1
|
Pandey K, Dasgupta CN. Role of nanobionics to improve the photosynthetic productivity in plants and algae: an emerging approach. 3 Biotech 2025; 15:74. [PMID: 40060293 PMCID: PMC11885746 DOI: 10.1007/s13205-025-04244-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/16/2025] [Indexed: 04/13/2025] Open
Abstract
The domain of nanobionics has gained attention since its inception due to its potential applicability in plant, microalgal treatments, productivity enhancement. This review compares the intake and mobilization of nanoparticles (NPs) in plant and algal cell. In plants, NPs enter from root or other openings, and then carried by apoplastic or symplastic transport and accumulated in various parts, whereas in algae, NPs enter via endocytosis, passive transmission pathways, traverse the algal cell cytoplasm. This study demonstrated the mechanisms of metal-based NPs such as zinc (Zn), silver (Ag), iron (Fe), copper (Cu), titanium (Ti), and silica (Si) for seed priming or plant treatments to improve productivity. These metal NPs are used as nano-fertilizer for plant growths. It has also been observed that these NPs can reduce pathogenic infection and help to cope up with environmental stresses including heavy metals contamination such as arsenic (As), cadmium (Cd), chromium (Cr), and lead (Pb). Overall, the photosynthetic productivity increases through NPs as it increases ability to enhance light capture, improve electron transport, and optimize carbon fixation pathways and withstand stresses. These advancements not only elevate biomass production in plant improving agricultural output but also support the sustainable generation of biofuels and bioproducts from algae.
Collapse
Affiliation(s)
- Komal Pandey
- Research Cell, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh 226028 India
| | - Chitralekha Nag Dasgupta
- Research Cell, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh 226028 India
| |
Collapse
|
2
|
Chahardoli A, Karimi N, Sharifan H. Elucidating the phytotoxic endpoints of sub-chronic exposure to titanium dioxide nanoparticles in Endemic Persian Dracocephalum species. CHEMOSPHERE 2025; 370:143853. [PMID: 39615853 DOI: 10.1016/j.chemosphere.2024.143853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/22/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024]
Abstract
This study was designed to investigate the dichotomous effects of titanium dioxide nanoparticles (TiO2NPs) at varying concentrations (0, 50, 100, 1000, and 2500 ppm) on the physiological, biochemical, and antioxidative defense responses of Persian dragonhead plants cultivated in hydroponic conditions. Over 21 days of treatment, an increase in fresh shoot biomass by 26.2% and plant height by 18.2% was observed at exposure to 50 ppm TiO2NPs. Exposure to 100 ppm NPs negatively affected the biosynthesis of carotenoids, chlorophyll pigments (a, b, and total), and protein content. Field Emission Scanning Electron Microscopy (FE-SEM) and Transmission Electron Microscopy (TEM) analysis revealed TiO2NPs deposition within intercellular spaces and cell walls of root tissues. The physiological stress was prominent in response to 2500 ppm NPs as evidenced by a significant increase in proline and sugar content compared to the control. The enzymatic antioxidative defense was significantly upregulated by the enhanced activity of catalase (CAT) across exposure ranges 100-2500 ppm NPs, ascorbate peroxidase (APX) at 100 and 2500 ppm NPs, and peroxidase (POD) at 100 ppm NPs in plant roots. The antioxidant proficiency was further corroborated by increases in total flavonoids by 30.43% at 2500 ppm, saponins by 253.7%, and iridoids by 22.3% at 100 ppm NPs, relative to control. The results suggest that TiO2NPs fostered growth promotion at sub-lethal doses, and induced adverse biochemical changes at elevated concentrations, prompting the activation of intrinsic defense mechanisms to enhance plant resilience against NPs stresses. The optimal nano-stimulation performance was observed at 50 ppm TiO2NPs, which was suggested for the high yield targets, signifying a potential boon for agricultural productivity.
Collapse
Affiliation(s)
- Azam Chahardoli
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Naser Karimi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Hamidreza Sharifan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, Texas, USA; Environmental Science and Engineering Program, University of Texas at El Paso, Texas, USA
| |
Collapse
|
3
|
Sultan H, Mazhar Abbas HM, Faizan M, Emamverdian A, Shah A, Bahadur S, Li Y, Khan MN, Nie L. Residual effects of biochar and nano-modified biochar on growth and physiology under saline environment in two different genotype of Oryza sativa L. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123847. [PMID: 39746259 DOI: 10.1016/j.jenvman.2024.123847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/03/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
Soil salinity is represent a significant environmental stressor that profoundly impairs crop productivity by disrupting plant physiological functions. To mitigate this issue, the combined application of biochar and nanoparticles has emerged as a promising strategy to enhance plant salt tolerance. However, the long-term residual effects of this approach on cereal crops remain unclear. In a controlled pot experiment, rice straw biochar (BC) was applied in an earlier experiment at a rate of 20 t/ha, in conjunction with ZnO and Fe2O3 nanoparticles at concentrations of 10 mg L-1 and 20 mg L-1. Two rice genotypes, Jing Liang You-534 (salt-sensitive) and Xiang Liang You-900 (salt-tolerant), were utilized under 0% NaCl (S1) and 0.6% NaCl (S2) conditions. Results showed that, application of residual ZnOBC-20 significantly enhanced rice biomass, photosynthetic assimilation, relative chlorophyll content, SPAD index, enzyme activities, K+/Na+ ratio, hydrogen peroxide (H2O2) levels, and overall plant growth. Specifically, ZnOBC-20 increased the tolerance index by 142.8% and 146.1%, reduced H2O2 levels by 27.11% and 35.8%, and decreased malondialdehyde (MDA) levels by 33% and 57.9% in V1 and V2, respectively, compared to their respective controls. Residual of ZnOBC-20 mitigated oxidative damage caused by salinity-induced over-accumulation of reactive oxygen species (ROS) by enhancing the activities of antioxidant enzymes (SOD, POD, CAT, and APX) and increasing total soluble protein (TSP) content. Xiang Liang You-900 exhibited a less severe response to salinity compared to Jing Liang You-534. Additionally, residual of ZnOBC-20 significantly enhanced the anatomical architecture of both root and leaf tissues and regulated the expression levels of salt-related genes. Residual of ZnOBC-20 also improved salt tolerance in rice plants by reducing sodium (Na+) accumulation and enhancing potassium (K+) retention, thereby increasing the K+/Na+ ratio under saline conditions. The overall results of this experiment demonstrate that, residual effects of ZnOBC-20 not only improved the growth and physiological traits of rice plants under salt stress but also provided insights into the mechanisms behind the innovative combination of biochar and nanoparticles residual impacts for enhancing plant salt tolerance.
Collapse
Affiliation(s)
- Haider Sultan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Hafiz Muhammad Mazhar Abbas
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Asad Shah
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Saraj Bahadur
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Yusheng Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Mohammad Nauman Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.
| | - Lixiao Nie
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.
| |
Collapse
|
4
|
Tatulli G, Baldassarre F, Schiavi D, Tacconi S, Cognigni F, Costantini F, Balestra GM, Dini L, Pucci N, Rossi M, Scala V, Ciccarella G, Loreti S. Chitosan-Coated Fosetyl-Al Nanocrystals' Efficacy on Nicotiana tabacum Colonized by Xylella fastidiosa. PHYTOPATHOLOGY 2024; 114:1466-1479. [PMID: 38700944 DOI: 10.1094/phyto-04-24-0144-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Xylella fastidiosa (Xf) is a quarantine plant pathogen capable of colonizing the xylem of a wide range of hosts. Currently, there is no cure able to eliminate the pathogen from a diseased plant, but several integrated strategies have been implemented for containing the spread of Xf. Nanotechnology represents an innovative strategy based on the possibility of maximizing the potential antibacterial activity by increasing the surface-to-volume ratio of nanoscale formulations. Nanoparticles based on chitosan and/or fosetyl-Al have shown different in vitro antibacterial efficacy against Xf subsp. fastidiosa (Xff) and pauca (Xfp). This work demonstrated the uptake of chitosan-coated fosetyl-Al nanocrystals (CH-nanoFos) by roots and their localization in the stems and leaves of Olea europaea plants. Additionally, the antibacterial activity of fosetyl-Al, nano-fosetyl, nano-chitosan, and CH-nanoFos was tested on Nicotiana tabacum cultivar SR1 (Petite Havana) inoculated with Xff, Xfp, or Xf subsp. multiplex (Xfm). The bacterial load was evaluated with qPCR, and the results showed that CH-nanoFos was the only treatment able to reduce the colonization of Xff, Xfm, and Xfp in tobacco plants. Additionally, the area under the disease progress curve, used to assess symptom development in tobacco plants inoculated with Xff, Xfm, and Xfp and treated with CH-nanoFos, showed a reduction in symptom development. Furthermore, the twitching assay and bacterial growth under microfluidic conditions confirmed the antibacterial activity of CH-nanoFos.
Collapse
Affiliation(s)
- Giuseppe Tatulli
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
| | - Francesca Baldassarre
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Daniele Schiavi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, Snc, 01100 Viterbo, Italy
| | - Stefano Tacconi
- CarMeN Laboratory, INSERM 1060-INRAE 1397, Department of Human Nutrition, Lyon Sud Hospital, University of Lyon, Lyon, France
| | - Flavio Cognigni
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Rome, Italy
| | - Francesca Costantini
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, p.le A. Moro 5, 00185, Rome, Italy
| | - Giorgio Mariano Balestra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, Snc, 01100 Viterbo, Italy
- Phytoparasites Diagnostics (PhyDia) s.r.l. Via S. Camillo Delellis Snc 01100 Viterbo, Italy
| | - Luciana Dini
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Nicoletta Pucci
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Rome, Italy
- Research Center on Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, Rome, Italy
| | - Valeria Scala
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
| | - Giuseppe Ciccarella
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Stefania Loreti
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
| |
Collapse
|
5
|
Orzechowska A, Szymańska R, Sarna M, Żądło A, Trtílek M, Kruk J. The interaction between titanium dioxide nanoparticles and light can have dualistic effects on the physiological responses of plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13706-13721. [PMID: 38265580 DOI: 10.1007/s11356-024-31970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/07/2024] [Indexed: 01/25/2024]
Abstract
The model plant Arabidopsis thaliana was exposed to combined stress factors, i.e., titanium dioxide nanoparticles (TiNPs) and high light. The concentrations of TiNPs used for irrigation were 250, 500, and 1000 μg/mL. This study shows that TiNPs alter the morphology and nanomechanical properties of chloroplasts in A. thaliana, which leads to a decrease in membrane elasticity. We found that TiNPs contributed to a delay in the thermal response of A. thaliana under dynamic light conditions, as revealed by non-invasive thermal imaging. The thermal time constants of TiNP-treated plants under excessive light are determined, showing a shortening in comparison to control plants. The results indicate that TiNPs may contribute to an alleviation of temperature stress experienced by plants under exposure to high light. In this research, we observed a decline in photosystem II photochemical efficiency accompanied by an increase in energy dissipation upon exposure to TiNPs. Interestingly, concentrations exceeding 250 µg/mL TiNPs appeared to mitigate the effects of high light, as shown by reduced differences in the values of specific OJIP parameters (FV/FM, ABS/RC, DI0/RC, and Pi_Abs) before and after light exposure.
Collapse
Affiliation(s)
- Aleksandra Orzechowska
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059, Kraków, Poland.
| | - Renata Szymańska
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059, Kraków, Poland
| | - Michał Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Andrzej Żądło
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Department of Biophysics, Jagiellonian University Medical College, Św. Łazarza 16, 31-530, Kraków, Poland
| | - Martin Trtílek
- Photon Systems Instruments, Průmyslova 470, 664 24, Drásov, Czech Republic
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
6
|
Zhang L, Liu Z, Song Y, Sui J, Hua X. Advances in the Involvement of Metals and Metalloids in Plant Defense Response to External Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:313. [PMID: 38276769 PMCID: PMC10820295 DOI: 10.3390/plants13020313] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Plants, as sessile organisms, uptake nutrients from the soil. Throughout their whole life cycle, they confront various external biotic and abiotic threats, encompassing harmful element toxicity, pathogen infection, and herbivore attack, posing risks to plant growth and production. Plants have evolved multifaceted mechanisms to cope with exogenous stress. The element defense hypothesis (EDH) theory elucidates that plants employ elements within their tissues to withstand various natural enemies. Notably, essential and non-essential trace metals and metalloids have been identified as active participants in plant defense mechanisms, especially in nanoparticle form. In this review, we compiled and synthetized recent advancements and robust evidence regarding the involvement of trace metals and metalloids in plant element defense against external stresses that include biotic stressors (such as drought, salinity, and heavy metal toxicity) and abiotic environmental stressors (such as pathogen invasion and herbivore attack). We discuss the mechanisms underlying the metals and metalloids involved in plant defense enhancement from physiological, biochemical, and molecular perspectives. By consolidating this information, this review enhances our understanding of how metals and metalloids contribute to plant element defense. Drawing on the current advances in plant elemental defense, we propose an application prospect of metals and metalloids in agricultural products to solve current issues, including soil pollution and production, for the sustainable development of agriculture. Although the studies focused on plant elemental defense have advanced, the precise mechanism under the plant defense response still needs further investigation.
Collapse
Affiliation(s)
- Lingxiao Zhang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| | - Zhengyan Liu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| | - Yun Song
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| | - Junkang Sui
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| | - Xuewen Hua
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| |
Collapse
|