1
|
Xia S, Song W. Controls on microbially-induced carbonate precipitation in geologic porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177647. [PMID: 39566618 DOI: 10.1016/j.scitotenv.2024.177647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/07/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Microbially-induced carbonate precipitation (MICP) provides a natural biomineralization approach to secure the geologic storage of gases (e.g., carbon dioxide, hydrogen and methane). Cracks in embrittled wellbore cement, for example, provide a pathway for atmospheric gas leakage, while permeability heterogeneities in the storage reservoir leads to fingering effects that diminish the storage capacity. The design of MICP processes, however, remains a challenge due to limited understanding of the coupled nonlinear reaction kinetics and multiphase transport involved. Specifically, previous attempts at MICP through porous media have been encumbered by carbonate precipitation localized to the first ∼ cm of the bulk injection surface. In this study, we investigate the reactive transport controls on MICP necessary to enable deep MICP penetration into the formation. We use a micromodel with pore geometry and geochemistry representative of real geologic media to image direct pore- and pore-ensemble-level mineral, fluid, and microbial distributions. An approach to adsorb microbes uniformly across the micromodel, rather than local accumulation near the inlet, is developed that enables deep MICP penetration into the porous medium. A sensitivity analysis was performed to investigate the impact of injection conditions (e.g., rates, concentrations) required to maximize CaCO3 precipitation away from the injection site. With multiple cycles of MICP, a ∼ 78 % reduction in permeability was achieved with ∼8 % carbonate pore volume occupation. Overall, this study establishes the possibility of MICP as an effective and controllable method to enhance the security of gas storage in geologic media.
Collapse
Affiliation(s)
- Shunxiang Xia
- Center for Subsurface Energy and the Environment, University of Texas at Austin, 200 East Dean Keeton Street, Austin, TX 78712, United States of America
| | - Wen Song
- Center for Subsurface Energy and the Environment, University of Texas at Austin, 200 East Dean Keeton Street, Austin, TX 78712, United States of America.
| |
Collapse
|
2
|
Cao T, Liu Y, Gao C, Yuan Y, Chen W, Zhang T. Understanding Nanoscale Interactions between Minerals and Microbes: Opportunities for Green Remediation of Contaminated Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39093060 DOI: 10.1021/acs.est.4c05324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In situ contaminant degradation and detoxification mediated by microbes and minerals is an important element of green remediation. Improved understanding of microbe-mineral interactions on the nanoscale offers promising opportunities to further minimize the environmental and energy footprints of site remediation. In this Perspective, we describe new methodologies that take advantage of an array of multidisciplinary tools─including multiomics-based analysis, bioinformatics, machine learning, gene editing, real-time spectroscopic and microscopic analysis, and computational simulations─to identify the key microbial drivers in the real environments, and to characterize in situ the dynamic interplay between minerals and microbes with high spatiotemporal resolutions. We then reflect on how the knowledge gained can be exploited to modulate the binding, electron transfer, and metabolic activities at the microbe-mineral interfaces, to develop new in situ contaminant degradation and detoxication technologies with combined merits of high efficacy, material longevity, and low environmental impacts. Two main strategies are proposed to maximize the synergy between minerals and microbes, including using mineral nanoparticles to enhance the versatility of microorganisms (e.g., tolerance to environmental stresses, growth and metabolism, directed migration, selectivity, and electron transfer), and using microbes to synthesize and regenerate highly dispersed nanostructures with desired structural/surface properties and reactivity.
Collapse
Affiliation(s)
- Tianchi Cao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Yaqi Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Cheng Gao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Yuxin Yuan
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
3
|
Yan H, Zhu X, Li Z, Liu Z, Jin S, Zhou X, Han Z, Woo J, Meng L, Chi X, Han C, Zhao Y, Tucker ME, Zhao Y, Zhao H, Waheed J. Effect of Ba 2+ on the biomineralization of Ca 2+ and Mg 2+ ions induced by Bacillus licheniformis. World J Microbiol Biotechnol 2024; 40:182. [PMID: 38668902 DOI: 10.1007/s11274-024-03975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/02/2024] [Indexed: 05/18/2024]
Abstract
The effect of barium ions on the biomineralization of calcium and magnesium ions is often overlooked when utilizing microbial-induced carbonate precipitation technology for removing barium, calcium, and magnesium ions from oilfield wastewater. In this study, Bacillus licheniformis was used to bio-precipitate calcium, magnesium, and barium ions. The effects of barium ions on the physiological and biochemical characteristics of bacteria, as well as the components of extracellular polymers and mineral characteristics, were also studied in systems containing coexisting barium, calcium, and magnesium ions. The results show that the increasing concentrations of barium ions decreased pH, carbonic anhydrase activity, and concentrations of bicarbonate and carbonate ions, while it increased the contents of humic acids, proteins, polysaccharides, and DNA in extracellular polymers in the systems containing all three types of ions. With increasing concentrations of barium ions, the content of magnesium within magnesium-rich calcite and the size of minerals precipitated decreased, while the full width at half maximum of magnesium-rich calcite, the content of O-C=O and N-C=O, and the diversity of protein secondary structures in the minerals increased in systems containing all three coexisting ions. Barium ions does inhibit the precipitation of calcium and magnesium ions, but the immobilized bacteria can mitigate the inhibitory effect. The precipitation ratios of calcium, magnesium, and barium ions reached 81-94%, 68-82%, and 90-97%. This research provides insights into the formation of barium-enriched carbonate minerals and offers improvements for treating oilfield wastewater.
Collapse
Affiliation(s)
- Huaxiao Yan
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiaofei Zhu
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhenjiang Li
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhiyong Liu
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Shengping Jin
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiaotong Zhou
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zuozhen Han
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China.
- Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Jusun Woo
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Long Meng
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiangqun Chi
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Chao Han
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
- Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yanyang Zhao
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Maurice E Tucker
- School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
- Cabot Institute, University of Bristol, Cantock's Close, Bristol, BS8 1UJ, UK
| | - Yueming Zhao
- Qingdao West Coast New District First High School, Qingdao, 266555, China
| | - Hui Zhao
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Junaid Waheed
- University of Azad Jammu and Kashmir, Muzaffarabad, 13110, Azad Jammu and Kashmir, Pakistan
| |
Collapse
|
4
|
Gao X, Han Z, Zhao Y, Zhou G, Lyu X, Qi Z, Liu F, Tucker ME, Steiner M, Han C. Interaction of microorganisms with carbonates from the micro to the macro scales during sedimentation: Insights into the early stage of biodegradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120714. [PMID: 38537463 DOI: 10.1016/j.jenvman.2024.120714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/21/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
The assembly process of Organic Matter (OM) from single molecules to polymers and the formation process of Ca-CO3 ion-pairs are explored at the micro-scale, and then the relationship between OM and carbonate based on the results of microbially-induced carbonate precipitation (MICP) laboratory experiments is established at the macro-scale. Molecular dynamics (MD) is used to model the assembly of OM (a) in an aqueous solution, (b) on surfaces of calcite (10 1‾ 4) crystals and (c) on defective calcite (101‾ 4) crystal surfaces. From the MICP experiments, carbonate minerals containing abundant OM were precipitated and were characterized by Scanning Electron Microscopy (SEM), X-Ray Diffractometry (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The results of the MD show that OM is assembled into polymers in all three simulation systems. Although the Ca-CO3 ion-pairs and OM were briefly combined, the aggregation assembly of OM molecules and the precipitation of carbonate calcium are not related in the long run. The highly specific surface area of the defective calcite shows an increase in the adsorption of OM. The van der Waals forces, which are primarily responsible for controlling the assembly of OM molecules, increase with the degree of aggregation. According to the MICP experiments, OM is enriched on the mineral surfaces, and more OM is found at the steps of defective crystals with their larger surface areas. Through MD and MICP laboratory experiments, this work systematically describes the interaction of OM and carbonate minerals from the micro to the macro scales, and this provides insight into the interaction between OM and carbonates and biogeochemical processes related to the accumulation of OM in sediments.
Collapse
Affiliation(s)
- Xiao Gao
- Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zuozhen Han
- Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yanyang Zhao
- Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Gang Zhou
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaowei Lyu
- Qingdao Qiushi Industrial Technology Research Institute, Qingdao 266427, China
| | - Zhenhua Qi
- Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Fang Liu
- College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China; State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China
| | - Maurice E Tucker
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK; Cabot Institute, University of Bristol, Cantock's Close, Bristol BS8 1UJ, UK
| | - Michael Steiner
- Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Department of Earth Sciences, Freie Universität Berlin, Malteserstrasse 74-100, Haus D, Berlin 12249, Germany
| | - Chao Han
- Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|