1
|
Wang M, Lu S, Hao L, Xia Y, Shi Z, Su L. Placebo effects of repetitive transcranial magnetic stimulation on negative symptoms and cognition in patients with schizophrenia spectrum disorders: a systematic review and meta-analysis. Front Psychiatry 2024; 15:1377257. [PMID: 38863608 PMCID: PMC11165700 DOI: 10.3389/fpsyt.2024.1377257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Background Negative symptoms and cognitive impairments are highly frequent in schizophrenia spectrum disorders (SSD), associated with adverse functional outcomes and quality of life. Repetitive transcranial magnetic stimulation (rTMS) has been considered a promising therapeutic option in SSD. However, placebo effects of rTMS on these symptoms remained unclear. Objective To investigate placebo effects of rTMS on alleviating negative symptoms and cognitive impairment in patients with SSD and to explore potential moderators. Methods We systematically searched five electronic databases up to 15 July 2023. Randomized, double-blind, sham-controlled trials investigating effects of rTMS on negative symptoms or cognition in patients with SSD were included. The pooled placebo effect sizes, represented by Hedges' g, were estimated using the random-effects model. Potential moderators were explored through subgroup analysis and meta-regression. Results Forty-four randomized controlled trials with 961 patients (mean age 37.53 years; 28.1% female) in the sham group were included. Significant low-to-moderate pooled placebo effect sizes were observed for negative symptoms (g=0.44, p<0.001), memory (g=0.31, p=0.010), executive function (g=0.35, p<0.001), working memory (g=0.26, p=0.004), and processing speed (g=0.36, p=0.004). Subgroup analysis indicated that placebo effects were affected by sham stimulation methods, rTMS targeting approaches, and stimulation frequency. Conclusions Placebo effects of rTMS on negative symptoms and cognition in patients with SSD are significant in a small-to-moderate magnitude, which might be mediated by rTMS parameters. Our findings will provide new insights for practitioners to further optimize and establish standardized rTMS protocols for future RCTs tackling cardinal symptoms in SSD. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023390138.
Collapse
Affiliation(s)
- Mingqi Wang
- Department of Rehabilitation Medicine, Shandong Mental Health Center, Shandong University, Jinan, China
| | - Shensen Lu
- Department of Rehabilitation Medicine, Shandong Mental Health Center, Shandong University, Jinan, China
| | - Lu Hao
- Department of Rehabilitation Medicine, Shandong Mental Health Center, Shandong University, Jinan, China
| | - Yifei Xia
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenchun Shi
- Department of Rehabilitation Medicine, Shandong Mental Health Center, Shandong University, Jinan, China
| | - Lei Su
- Department of Rehabilitation Medicine, Shandong Mental Health Center, Shandong University, Jinan, China
| |
Collapse
|
2
|
Li L, Liu C, Pan W, Wang W, Jin W, Ren Y, Ma X. Repetitive Transcranial Magnetic Stimulation for Working Memory Deficits in Schizophrenia: A Systematic Review of Randomized Controlled Trials. Neuropsychiatr Dis Treat 2024; 20:649-662. [PMID: 38528855 PMCID: PMC10962363 DOI: 10.2147/ndt.s450303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
Working memory (WM) deficits are a significant component of neurocognitive impairment in individuals with schizophrenia (SCZ). Two previous meta-analyses, conducted on randomized controlled trials (RCTs), examined the effectiveness of repetitive transcranial magnetic stimulation (rTMS) in addressing WM deficits in individuals diagnosed with SCZ. However, the conclusions drawn from these analyses were inconsistent. Additionally, the commonly used random effects (RE) models might underestimate statistical errors, attributing a significant portion of perceived heterogeneity between studies to variations in study quality. Therefore, this review utilized both RE and quality effects (QE) models to assess relevant RCTs comparing TMS with sham intervention in terms of clinical outcomes. A comprehensive literature search was conducted using PubMed and Scopus databases, resulting in the inclusion of 13 studies for data synthesis. Overall, regardless of whether the RE or QE model was used, eligible RCTs suggested that the TMS and sham groups exhibited comparable therapeutic effects after treatment. The current state of research regarding the use of rTMS as a treatment for WM deficits in patients with SCZ remains in its preliminary phase. Furthermore, concerning the mechanism of action, the activation of brain regions focused on the dorsolateral prefrontal cortex and alterations in gamma oscillations may hold significant relevance in the therapeutic application of rTMS for addressing WM impairments. Finally, we believe that the application of closed-loop neuromodulation may contribute to the optimization of rTMS for WM impairment in patients with SCZ.
Collapse
Affiliation(s)
- Li Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Chaomeng Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Weigang Pan
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Wen Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Wenqing Jin
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Yanping Ren
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Xin Ma
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Su X, Liu H, Wang X, Pan X, Zhang X, Lu X, Zhao L, Chen Y, Shang Y, Wu F, Xiu M. Neuronavigated Repetitive Transcranial Stimulation Improves Neurocognitive Functioning in Veterans with Schizophrenia: A Possible Role of BDNF Polymorphism. Curr Neuropharmacol 2023; 21:142-150. [PMID: 35927806 PMCID: PMC10193754 DOI: 10.2174/1570159x20666220803154820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/24/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
It has been reported in the previous literatures that high-frequency (HF) neuronavigated repetitive transcranial magnetic stimulation (rTMS) may improve neurocognitive functioning in patients with schizophrenia. Nonetheless, the heterogeneity of the research findings with regards to the effectiveness of HF-rTMS on the neurocognitive functioning in patients with schizophrenia greatly hinders its clinical application. The current study was designed to determine the predictive role of BDNF variants for neurocognitive improvements after rTMS administration in veterans with schizophrenia. 109 hospitalized veterans with schizophrenia were randomly allocated to active HF-rTMS (n=63) or sham stimulation (n=46) over left DLPFC for 4 consecutive weeks. Neurocognitive functions were assessed by using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) at baseline and at the end of week 4. BDNF polymorphism was genotyped by the technicians. Compared with sham stimulation sessions, the immediate memory performance was significantly increased in active sessions after neuronavigated HF-rTMS administration. In addition, patients with the CC homozygotes demonstrated greater improvement of immediate memory after rTMS treatment, while T allele carriers showed no significant improvement in immediate memory domain relative to baseline performance of immediate memory. Our findings suggest that add-on neuronavigated HF-rTMS is beneficial on immediate memory only in patients with CC homozygotes, but not in T allele carriers. This pilot study provides further evidence for BDNF as a promise biomarker in predicting the clinical response to rTMS stimulation.
Collapse
Affiliation(s)
- Xiuru Su
- Hebei Province Veterians hospital, Baoding, China
| | - Haixia Liu
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, China
| | - Xuan Wang
- Hebei Province Veterians hospital, Baoding, China
| | - Xiuling Pan
- Hebei Province Veterians hospital, Baoding, China
| | - Xuan Zhang
- Hebei Province Veterians hospital, Baoding, China
| | - Xinyan Lu
- Hebei Province Veterians hospital, Baoding, China
| | - Long Zhao
- Hebei Province Veterians hospital, Baoding, China
| | - Yingnan Chen
- Hebei Province Veterians hospital, Baoding, China
| | - Yujie Shang
- Hebei Province Veterians hospital, Baoding, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| |
Collapse
|
4
|
Shu IW, Granholm EL, Singh F. Targeting Frontal Gamma Activity with Neurofeedback to Improve Working Memory in Schizophrenia. Curr Top Behav Neurosci 2022; 63:153-172. [PMID: 35989397 DOI: 10.1007/7854_2022_377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Optimal working memory (WM), the mental ability to internally maintain and manipulate task-relevant information, requires coordinated activity of dorsal-lateral prefrontal cortical (DLPFC) neurons. More specifically, during delay periods of tasks with WM features, DLPFC microcircuits generate persistent, stimulus-specific higher-frequency (e.g., gamma) activity. This activity largely depends on recurrent connections between parvalbumin positive inhibitory interneurons and pyramidal neurons in more superficial DLPFC layers. Due to the size and organization of pyramidal neurons (especially apical dendrites), local field potentials generated by DLPFC microcircuits are strong enough to pass outside the skull and can be detected using electroencephalography (EEG). Since patients with schizophrenia (SCZ) exhibit both DLPFC and WM abnormalities, EEG markers of DLPFC microcircuit activity during WM may serve as effective biomarkers or treatment targets. In this review, we summarize converging evidence from primate and human studies for a critical role of DLPFC microcircuit activity during WM and in the pathophysiology of SCZ. We also present a meta-analysis of studies available in PubMed specifically comparing frontal gamma activity between participants with SCZ and healthy controls, to determine whether frontal gamma activity may be a valid biomarker or treatment target for patients with SCZ. We summarize the complex cognitive and neurophysiologic processes contributing to neural oscillations during tasks with WM features, and how such complexity has stalled the development of neurophysiologic biomarkers and treatment targets. Finally, we summarize promising results from early reports using neuromodulation to target DLPFC neural activity and improve cognitive function in participants with SCZ, including a study from our team demonstrating that gamma-EEG neurofeedback increases frontal gamma power and WM performance in participants with SCZ. From the evidence discussed in this review, we believe the emerging field of neuromodulation, which includes extrinsic (electrical or magnetic stimulation) and intrinsic (EEG neurofeedback) modalities, will, in the coming decade, provide promising treatment options targeting specific neurophysiologic properties of specific brain areas to improve cognitive and behavioral health for patients with SCZ.
Collapse
Affiliation(s)
- I-Wei Shu
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Eric L Granholm
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Fiza Singh
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Lorentzen R, Nguyen TD, McGirr A, Hieronymus F, Østergaard SD. The efficacy of transcranial magnetic stimulation (TMS) for negative symptoms in schizophrenia: a systematic review and meta-analysis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:35. [PMID: 35853882 PMCID: PMC9261093 DOI: 10.1038/s41537-022-00248-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/21/2022] [Indexed: 04/20/2023]
Abstract
Several trials have shown preliminary evidence for the efficacy of transcranial magnetic stimulation (TMS) as a treatment for negative symptoms in schizophrenia. Here, we synthesize this literature in a systematic review and quantitative meta-analysis of double-blind randomized controlled trials of TMS in patients with schizophrenia. Specifically, MEDLINE, EMBASE, Web of Science, and PsycINFO were searched for sham-controlled, randomized trials of TMS among patients with schizophrenia. The effect of TMS vs. sham on negative symptoms in each study was quantified by the standardized mean difference (SMD, Cohen's d) with 95% confidence intervals (95%CI) and pooled across studies using an inverse variance random effects model. We identified 57 studies with a total of 2633 participants that were included in the meta-analysis. The pooled analysis showed statistically significant superiority of TMS (SMD = 0.41, 95%CI: 0.26; 0.56, p-value < 0.001), corresponding to a number needed to treat of 5. Furthermore, stratified analyses suggested that TMS targeting the left dorsolateral prefrontal cortex and using a stimulation frequency >1 Hz was most efficacious. There was, however, substantial heterogeneity and high risk of bias among the included studies. In conclusion, TMS appears to be an efficacious treatment option for patients with schizophrenia suffering from negative symptoms, but the optimal TMS parameters are yet to be established.
Collapse
Affiliation(s)
- Rasmus Lorentzen
- Department of Affective Disorders, Aarhus University Hospital - Psychiatry, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tuan D Nguyen
- Department of Affective Disorders, Aarhus University Hospital - Psychiatry, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Alexander McGirr
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Canada
| | - Fredrik Hieronymus
- Department of Affective Disorders, Aarhus University Hospital - Psychiatry, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Søren D Østergaard
- Department of Affective Disorders, Aarhus University Hospital - Psychiatry, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
6
|
Bonotis K, Anargyros K, Liaskopoulos N, Barlogianni AM. Evaluation of memory performance in patients with brain disorders following rTMS treatment. A systematic review. Clin Neurophysiol 2021; 135:126-153. [DOI: 10.1016/j.clinph.2021.11.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/24/2021] [Accepted: 11/29/2021] [Indexed: 12/01/2022]
|