1
|
Ha SH, Shin SG, Ahn JH. Optimization of synergistic microwave and zero-valent iron co-pretreatment for anaerobic digestion of waste activated sludge. BIORESOURCE TECHNOLOGY 2025; 430:132568. [PMID: 40273956 DOI: 10.1016/j.biortech.2025.132568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/11/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
This study optimized co-pretreatment of microwave temperature (TMW) and zero-valent iron dosage ([ZVI]) to enhance anaerobic digestion (AD) of waste activated sludge (WAS). WAS was pretreated at TMW = 100, 150, or 200 °C and [ZVI] = 1, 3, or 5 g/L using a central composite design. Optimal co-pretreatment (TMW = 168 °C and [ZVI] = 5 g/L) reduced the ratio of volatile solids (VS) to total solids by 21.5 %, increased the solubilization ratio seven-fold, removed 53.5 % of phosphate compared to WAS partly because of lignin fragmentation. Biochemical methane potential identified optimal conditions (TMW = 164 °C and [ZVI] = 4.8 g/L), enhancing VS removal by 70.9 %, methane yield by 60 %, and reducing hydrogen sulfide by 82.4 % compared to Control. Kinetic analysis indicated 61 - 108 % increase in maximum methane production rate. Microbial analysis revealed increased acetoclastic methanogens and decreased hydrogenotrophic methanogens. Thus, microwave-ZVI co-pretreatment enhanced WAS biodegradability and AD efficiency.
Collapse
Affiliation(s)
- Seung-Han Ha
- Department of Integrated Energy and Infra System, College of engineering, Kangwon National University, Chuncheon, Gangwon State 24341, Korea
| | - Seung Gu Shin
- Department of Energy System Engineering, College of engineering, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, Korea
| | - Johng-Hwa Ahn
- Department of Integrated Energy and Infra System, College of engineering, Kangwon National University, Chuncheon, Gangwon State 24341, Korea; Department of Environmental Engineering, College of Engineering, Kangwon National University, Chuncheon, Gangwon State 24341, Korea.
| |
Collapse
|
2
|
Wang X, Zhang J, Yang B, Mao H, Yu Q, Zhang Y. Intermittent Microaeration Enhanced Anaerobic Digestion: The Key Role of Fe(III)/Fe(II) Cycle and Reactive Oxygen Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8629-8639. [PMID: 40272234 DOI: 10.1021/acs.est.5c04187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Microaeration has been reported to improve anaerobic digestion, which is generally attributed to increased microbial diversity, but a thorough explanation is lacking. In this study, it was found that intermittent microaeration (IMA) supplied to an anaerobic digester could oxidize Fe(II) produced by dissimilatory iron reduction (DIR) to form a Fe(III)/Fe(II) cycle and generate extracellular reactive oxygen species (ROS) to improve anaerobic treatment of phenol-containing wastewater. The results showed that compared to the control group without IMA, the removal rates of COD and phenol increased by 29.54 and 49.68 percentage points, respectively, and daily average methane production increased by 85.44%. The Fe(III)/Fe(II) cycle slowed down the loss of iron (13.97%) released from sludge due to the lower solubility of Fe(III) and facilitated •OH generation (1.22 ± 0.04 μM) via Fenton-like reactions. The DIR and the generation of •OH accelerated phenol degradation. Metagenomic analysis revealed that the abundance of methanogens and antioxidant enzymes-encoding genes in response to oxidative stress significantly increased in the IMA group compared to the control, enabling methanogenesis to proceed smoothly under microaeration. This study investigated the extracellular ROS generation induced by microaeration during anaerobic digestion and their roles in promoting anaerobic performance, thereby providing a new perspective for optimizing anaerobic systems with microaeration.
Collapse
Affiliation(s)
- Xuepeng Wang
- School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Jinshuo Zhang
- School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Bowen Yang
- School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Haohao Mao
- School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Qilin Yu
- School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Yaobin Zhang
- School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| |
Collapse
|
3
|
Yang Q, Liu H, Liu L, Yan Z, Chui C, Yang N, Wang C, Shen G, Chen Q. Enhancing Methane Production in Anaerobic Digestion of Food Waste Using Co-Pyrolysis Biochar Derived from Digestate and Rice Straw. Molecules 2025; 30:1766. [PMID: 40333788 PMCID: PMC12029908 DOI: 10.3390/molecules30081766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025] Open
Abstract
Anaerobic digestion (AD) is a preferred method for food waste (FW) treatment due to its sustainability and potential for production of renewable bioenergy. However, the accumulation of volatile fatty acids (VFAs) and ammonia often destabilizes the AD process, and managing the digestate byproduct poses additional challenges. This study investigates the use of co-pyrolysis biochar synthesized from digestate and rice straw (DRB) to enhance methane production and AD efficiency. DRB addition increased cumulative methane yield by 37.1%, improved VFA conversion efficiency, and achieved a 42.3% higher NH3-N-removal rate compared to the control group. The COD-removal rate was 68.7% throughout the process. Microbial analysis revealed that DRB selectively enriched Fastidiosipila and Methanosarcina, promoting direct interspecies electron transfer (DIET) and methane yield. These findings highlight DRB's potential to enhance AD efficiency and support closed-loop resource utilization.
Collapse
Affiliation(s)
- Qinyan Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Q.Y.); (H.L.); (L.L.); (C.W.)
| | - Huanran Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Q.Y.); (H.L.); (L.L.); (C.W.)
| | - Li Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Q.Y.); (H.L.); (L.L.); (C.W.)
| | - Zhen Yan
- Shanghai Pudong Development (Group) Co., Ltd., Shanghai 200127, China;
| | - Chunmeng Chui
- Shanghai Liming Resources Reuse Co., Ltd., Shanghai 201209, China; (C.C.); (N.Y.)
| | - Niannian Yang
- Shanghai Liming Resources Reuse Co., Ltd., Shanghai 201209, China; (C.C.); (N.Y.)
| | - Chen Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Q.Y.); (H.L.); (L.L.); (C.W.)
| | - Guoqing Shen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Q.Y.); (H.L.); (L.L.); (C.W.)
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station (Shanghai Urban Ecosystem Research Station), Ministry of Science and Technology, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| | - Qincheng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Q.Y.); (H.L.); (L.L.); (C.W.)
| |
Collapse
|
4
|
Xia Q, Cheng J, Yang F, Yi X, Huang W, Lei Z, Wang D, Huang W. Activated carbon and anthraquinone-2,6-disulfonate as electron shuttles for enhancing carbon and nitrogen removal from simultaneous methanogenesis, Feammox and denitrification system. BIORESOURCE TECHNOLOGY 2025; 418:131975. [PMID: 39674352 DOI: 10.1016/j.biortech.2024.131975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Anthraquinone-2,6-disulfonate (AQDS) and activated carbon (AC) were employed as exogenous electron shuttles (ESs) for enhancing the performance of an integrated simultaneous methanogenesis, Feammox, and denitrification (SMFD) system treating fish sludge. The addition of AQDS and AC led to an increased total nitrogen removal efficiency by 30.2 % and 66.5 %, an increased total chemical oxygen demand removal efficiency by 9.5 % and 24.5 %, and an improved methane yield by 5.2 % and 12.6 %, respectively. Regarding nitrogen removal, AQDS mainly facilitated NH4+-N oxidation into NO3--N via Feammox, while AC facilitated both Feammox and denitrification. Regarding carbon removal, both ESs promoted the hydrolysis-acidification process via stimulating dissimilatory iron reduction and established direct interspecies electron transfer (DIET) between methanogens and syntrophic bacteria. Microbial analysis confirmed the enrichment of iron-reducing bacteria, denitrifiers, DIET-related methanogens and syntrophic partners in the presence of ESs. The study provides an ESs-assisted strategy for enhancing simultaneous nitrogen and carbon removal from high-strength wastewater.
Collapse
Affiliation(s)
- Qing Xia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Jun Cheng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Fei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Xuesong Yi
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Wenli Huang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300350, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Dexin Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China.
| |
Collapse
|
5
|
Kegl T, Paramasivan B, Maharaj BC. Mathematical Model-Based Optimization of Trace Metal Dosage in Anaerobic Batch Bioreactors. Bioengineering (Basel) 2025; 12:117. [PMID: 40001637 PMCID: PMC11851510 DOI: 10.3390/bioengineering12020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Anaerobic digestion (AD) is a promising and yet a complex waste-to-energy technology. To optimize such a process, precise modeling is essential. Developing complex, mechanistically inspired AD models can result in an overwhelming number of parameters that require calibration. This study presents a novel approach that considers the role of trace metals (Ca, K, Mg, Na, Co, Cr, Cu, Fe, Ni, Pb, and Zn) in the modeling, numerical simulation, and optimization of the AD process in a batch bioreactor. In this context, BioModel is enhanced by incorporating the influence of metal activities on chemical, biochemical, and physicochemical processes. Trace metal-related parameters are also included in the calibration of all model parameters. The model's reliability is rigorously validated by comparing simulation results with experimental data. The study reveals that perturbations of 5% in model parameter values significantly increase the discrepancy between simulated and experimental results up to threefold. Additionally, the study highlights how precise optimization of metal additives can enhance both the quantity and quality of biogas production. The optimal concentrations of trace metals increased biogas and CH4 production by 5.4% and 13.5%, respectively, while H2, H2S, and NH3 decreased by 28.2%, 43.6%, and 42.5%, respectively.
Collapse
Affiliation(s)
- Tina Kegl
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
| | - Balasubramanian Paramasivan
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India;
| | - Bikash Chandra Maharaj
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India;
| |
Collapse
|
6
|
Xie H, Wang Y, Chen Y, Hu Y, Adeleke R, Obi L, Wang Y, Cao W, Lin JG, Zhang Y. Carbon flow, energy metabolic intensity and metagenomic characteristics of a Fe (III)-enhanced anerobic digestion system during treating swine wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173431. [PMID: 38782283 DOI: 10.1016/j.scitotenv.2024.173431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Deep treatment and bioenergy recovery of swine wastewater (SW) are beneficial for constructing a low-carbon footprint and resource-recycling society. In this study, Fe (III) addition from 0 to 600 mg/L significantly increased the methane (CH4) content of the recovered biogas from 61.4 ± 2.0 to 89.3 ± 2.0 % during SW treatment in an anaerobic membrane digestion system. The specific methane yields (SMY) also increased significantly from 0.20 ± 0.05 to 0.29 ± 0.02 L/g COD. Fe (III) and its bio-transformed products which participated in establishing direct interspecific electron transfer (DIET), upregulated the abundance of e-pili and Nicotinamide adenine dinucleotide (NADH), enriched electroactive bacteria. The increase in cellular adenosine triphosphate (cATP) from 6583 to 14,518 ng/gVSS and electron transport system (ETS) from 1468 to 1968 mg/(g·h) promoted the intensity of energy flow and electron flow during anaerobic digestion of SW. Moreover, Fe (III) promoted the hydrolysis and acidification of organic matters, and strengthened the acetoacetic methanogenesis pathway. This study established an approach for harvesting high quality bioenergy from SW and revealed the effects and mechanisms from the view of carbon flow, energy metabolic intensity and metagenomics.
Collapse
Affiliation(s)
- Hongyu Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuzheng Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuqi Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yong Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Linda Obi
- University of South Africa, Department of Environmental Sciences, Pretoria, South Africa
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Wenzhi Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Jih-Gaw Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China; National Yang Ming Chiao Tung University, Taiwan
| | - Yanlong Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control (CPPC), College of Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China; Fujian Institute for Sustainable Oceans, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
7
|
Gao Z, Quan X, Zheng Y, Yin R, Lv K. Comparative investigations on the incorporation of biogenic Fe products into anaerobic granular sludge of different sources: Fe loading capacity, physicochemical properties, microbial community and long-term methanogenesis performance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120546. [PMID: 38471321 DOI: 10.1016/j.jenvman.2024.120546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/06/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Anaerobic granular sludge (AGS) has been regarded as the core of lots of advanced anaerobic reactors. Formation of biogenic Fe products and their incorporation into AGS could influence interspecies electron transfer and methanogenesis performance. In this study, with anaerobic granular sludge (AGS) from different sources (brewery, chemical plant, paper mill, citric acid factory, and food factory) as the research targets, the formation of biogenic iron products in AGS through the biologically induced mineralization process was studied. Furthermore, the influences of physicochemical properties and microbial community on methanogenesis were investigated. Results showed that all the AGS of different sources possessed the capacity to form biogenic Fe products through dissimilatory iron-reduction process, and diverse Fe minerals including magnetite (Fe3O4), hematite (Fe2O3), goethite (FeOOH), siderite (FeCO3) and wustite (FeO) were incorporated into AGS. The AGS loaded with Fe minerals (Fe-AGS) showed increased conductivity, magnetism and zeta-potential comparing to the control. Those Fe-AGS of different sources demonstrated different methanogenesis performance during the long-term operation (50 days). Methane production was increased for the Fe-AGS of citric acid (6.99-32.50%), food (8.33-37.46%), chemical (2.81-7.22%) and brewery plants (2.27-2.81%), but decreased for the Fe-AGS of paper mill (54.81-72.2%). The changes of microbial community and microbial correlations in AGS as a response to Fe minerals incorporation were investigated. For the Fe-AGS samples with enhanced methane production capability, it was widely to find the enriched populations of fermentative and dissimilatory iron reducing bacteria Clostridium_sensu_stricto_6, Bacteroidetes_vadinHA17 and acetoclastic methanogens Methanosaeta, and positive correlations between them. This study provides comprehensive understanding on the effects of incorporation biogenic Fe products on AGS from different sources.
Collapse
Affiliation(s)
- Zhiqi Gao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiangchun Quan
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Yu Zheng
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ruoyu Yin
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kai Lv
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|