1
|
Picone M, Volpi Ghirardini A, Piazza R, Bonato T. First evidence of the suitability of hair for assessing wildlife exposure to anticoagulant rodenticides (ARs). ENVIRONMENTAL RESEARCH 2025; 264:120302. [PMID: 39510232 DOI: 10.1016/j.envres.2024.120302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Anticoagulant rodenticides (ARs) are potent pesticides acting as vitamin K epoxide reductase inhibitors causing haemorrhaging or external bleeding from orifices and/or skin lesions in intoxicated rodents. However, their non-selective mode of action makes them particularly harmful for non-target wildlife, which may be exposed to ARs via ingestion of AR-containing baits (primary exposure), feeding on AR-intoxicated rodents and carrions (secondary exposure), consuming AR-contaminated necrophagous species (tertiary exposure), and exposure to surface waters receiving baited sewer systems and ARs from outdoor-placed traps after heavy rain events. In the present study, we assessed the suitability of hairs as a non-invasive matrix for monitoring the possible exposure of mammals to ARs with a focus on the first-generation anticoagulant rodenticides (FGARs) warfarin, coumatetralyl, and chlorophacinone and the second-generation anticoagulant rodenticides (SGARs) brodifacoum, bromadiolone, difenacoum, flocoumafen, and difethialone. The Red fox (n = 24) was selected as the species representing the potentially exposed non-target wildlife in a littoral area of Northern Italy along the Adriatic coast (Cavallino-Treporti municipality). Half (n = 12) of the analysed hair samples were positive for at least one of the targeted ARs, with a higher prevalence of SGARs (n = 11; 46%) compared to FGARs (n = 1; 4%). The most frequently quantified ARs were brodifacoum (25%), difethialone (13%), and flocoumafen (13%), with concentrations ranging from 0.08 ng g-1 (difethialone) to 0.96 ng g-1 (brodifacoum). These data documented that a relevant part of the Red foxes living in the study area were exposed to ARs and, most importantly, provided the first evidence that hair residues can be used as a non-invasive matrix for assessing the possible exposure of mammals to ARs.
Collapse
Affiliation(s)
- Marco Picone
- Department of Environmental Sciences, Informatic, And Statistics, Ca' Foscari university Venice, Via Torino 155, 30172 Venezia-Mestre, Italy.
| | - Annamaria Volpi Ghirardini
- Department of Environmental Sciences, Informatic, And Statistics, Ca' Foscari university Venice, Via Torino 155, 30172 Venezia-Mestre, Italy
| | - Rossano Piazza
- Department of Environmental Sciences, Informatic, And Statistics, Ca' Foscari university Venice, Via Torino 155, 30172 Venezia-Mestre, Italy
| | - Tiziano Bonato
- Department of Environmental Sciences, Informatic, And Statistics, Ca' Foscari university Venice, Via Torino 155, 30172 Venezia-Mestre, Italy; Società Estense Servizi Ambientali (S.E.S.A. S.p.A.), 35042 EsteItaly
| |
Collapse
|
2
|
Martín Cruz B, Rial Berriel C, Acosta Dacal A, Carromeu-Santos A, Simbaña-Rivera K, Gabriel SI, Pastor Tiburón N, González González F, Fernández Valeriano R, Henríquez-Hernández LA, Zumbado-Peña M, Luzardo OP. Differential exposure to second-generation anticoagulant rodenticides in raptors from continental and insular regions of the Iberian Peninsula. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125034. [PMID: 39341407 DOI: 10.1016/j.envpol.2024.125034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The global impact of anticoagulant rodenticides (ARs) on non-target species is well-recognized. Birds of prey, as apex predators, are highly vulnerable to AR exposure and are widely used as biomonitors for priority pollutants in Europe. This study investigates differential SGAR exposure in raptors from insular versus continental regions, hypothesizing greater exposure in insular areas due to ecological factors like reduced prey diversity, intensive rodenticide use, and resistant rodent populations. We analyzed the livers of 190 common kestrels (Falco tinnunculus) and 104 common buzzards (Buteo buteo) across the Iberian Peninsula and its archipelagos using LC-MS/MS to assess their role as AR sentinels and the differences between insular and continental areas. Results revealed a high prevalence (>80%) of second-generation anticoagulant rodenticides (SGARs), with brodifacoum and bromadiolone, being the most frequent. Multiple SGAR detections were also common (≈50%). A binomial logistic regression showed that species and region significantly influence the likelihood of SGAR exposure. Kestrels had a greater probability of exceeding 100 ng/g wet weight (ww) compared to buzzards. Raptors from insular territories were ten times more likely to have higher SGAR concentrations than those from continental areas. However, the legal restriction on SGAR bait concentrations that came into effect in 2018 did not significantly impact exposure levels. This study highlights the need for targeted conservation efforts to mitigate AR exposure risk in vulnerable island ecosystems.
Collapse
Affiliation(s)
- Beatriz Martín Cruz
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain.
| | - Cristian Rial Berriel
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain
| | - Andrea Acosta Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain
| | - Ana Carromeu-Santos
- CESAM-Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Katherine Simbaña-Rivera
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain; Centro de Investigación para la Salud en América Latina (CISeAL), Facultad de Medicina, Pontificia Universidad Católica del Ecuador (PUCE), Quito, Ecuador
| | - Sofia I Gabriel
- CESAM-Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Natalia Pastor Tiburón
- Group of Rehabilitation of the Autochtonous Fauna and Their Habitat (GREFA), Monte del Pilar, Majadahonda, 28220, Madrid, Spain
| | - Fernando González González
- Group of Rehabilitation of the Autochtonous Fauna and Their Habitat (GREFA), Monte del Pilar, Majadahonda, 28220, Madrid, Spain; Departmental Section of Pharmacology and Toxicology, Faculty of Veterinary Science, Universidad Complutense de Madrid, 28020, Madrid, Spain
| | - Rocío Fernández Valeriano
- Group of Rehabilitation of the Autochtonous Fauna and Their Habitat (GREFA), Monte del Pilar, Majadahonda, 28220, Madrid, Spain
| | - Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Madrid, 28029, Spain
| | - Manuel Zumbado-Peña
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Madrid, 28029, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Madrid, 28029, Spain
| |
Collapse
|
3
|
Martín-Cruz B, Rial-Berriel C, Acosta-Dacal A, Gallo-Barneto R, Cabrera-Pérez MÁ, Luzardo OP. An open dataset of anticoagulant rodenticides in liver samples from California kingsnakes and raptors in Gran Canaria (Canary Islands, Spain). Data Brief 2024; 52:110001. [PMID: 38260864 PMCID: PMC10801326 DOI: 10.1016/j.dib.2023.110001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
It is well known that rodenticides are widely used, and there are multiple routes by which they can reach non-target wildlife species. Specifically, in the Canary Islands, a high and concerning incidence of these compounds has been reported. However, in this scenario, reptiles remain one of the least studied taxa, despite their potential suitability as indicators of the food chain and environmental pollution has been noted on several occasions. In this context, the California Kingsnake (Lampropeltis Californiae), widely distributed on the island of Gran Canaria, occupies a medium trophic level and exhibits feeding habits that expose it to these pollutants, could be studied as a potential sentinel of exposure to these compounds. For this reason, 360 snake livers were analyzed by LC-MS/MS. Similarly, 110 livers of birds of prey were sampled. Thus, we present the analysis of 10 anticoagulant rodenticides (warfarin, diphacinone, chlorophacinone, coumachlor, coumatetralyl, brodifacoum, bromadiolone, difethialone, difenacoum and flocoumafen) in both data series; snakes, and raptors. Furthermore, this dataset includes biological data (weight, length, sex, colour, and design pattern), geographic data (distribution area and municipalities) and necropsy findings that could be of interest for a better understanding of this snake species and for future studies.
Collapse
Affiliation(s)
- Beatriz Martín-Cruz
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera “Físico” s/n, Las Palmas de Gran Canaria 35016, Spain
| | - Cristian Rial-Berriel
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera “Físico” s/n, Las Palmas de Gran Canaria 35016, Spain
| | - Andrea Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera “Físico” s/n, Las Palmas de Gran Canaria 35016, Spain
| | - Ramón Gallo-Barneto
- Gestión y Planeamiento Territorial y Medioambiental, S.A. (GESPLAN), Canary Islands Government. C/León y Castillo 54, bajo, Las Palmas de Gran Canaria 35003, Spain
| | - Miguel Ángel Cabrera-Pérez
- General Directorate to Combat Climate Change and the Environment, Biodiversity Service, Canary Islands Government, Plaza de los Derechos Humanos, 22, 35071 Las Palmas de Gran Canaria, Spain
| | - Octavio P. Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera “Físico” s/n, Las Palmas de Gran Canaria 35016, Spain
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| |
Collapse
|