1
|
Dzhumaniiazova I, Filatova TS, Shamshura A, Abramochkin DV, Shiels HA. Seasonal remodelling of the fish heart alters sensitivity to petrochemical pollutant, 3-methylphenanthrene. Comp Biochem Physiol C Toxicol Pharmacol 2025; 288:110082. [PMID: 39581288 DOI: 10.1016/j.cbpc.2024.110082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Exploitation of offshore oil reserves, heightened traffic in marine transportation routes, and the release of petrochemicals from the thawing of permafrost and glaciers is increasing the bioavailability of polycyclic aromatic hydrocarbons (PAHs) to aquatic organisms. This availability may also change with the seasons as temperature changes accessibility of Arctic transport routes and the degree of land- and ice-melt and thus run-off into coastal ecosystems. Seasonal temperature change also remodels the ion channels in the heart of fish to facilitated preserved cardiac function across a range of temperatures. How this seasonal cardiac remodelling impacts vulnerability to pollutants is currently unknown. In this study we accessed the electrical activity of navaga cod (Eleginus nawaga) ventricular cardiomyocytes under the dual influence of seasonal change and varying concentrations of a pervasive PAH pollutant, 3-methylphenanthrene (3-MP). We used whole-cell patch-clamp to elucidate the effect of various doses of 3-MP on action potential (AP) parameters and the main ion currents (IKr, IK1, INa, ICa) in ventricular cardiomyocytes isolated from navaga cod in winter and summer at the White Sea, close to the Russian Arctic circle. Navaga cod ventricular cardiomyocytes were particularly vulnerable to 3-MP during the winter season. Exposure to 300 nM 3-MP resulted in significant changes in AP duration in winter-acclimatized fish, whereas no such changes were observed in summer-acclimatized fish. The IKr current was the most sensitive to 3-MP, with a winter IC50 of 49.7 nM and a summer IC50 of 53 μM. The INa current also exhibited seasonal shifts in sensitivity to 3-MP, with IC50 values of 2.39 μM in winter-acclimatized fish and 7.73 μM in summer-acclimatized fish. No significant differences were observed in the effect of 3-MP on the peak ICa current, although 3 μM of 3-MP caused a pronounced decrease in charge transferred by ICa (e.g. QCa) in both seasons. The IK1 current was insensitive to 3-MP in both winter and summer fish. These findings highlight how remodelling of the fish heart with changing season alters the potency of PAH pollution. This paper lays the groundwork for future research on the molecular mechanisms that drive the altered seasonal potency of pollutants in navaga cod and other species.
Collapse
Affiliation(s)
- Irina Dzhumaniiazova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia; Laboratory of Cardiac Electrophysiology, Chazov National Medical Research Center for Cardiology, Moscow, Russia
| | - Artem Shamshura
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia
| | - Holly A Shiels
- Faculty of Biology, Medicine, and Health, Core Technology Facility, 46 Grafton Street, University of Manchester, Manchester M13 9NT, UK.
| |
Collapse
|
2
|
Morshead ML, Truong L, Simonich MT, Moran JE, Anderson KA, Tanguay RL. Developmental toxicity of alkylated PAHs and substituted phenanthrenes: Structural nuances drive diverse toxicity and AHR activation. CHEMOSPHERE 2025; 370:143894. [PMID: 39643011 PMCID: PMC11732715 DOI: 10.1016/j.chemosphere.2024.143894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/25/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a diverse class of chemicals that occur in complex mixtures including parent and substituted PAHs. To understand the hazard posed by complex environmental PAH mixtures, we must first understand the structural drivers of activity and mode of action of individual PAHs. Understanding the toxicity of alkylated PAHs is important as they often occur in higher abundance in environmental matrices and can be more biologically active than their parent compounds. 104 alkylated PAHs were screened from 11 different parent compounds with emphasis on substituted phenanthrenes and their structurally dependent toxicity differences. Using a high-throughput early life stage zebrafish assay, embryos were exposed to concentrations between 0.1 and 100 μM and assessed for morphological and behavioral outcomes. The aryl hydrocarbon receptor (AHR) is often implicated in the toxicity of PAHs and the induction of cytochrome P4501A (cyp1a) is an excellent biomarker of Ahr activation. Embryos were evaluated for cyp1a induction using a fluorescence reporter line. Alkyl and polar phenanthrene derivatives were further assessed for spatial cyp1a expression and Ahr dependence of morphological effects. In the alkyl PAH screen 35 (33.7%) elicited a morphological or behavioral response and of those 23 (65%) also induced cyp1a. 31 (29.8%) of the chemicals only induced cyp1a. Toxicity varied substantially in response to substitution location, the amount of ring substitutions and alkyl chain length. Cyp1a induction varied by parent compound group and was a poor indicator of morphological or behavioral outcomes. Polar phenanthrenes were more biologically active than alkylated phenanthrene derivatives and their toxicity was not dependent upon the Ahr2, Ahr1a or Ahr1b when tested individually, despite cyp1a induction by 50% of polar phenanthrenes. Our results demonstrated that induction of cyp1a did not always correlate with PAH toxicity or Ahr dependence and that the type and location of phenanthrene substitution determined potency.
Collapse
Affiliation(s)
- Mackenzie L Morshead
- Department of Environmental and Molecular Toxicology and the Oregon State University Superfund Center, Oregon State University, ALS 1007, Corvallis, OR, 97331, USA
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology and the Oregon State University Superfund Center, Oregon State University, ALS 1007, Corvallis, OR, 97331, USA
| | - Michael T Simonich
- Department of Environmental and Molecular Toxicology and the Oregon State University Superfund Center, Oregon State University, ALS 1007, Corvallis, OR, 97331, USA
| | - Jessica E Moran
- Department of Environmental and Molecular Toxicology and the Oregon State University Superfund Center, Oregon State University, ALS 1007, Corvallis, OR, 97331, USA
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology and the Oregon State University Superfund Center, Oregon State University, ALS 1007, Corvallis, OR, 97331, USA
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology and the Oregon State University Superfund Center, Oregon State University, ALS 1007, Corvallis, OR, 97331, USA.
| |
Collapse
|
3
|
Harsha ML, Salas-Ortiz Y, Cypher AD, Osborn E, Valle ET, Gregg JL, Hershberger PK, Kurerov Y, King S, Goranov AI, Hatcher PG, Konefal A, Cox TE, Greer JB, Meador JP, Tarr MA, Tomco PL, Podgorski DC. Toxicity of crude oil-derived polar unresolved complex mixtures to Pacific herring embryos: Insights beyond polycyclic aromatic hydrocarbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177447. [PMID: 39521076 DOI: 10.1016/j.scitotenv.2024.177447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Crude oil toxicity to early life stage fish is commonly attributed to polycyclic aromatic hydrocarbons (PAHs). However, it remains unclear how the polar unresolved complex mixture (UCM), which constitutes the bulk of the water-soluble fraction of crude oil, contributes to crude oil toxicity. Additionally, the role of photomodification-induced toxicity in relation to the polar UCM is not well understood. This study addresses these knowledge gaps by assessing the toxicity of two laboratory generated polar UCMs from Cook Inlet crude oil, representing the readily water-soluble fraction of crude oil and photoproduced hydrocarbon oxidation products (HOPs), to Pacific herring (Clupea pallasii) embryos. A small-scale semi-static exposure design was utilized with a range of polar UCM concentrations (0.5-14 mg/L) in nonvolatile dissolved organic carbon (NVDOC) units, quantifying the entire polar UCM. Compositional analyses revealed a photochemical-driven shift toward more complex aromatic compositions, naphthenic acids, and no detectable levels of PAHs (above 0.3 μg/L). Exposure to the dark polar UCM resulted in higher mortality than exposure to the light polar UCM. Both dark and light polar UCMs induced developmental abnormalities commonly attributed to the PAH fraction, including edema, reduced heart rate, body axis defects, and decreased body lengths, with these effects observed at the lowest dose group (0.5 mg/L NVDOC). These responses suggest photomodification-induced toxicity is driven by exposure to increased concentrations of dissolved HOPs rather than photochemical induced compositional changes. Gene expression analyses focusing on xenobiotic metabolism and cardiac morphogenesis yielded results consistent with previous studies examining the biological mechanisms of crude oil toxicity. In summary, these phenotypic and genotypic responses in Pacific herring embryos indicate that the polar UCM is a significant driver of crude oil toxicity. These findings emphasize the importance of considering the polar UCM in future studies, metric reporting, and risk assessments related to crude oil toxicity.
Collapse
Affiliation(s)
- Maxwell L Harsha
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - Yanila Salas-Ortiz
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA
| | | | - Ed Osborn
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - Eduardo Turcios Valle
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - Jacob L Gregg
- U.S. Geological Survey, Western Fisheries Research Center, Marrowstone Marine Field Station, Nordland, Washington 98358, USA
| | - Paul K Hershberger
- U.S. Geological Survey, Western Fisheries Research Center, Marrowstone Marine Field Station, Nordland, Washington 98358, USA
| | - Yuri Kurerov
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA; Eurofins Central Analytical Laboratories, New Orleans, Louisiana 70122, USA
| | - Sarah King
- Eurofins Central Analytical Laboratories, New Orleans, Louisiana 70122, USA
| | - Aleksandar I Goranov
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, USA
| | - Patrick G Hatcher
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, USA
| | - Anastasia Konefal
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - T Erin Cox
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - Justin B Greer
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington 98115, USA
| | - James P Meador
- University of Washington, Dept. of Environmental and Occupational Health Sciences, School of Public Health, Seattle, Washington 98105, USA
| | - Matthew A Tarr
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - Patrick L Tomco
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA; Department of Chemistry, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - David C Podgorski
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA; Pontchartrain Institute for Environmental Sciences, Shea Penland Coastal Education & Research Facility, University of New Orleans, New Orleans, Louisiana 70148, USA; Department of Chemistry, University of Alaska Anchorage, Anchorage, AK 99508, USA.
| |
Collapse
|
4
|
Mariz CF, Nascimento JVG, Morais BS, Alves MKM, Rojas LAV, Zanardi-Lamardo E, Carvalho PSM. Toxicity of the oil spilled on the Brazilian coast at different degrees of natural weathering to early life stages of the zebrafish Danio rerio. MARINE POLLUTION BULLETIN 2024; 207:116819. [PMID: 39182410 DOI: 10.1016/j.marpolbul.2024.116819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/07/2024] [Accepted: 08/03/2024] [Indexed: 08/27/2024]
Abstract
Toxicity of water accommodated fractions (WAF) from the oil spilled on the Brazilian coast at different stages of weathering were investigated using Danio rerio. Weathering stages included emulsified oil that reached the coast (OM) and oil collected 50 days later deposited on beach sand (OS) or adhered to shore rocks (OR). Parent and alkylated naphthalenes decreased whereas phenanthrenes increased from less weathered WAF-OM to more weathered WAF-OS and WAF-OR. More weathered WAF-OS and WAF-OR were more potent inducers of zebrafish developmental delay, suggesting that parent and alkylated phenanthrenes are involved. However, less weathered WAF-OM was a more potent inducer of failure in swim-bladder inflation than more weathered WAF-OS and WAF-OR, suggesting that parent and alkylated naphthalenes are involved. Decreases in heart rates and increased heart and skeletal deformities were observed in exposed larvae. Lowest observed effect concentrations for different developmental toxicity endpoints are within environmentally relevant polycyclic aromatic hydrocarbon concentrations.
Collapse
Affiliation(s)
- Célio Freire Mariz
- Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil.
| | - João V Gomes Nascimento
- Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil
| | - Bruna Santana Morais
- Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil
| | - Maria K Melo Alves
- Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil
| | - Lino Angel Valcarcel Rojas
- Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura s/n, Cidade Universitária, Recife 50740-550, Brazil
| | - Eliete Zanardi-Lamardo
- Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura s/n, Cidade Universitária, Recife 50740-550, Brazil
| | - Paulo S M Carvalho
- Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil
| |
Collapse
|
5
|
Filatova TS, Kuzmin VS, Dzhumaniiazova I, Pustovit OB, Abramochkin DV, Shiels HA. 3-Methyl-phenanthrene (3-MP) disrupts the electrical and contractile activity of the heart of the polar fish, navaga cod (Eleginus nawaga). CHEMOSPHERE 2024; 357:142089. [PMID: 38643846 DOI: 10.1016/j.chemosphere.2024.142089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Alkylated polycyclic aromatic hydrocarbons are abundant in crude oil and are enriched during petroleum refinement but knowledge of their cardiotoxicity remains limited. Polycyclic aromatic hydrocarbons (PAHs) are considered the main hazardous components in crude oil and the tricyclic PAH phenanthrene has been singled out for its direct effects on cardiac tissue in mammals and fish. Here we test the impact of the monomethylated phenanthrene, 3-methylphenanthrene (3-MP), on the contractile and electrical function of the atrium and ventricle of a polar fish, the navaga cod (Eleginus nawaga). Using patch-clamp electrophysiology in atrial and ventricular cardiomyocytes we show that 3-MP is a potent inhibitor of the delayed rectifier current IKr (IC50 = 0.25 μM) and prolongs ventricular action potential duration. Unlike the parent compound phenanthrene, 3-MP did not reduce the amplitude of the L-type Ca2+ current (ICa) but it accelerated current inactivation thus reducing charge transfer across the myocyte membrane and compromising pressure development of the whole heart. 3-MP was a potent inhibitor (IC50 = 4.7 μM) of the sodium current (INa), slowing the upstroke of the action potential in isolated cells, slowing conduction velocity across the atrium measured with optical mapping, and increasing atrio-ventricular delay in a working whole heart preparation. Together, these findings reveal the strong cardiotoxic potential of this phenanthrene derivative on the fish heart. As 3-MP and other alkylated phenanthrenes comprise a large fraction of the PAHs in crude oil mixtures, these findings are worrisome for Arctic species facing increasing incidence of spills and leaks from the petroleum industry. 3-MP is also a major component of polluted air but is not routinely measured. This is also of concern if the hearts of humans and other terrestrial animals respond to this PAH in a similar manner to fish.
Collapse
Affiliation(s)
- Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Irina Dzhumaniiazova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Oksana B Pustovit
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia; Laboratory of Cardiac Electrophysiology, Chazov National Medical Research Center for Cardiology, Moscow, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia
| | - Holly A Shiels
- Faculty of Biology, Medicine and Health, Core Technology Facility, 46 Grafton Street, University of Manchester, Manchester, M13 9NT, UK.
| |
Collapse
|