collapse
|