1
|
Chen Z, Hua G, Shu X, Zhuang W, Zhang J, Zhu R, Zheng X, Chen J. Screening of reliable reference genes for the normalization of RT-qPCR in chicken liver tissues and LMH cells. Sci Rep 2024; 14:17828. [PMID: 39090210 PMCID: PMC11294616 DOI: 10.1038/s41598-024-68752-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
The liver plays a vital role in lipid synthesis and metabolism in poultry. To study the functional genes more effectively, it is essential to screen of reliable reference genes in the chicken liver, including females, males, embryos, as well as the Leghorn Male Hepatoma (LMH) cell line. Traditional reference gene screening involves selecting commonly used housekeeping genes (HKGs) for RT-qPCR experiments and using different algorithms to identify the most stable ones. However, this approach is limited in selecting the best reference gene from a small pool of HKGs. High-throughput sequencing technology may offer a solution to this limitation. This study aimed to identify the most consistently expressed genes by utilizing multiple published RNA-seq data of chicken liver and LMH cells. Subsequently, the stability of the newly identified reference genes was assessed in comparison to previously validated stable poultry liver expressed reference genes and the commonly employed HKGs using RT-qPCR. The findings indicated that there is a higher degree of similarity in stable expression genes between female and male liver (such as LSM14A and CDC40). In embryonic liver, the optimal new reference genes were SUDS3, TRIM33, and ERAL1. For LMH cells, the optimal new reference genes were ALDH9A1, UGGT1, and C21H1orf174. However, it is noteworthy that most HKGs did not exhibit stable expression across multiple samples, indicating potential instability under diverse conditions. Furthermore, RT-qPCR experiments proved that the stable expression genes identified from RNA-seq data outperformed commonly used HKGs and certain validated reference genes specific to poultry liver. Over all, this study successfully identified new stable reference genes in chicken liver and LMH cells using RNA-seq data, offering researchers a wider range of reference gene options for RT-qPCR in diverse situations.
Collapse
Affiliation(s)
- Ziwei Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Guoying Hua
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xin Shu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Wuchao Zhuang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Jilong Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Runbang Zhu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Xiaotong Zheng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Jianfei Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| |
Collapse
|
2
|
Yahaya TO, Ibrahim AB, Kalgo AS, Adewale MK, Emmanuela CC, Abdulkadir B, Fari AZ, Attahiru AK, Saadatu A, Wanda JD. Microplastics exposure altered hematological and lipid profiles as well as liver and kidney function parameters in albino rats (Rattus norvegicus). Environ Anal Health Toxicol 2024; 39:e2024021-0. [PMID: 39054835 PMCID: PMC11294664 DOI: 10.5620/eaht.2024021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/09/2024] [Indexed: 07/27/2024] Open
Abstract
The global occurrence of microplastics and their poorly understood health implications underscore the need for scientific investigation. This study aimed to assess the effects of microplastics exposure. Twenty-five (25) albino rats (Rattus norvegicus) were divided into five (5) groups, each consisting of five rats. Group 1 (the negative control) received normal feed; group 2 (the positive control) was administered a 10 % lead acetate solution; and groups 3, 4, and 5 were administered 1 %, 5 %, and 10 % microplastic solutions, respectively. The rats were monitored for 28 days, after which blood samples were taken for hematological and lipid profiles as well as liver and kidney function parameters. The results revealed dose-dependent significant (p < 0.05) alterations in the health indices of the treated rats and the positive control compared with the negative control. Specifically, the hematological parameters, including the white blood cells (WBC) and its subtypes, were reduced, indicating immunosuppressive effects, and the red blood cells (RBC), hemoglobin (HGB), hematocrit (HCT), platelets, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC) were reduced, indicating anemia. The 1 % and 5 % microplastic solutions raised the lipid profiles of the treated rats, including total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL), while the 10 % concentration decreased them, causing hyperlipidemia and hypolipidemia, respectively. The liver function parameters, including total protein (TP), albumin (ALB), aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP), were elevated, indicating liver damage. Elevation of kidney function parameters, including sodium ion (Na+), potassium ion (K+), chloride ion (Cl-), urea, and creatinine (CRT), were noticed, suggesting kidney injuries. It can be inferred from these results that microplastics are toxic. Hence, human exposure to microplastics should be reduced to a minimum.
Collapse
Affiliation(s)
| | | | - Abdulrahman Sani Kalgo
- Department of Biological Sciences, Federal University Birnin Kebbi, Kebbi State, Nigeria
| | | | | | - Baliqees Abdulkadir
- Department of Biological Sciences, Federal University Birnin Kebbi, Kebbi State, Nigeria
| | - Adamu Zainab Fari
- Department of Biological Sciences, Federal University Birnin Kebbi, Kebbi State, Nigeria
| | - Asiya Koko Attahiru
- Department of Biological Sciences, Federal University Birnin Kebbi, Kebbi State, Nigeria
| | - Abdullahi Saadatu
- Department of Biological Sciences, Federal University Birnin Kebbi, Kebbi State, Nigeria
| | - Joseph Dahali Wanda
- Department of Biological Sciences, Federal University Birnin Kebbi, Kebbi State, Nigeria
| |
Collapse
|
3
|
Xie P, Li P, Zhu X, Chen D, Ommati MM, Wang H, Han L, Xu S, Sun P. Hepatotoxic of polystyrene microplastics in aged mice: Focus on the role of gastrointestinal transformation and AMPK/FoxO pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170471. [PMID: 38296072 DOI: 10.1016/j.scitotenv.2024.170471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Microplastic (MP) toxicity has attracted widespread attention, whereas before triggering hepatotoxicity, ingested MPs first undergo transportation and digestion processes in the gastrointestinal tract, possibly interacting with the gastrointestinal contents (GIC). More alarming is the need for more understanding of how this process may impact the liver health of aged animals. This study selected old mice. Firstly, we incubated polystyrene microplastics (PS-MPs, 1 μm) with GIC extract. The results of SEM/EDS indicated a structural alteration in PS-MPs. Additionally, impurities resembling corona, rich in heteroatoms (O, N, and S), were observed. This resulted in an enhanced aggregating phenomenon of MPs. We conducted a 10-day experiment exposing aged mice to four concentrations of PS-MPs, ranging from 1 × 103 to 1 × 1012 particles/L. Subsequent measurements of tissue pathology and body and organ weights were conducted, revealing alterations in liver structure. In the liver, 12 crucial metabolites were found by LC-MS technology, including purines, lipids, and amino acids. The AMPK/FoxO pathway was enriched, activated, and validated in western blotting results. We also comprehensively examined the innate immune system, inflammatory factors, and oxidative stress indicators. The results indicated decreased C3 levels, stable C4 levels, inflammatory factors (IL-6 and IL-8), and antioxidant enzymes were increased to varying degrees. PS-MPs also caused DNA oxidative damage. These toxic effects exhibited a specific dose dependence. Overall, after the formation of the gastrointestinal corona, PS-MPs subsequently impact various cellular processes, such as cycle arrest (p21), leading to hepatic and health crises in the elderly. The presence of gastrointestinal coronas also underscores the MPs' morphology and characteristics, which should be distinguished after ingestion.
Collapse
Affiliation(s)
- Pengfei Xie
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Pengcheng Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Xiaoshan Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Deshan Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Mohammad Mehdi Ommati
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Hongwei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Lei Han
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Shixiao Xu
- Northwest Institute of Plateau Biology Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Ping Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China.
| |
Collapse
|