1
|
Development, Diversity, and Death of MGE-Derived Cortical Interneurons. Int J Mol Sci 2021; 22:ijms22179297. [PMID: 34502208 PMCID: PMC8430628 DOI: 10.3390/ijms22179297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
In the mammalian brain, cortical interneurons (INs) are a highly diverse group of cells. A key neurophysiological question concerns how each class of INs contributes to cortical circuit function and whether specific roles can be attributed to a selective cell type. To address this question, researchers are integrating knowledge derived from transcriptomic, histological, electrophysiological, developmental, and functional experiments to extensively characterise the different classes of INs. Our hope is that such knowledge permits the selective targeting of cell types for therapeutic endeavours. This review will focus on two of the main types of INs, namely the parvalbumin (PV+) or somatostatin (SOM+)-containing cells, and summarise the research to date on these classes.
Collapse
|
2
|
Fitzgerald M, Sotuyo N, Tischfield DJ, Anderson SA. Generation of cerebral cortical GABAergic interneurons from pluripotent stem cells. Stem Cells 2020; 38:1375-1386. [PMID: 32638460 DOI: 10.1002/stem.3252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/18/2020] [Accepted: 06/11/2020] [Indexed: 11/11/2022]
Abstract
The cerebral cortex functions by the complex interactions of intrinsic and extrinsic neuronal activities, glial actions, and the effects of humoral factors. The intrinsic neuronal influences are mediated by two major subclasses: excitatory glutamatergic neurons that generally have axonal projections extending beyond the neuron's locality and inhibitory GABAergic neurons that generally project locally. These interneurons can be grouped based on morphological, neurochemical, electrophysiological, axonal targeting, and circuit influence characteristics. Cortical interneurons (CIns) can also be grouped based on their origins within the subcortical telencephalon. Interneuron subtypes, of which a dozen or more are thought to exist, are characterized by combinations of these subgrouping features. Due to their well-documented relevance to the causes of and treatments for neuropsychiatric disorders, and to their remarkable capacity to migrate extensively following transplantation, there has been tremendous interest in generating cortical GABAergic interneurons from human pluripotent stem cells. In this concise review, we discuss recent progress in understanding how interneuron subtypes are generated in vivo, and how that progress is being applied to the generation of rodent and human CIns in vitro. In addition, we will discuss approaches for the rigorous designation of interneuron subgroups or subtypes in transplantation studies, and challenges to this field, including the protracted maturation of human interneurons.
Collapse
Affiliation(s)
- Megan Fitzgerald
- The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nathaniel Sotuyo
- The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - David J Tischfield
- The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Stewart A Anderson
- The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Abstract
Cortical interneurons display striking differences in shape, physiology, and other attributes, challenging us to appropriately classify them. We previously suggested that interneuron types should be defined by their role in cortical processing. Here, we revisit the question of how to codify their diversity based upon their division of labor and function as controllers of cortical information flow. We suggest that developmental trajectories provide a guide for appreciating interneuron diversity and argue that subtype identity is generated using a configurational (rather than combinatorial) code of transcription factors that produce attractor states in the underlying gene regulatory network. We present our updated three-stage model for interneuron specification: an initial cardinal step, allocating interneurons into a few major classes, followed by definitive refinement, creating subclasses upon settling within the cortex, and lastly, state determination, reflecting the incorporation of interneurons into functional circuit ensembles. We close by discussing findings indicating that major interneuron classes are both evolutionarily ancient and conserved. We propose that the complexity of cortical circuits is generated by phylogenetically old interneuron types, complemented by an evolutionary increase in principal neuron diversity. This suggests that a natural neurobiological definition of interneuron types might be derived from a match between their developmental origin and computational function.
Collapse
Affiliation(s)
- Gord Fishell
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA;
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02142, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Adam Kepecs
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri 63130, USA;
| |
Collapse
|
4
|
Tischfield DJ, Anderson SA. Differentiation of Mouse Embryonic Stem Cells into Cortical Interneuron Precursors. J Vis Exp 2017. [PMID: 29286389 DOI: 10.3791/56358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
GABAergic cortical interneurons are a heterogeneous population of cells that play critical roles in regulating the output of excitatory pyramidal neurons as well as synchronizing the outputs of pyramidal neuron ensembles. Deficits in interneuron function have been implicated in a variety of neuropsychiatric disorders, including schizophrenia, autism, and epilepsy. The derivation of cortical interneurons from embryonic stem cells not only allows for the study of their development and function, but provides insight into the molecular mechanisms underlying the pathogenesis of cortical interneuron-related disorders. Interneurons also have the remarkable capacity to survive, migrate, and integrate into host cortical circuitry post-transplantation, making them ideal candidates for use in cell-based therapies. Here, we present a scalable, highly efficient, modified embryoid body-to-monolayer method for the derivation of Nkx2.1-expressing interneuron progenitors and their progeny from mouse embryonic stem cells (mESCs). Using a Nkx2.1::mCherry:Lhx6::GFP dual reporter mESC line, Nkx2.1 progenitors or their Lhx6-expressing post-mitotic progeny can be isolated via fluorescence-activated cell sorting (FACS) and subsequently used in a number of downstream applications. We also provide methods to enrich for parvalbumin (PV) or somatostatin (SST) interneuron subgroups, which may be helpful for studying aspects of fate determination or for use in therapeutic applications that would benefit from interneuron subgroup-enriched transplantations.
Collapse
Affiliation(s)
- David J Tischfield
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania; Department of Psychiatry, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine
| | - Stewart A Anderson
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania;
| |
Collapse
|
5
|
Chen CY, Plocik A, Anderson NC, Moakley D, Boyi T, Dundes C, Lassiter C, Graveley BR, Grabel L. Transcriptome and in Vitro Differentiation Profile of Human Embryonic Stem Cell Derived NKX2.1-Positive Neural Progenitors. Stem Cell Rev Rep 2017; 12:744-756. [PMID: 27539622 DOI: 10.1007/s12015-016-9676-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The generation of inhibitory interneuron progenitors from human embryonic stem cells (ESCs) is of great interest due to their potential use in transplantation therapies designed to treat central nervous system disorders. The medial ganglionic eminence (MGE) is a transient embryonic structure in the ventral telencephalon that is a major source of cortical GABAergic inhibitory interneuron progenitors. These progenitors migrate tangentially to sites in the cortex and differentiate into a variety of interneuron subtypes, forming local synaptic connections with excitatory projection neurons to modulate activity of the cortical circuitry. The homeobox domain-containing transcription factor NKX2.1 is highly expressed in the MGE and pre-optic area of the ventral subpallium and is essential for specifying cortical interneuron fate. Using a combination of growth factor agonists and antagonists to specify ventral telencephalic fates, we previously optimized a protocol for the efficient generation of NKX2.1-positive MGE-like neural progenitors from human ESCs. To establish their identity, we now characterize the transcriptome of these MGE-like neural progenitors using RNA sequencing and demonstrate the capacity of these cells to differentiate into inhibitory interneurons in vitro using a neuron-astrocyte co-culture system. These data provide information on the potential origin of interneurons in the human brain.
Collapse
Affiliation(s)
- Christopher Y Chen
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT, 06459, USA.
| | - Alex Plocik
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, 400 Farmington Avenue, UCONN Health, Farmington, CT, 06030, USA
| | - Nickesha C Anderson
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT, 06459, USA
| | - Daniel Moakley
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT, 06459, USA
| | - Trinithas Boyi
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT, 06459, USA
| | - Carolyn Dundes
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT, 06459, USA
| | - Chelsea Lassiter
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT, 06459, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, 400 Farmington Avenue, UCONN Health, Farmington, CT, 06030, USA
| | - Laura Grabel
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT, 06459, USA
| |
Collapse
|
6
|
Dame K, Cincotta S, Lang AH, Sanghrajka RM, Zhang L, Choi J, Kwok L, Wilson T, Kańduła MM, Monti S, Hollenberg AN, Mehta P, Kotton DN, Ikonomou L. Thyroid Progenitors Are Robustly Derived from Embryonic Stem Cells through Transient, Developmental Stage-Specific Overexpression of Nkx2-1. Stem Cell Reports 2017; 8:216-225. [PMID: 28162994 PMCID: PMC5312259 DOI: 10.1016/j.stemcr.2016.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/03/2022] Open
Abstract
The clinical importance of anterior foregut endoderm (AFE) derivatives, such as thyrocytes, has led to intense research efforts for their derivation through directed differentiation of pluripotent stem cells (PSCs). Here, we identify transient overexpression of the transcription factor (TF) NKX2-1 as a powerful inductive signal for the robust derivation of thyrocyte-like cells from mouse PSC-derived AFE. This effect is highly developmental stage specific and dependent on FOXA2 expression levels and precise modulation of BMP and FGF signaling. The majority of the resulting cells express thyroid TFs (Nkx2-1, Pax8, Foxe1, Hhex) and thyroid hormone synthesis-related genes (Tg, Tpo, Nis, Iyd) at levels similar to adult mouse thyroid and give rise to functional follicle-like epithelial structures in Matrigel culture. Our findings demonstrate that NKX2-1 overexpression converts AFE to thyroid epithelium in a developmental time-sensitive manner and suggest a general methodology for manipulation of cell-fate decisions of developmental intermediates.
Collapse
Affiliation(s)
- Keri Dame
- Center for Regenerative Medicine, Boston Medical Center and Boston University, 670 Albany Street, 2nd Floor CReM, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Steven Cincotta
- Center for Regenerative Medicine, Boston Medical Center and Boston University, 670 Albany Street, 2nd Floor CReM, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alex H Lang
- Department of Physics, Boston University, Boston, MA 02215, USA
| | - Reeti M Sanghrajka
- Center for Regenerative Medicine, Boston Medical Center and Boston University, 670 Albany Street, 2nd Floor CReM, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Liye Zhang
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jinyoung Choi
- Center for Regenerative Medicine, Boston Medical Center and Boston University, 670 Albany Street, 2nd Floor CReM, Boston, MA 02118, USA; Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Letty Kwok
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Talitha Wilson
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Maciej M Kańduła
- Chair of Bioinformatics Research Group, Boku University, 1190 Vienna, Austria
| | - Stefano Monti
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anthony N Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA 02215, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston Medical Center and Boston University, 670 Albany Street, 2nd Floor CReM, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Laertis Ikonomou
- Center for Regenerative Medicine, Boston Medical Center and Boston University, 670 Albany Street, 2nd Floor CReM, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
7
|
Patel SS, Tomar S, Sharma D, Mahindroo N, Udayabanu M. Targeting sonic hedgehog signaling in neurological disorders. Neurosci Biobehav Rev 2017; 74:76-97. [PMID: 28088536 DOI: 10.1016/j.neubiorev.2017.01.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/29/2016] [Accepted: 01/07/2017] [Indexed: 12/13/2022]
Abstract
Sonic hedgehog (Shh) signaling influences neurogenesis and neural patterning during the development of central nervous system. Dysregulation of Shh signaling in brain leads to neurological disorders like autism spectrum disorder, depression, dementia, stroke, Parkinson's diseases, Huntington's disease, locomotor deficit, epilepsy, demyelinating disease, neuropathies as well as brain tumors. The synthesis, processing and transport of Shh ligand as well as the localization of its receptors and signal transduction in the central nervous system has been carefully reviewed. Further, we summarize the regulation of small molecule modulators of Shh pathway with potential in neurological disorders. In conclusion, further studies are warranted to demonstrate the potential of positive and negative regulators of the Shh pathway in neurological disorders.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat 173234, Himachal Pradesh, India
| | - Sunil Tomar
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Diksha Sharma
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Neeraj Mahindroo
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Malairaman Udayabanu
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat 173234, Himachal Pradesh, India.
| |
Collapse
|
8
|
Anderson NC, Chen CY, Grabel L. Hedgehog Promotes Production of Inhibitory Interneurons in Vivo and in Vitro from Pluripotent Stem Cells. J Dev Biol 2016; 4:jdb4030026. [PMID: 29615590 PMCID: PMC5831776 DOI: 10.3390/jdb4030026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/10/2016] [Accepted: 08/17/2016] [Indexed: 12/17/2022] Open
Abstract
Loss or damage of cortical inhibitory interneurons characterizes a number of neurological disorders. There is therefore a great deal of interest in learning how to generate these neurons from a pluripotent stem cell source so they can be used for cell replacement therapies or for in vitro drug testing. To design a directed differentiation protocol, a number of groups have used the information gained in the last 15 years detailing the conditions that promote interneuron progenitor differentiation in the ventral telencephalon during embryogenesis. The use of Hedgehog peptides and agonists is featured prominently in these approaches. We review here the data documenting a role for Hedgehog in specifying interneurons in both the embryonic brain during development and in vitro during the directed differentiation of pluripotent stem cells.
Collapse
Affiliation(s)
- Nickesha C Anderson
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA.
| | - Christopher Y Chen
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA.
| | - Laura Grabel
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA.
| |
Collapse
|
9
|
Condie BG. The untapped potential of the GENSAT mice-A valuable resource for developmental biology. Genesis 2016; 54:245-56. [PMID: 27074373 DOI: 10.1002/dvg.22942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/13/2022]
Abstract
Gene Expression Nervous System Atlas (GENSAT) transgenic mice express EGFP, tdTomato, or Cre recombinase in a wide range of cell types. The mice and the bacterial artificial chromosome transgenes are available from repositories (MMRRC or CHORI), thereby making these resources readily available to the research community. This resource of 1,386 transgenic lines was developed and validated for neuroscience research. However, GENSAT mice have many potential applications in other contexts including studies of development outside of the CNS. The cell type-specific expression of fluorescent proteins in these mice has been used to identify cells in living embryos, in living embryo explants, and in stem or progenitor cell populations in postnatal tissues. The large number of fluorescent protein driver lines generated by GENSAT greatly expands the range of cell type markers that can be used for live cell sorting. In addition, the GENSAT project has generated 278 new Cre driver lines. This review provides an overview of the GENSAT lines and information for identifying lines that may be useful for a particular application. I also provide a review of the few published cases in which GENSAT mice have been used for studies of embryonic development or analysis of stem/progenitor cells in nonneural tissues. genesis 54:245-256, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Brian G Condie
- Department of Genetics, Developmental Biology Alliance, University of Georgia, Athens, Georgia
| |
Collapse
|
10
|
Tyson JA, Goldberg EM, Maroof AM, Xu Q, Petros TJ, Anderson SA. Duration of culture and sonic hedgehog signaling differentially specify PV versus SST cortical interneuron fates from embryonic stem cells. Development 2016; 142:1267-78. [PMID: 25804737 DOI: 10.1242/dev.111526] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Medial ganglionic eminence (MGE)-derived GABAergic cortical interneurons (cINs) consist of multiple subtypes that are involved in many cortical functions. They also have a remarkable capacity to migrate, survive and integrate into cortical circuitry after transplantation into postnatal cortex. These features have engendered considerable interest in generating distinct subgroups of interneurons from pluripotent stem cells (PSCs) for the study of interneuron fate and function, and for the development of cell-based therapies. Although advances have been made, the capacity to generate highly enriched pools of subgroup fate-committed interneuron progenitors from PSCs has remained elusive. Previous studies have suggested that the two main MGE-derived interneuron subgroups--those expressing somatostatin (SST) and those expressing parvalbumin (PV)--are specified in the MGE from Nkx2.1-expressing progenitors at higher or lower levels of sonic hedgehog (Shh) signaling, respectively. To further explore the role of Shh and other factors in cIN fate determination, we generated a reporter line such that Nkx2.1-expressing progenitors express mCherry and postmitotic Lhx6-expressing MGE-derived interneurons express GFP. Manipulations of Shh exposure and time in culture influenced the subgroup fates of ESC-derived interneurons. Exposure to higher Shh levels, and collecting GFP-expressing precursors at 12 days in culture, resulted in the strongest enrichment for SST interneurons over those expressing PV, whereas the strongest enrichment for PV interneurons was produced by lower Shh and by collecting mCherry-expressing cells after 17 days in culture. These findings confirm that fate determination of cIN subgroups is crucially influenced by Shh signaling, and provide a system for the further study of interneuron fate and function.
Collapse
Affiliation(s)
- Jennifer A Tyson
- Department of Psychiatry, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine ARC 517, Philadelphia, PA 19104-5127, USA Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Ethan M Goldberg
- Division of Neurology, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19083, USA Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19083, USA
| | - Asif M Maroof
- Harvard University Department of Stem Cell and Regenerative Biology, Cambridge, MA 02138, USA
| | - Qing Xu
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Timothy J Petros
- Department of Neuroscience, NYU Langone Medical Center, New York, NY 10016, USA
| | - Stewart A Anderson
- Department of Psychiatry, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine ARC 517, Philadelphia, PA 19104-5127, USA
| |
Collapse
|
11
|
DeBoer EM, Anderson SA. Fate determination of cerebral cortical GABAergic interneurons and their derivation from stem cells. Brain Res 2015; 1655:277-282. [PMID: 26723568 DOI: 10.1016/j.brainres.2015.12.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/15/2015] [Indexed: 01/26/2023]
Abstract
Cortical GABAergic interneurons modulate cortical excitation, and their dysfunction is implicated in a multitude of neuropsychiatric disorders including autism, schizophrenia and epilepsy. Consequently, the study of cortical interneuron development, and their derivation from stem cells for transplantation therapy, has garnered intense scientific interest. In this review, we discuss some of the molecular signals involved in cortical interneuron fate determination, and describe how this has informed the use of mouse and human embryonic stem cell biology in generating cortical interneurons in vitro. We highlight the tremendous progress that has been made recently using stem cells to derive cortical interneurons, as well as challenges that have arisen. This article is part of a Special Issue entitled SI:StemsCellsinPsychiatry.
Collapse
Affiliation(s)
- Erik M DeBoer
- Department of Psychiatry, Children׳s Hospital of Philadelphia, University of Pennsylvania, School of Medicine, 3615 Civic Center Blvd, ARC 517, Philadelphia, PA 19104-5127, USA.
| | - Stewart A Anderson
- Department of Psychiatry, Children׳s Hospital of Philadelphia, University of Pennsylvania, School of Medicine, 3615 Civic Center Blvd, ARC 517, Philadelphia, PA 19104-5127, USA.
| |
Collapse
|
12
|
Hunt RF, Baraban SC. Interneuron Transplantation as a Treatment for Epilepsy. Cold Spring Harb Perspect Med 2015; 5:5/12/a022376. [PMID: 26627452 DOI: 10.1101/cshperspect.a022376] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stem-cell therapy has extraordinary potential to address critical, unmet needs in the treatment of human disease. One particularly promising approach for the treatment of epilepsy is to increase inhibition in areas of the epileptic brain by grafting new inhibitory cortical interneurons. When grafted from embryos, young γ-aminobutyric acid (GABA)ergic precursors disperse, functionally mature into host brain circuits as local-circuit interneurons, and can stop seizures in both genetic and acquired forms of the disease. These features make interneuron cell transplantation an attractive new approach for the treatment of intractable epilepsies, as well as other brain disorders that involve increased risk for epilepsy as a comorbidity. Here, we review recent efforts to isolate and transplant cortical interneuron precursors derived from embryonic mouse and human cell sources. We also discuss some of the important challenges that must be addressed before stem-cell-based treatment for human epilepsy is realized.
Collapse
Affiliation(s)
- Robert F Hunt
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, California 92697
| | - Scott C Baraban
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, California 92697
| |
Collapse
|
13
|
Tong LM, Fong H, Huang Y. Stem cell therapy for Alzheimer's disease and related disorders: current status and future perspectives. Exp Mol Med 2015; 47:e151. [PMID: 25766620 PMCID: PMC4351411 DOI: 10.1038/emm.2014.124] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/19/2014] [Indexed: 12/31/2022] Open
Abstract
Underlying cognitive declines in Alzheimer's disease (AD) are the result of neuron and neuronal process losses due to a wide range of factors. To date, all efforts to develop therapies that target specific AD-related pathways have failed in late-stage human trials. As a result, an emerging consensus in the field is that treatment of AD patients with currently available drug candidates might come too late, likely as a result of significant neuronal loss in the brain. In this regard, cell-replacement therapies, such as human embryonic stem cell- or induced pluripotent stem cell-derived neural cells, hold potential for treating AD patients. With the advent of stem cell technologies and the ability to transform these cells into different types of central nervous system neurons and glial cells, some success in stem cell therapy has been reported in animal models of AD. However, many more steps remain before stem cell therapies will be clinically feasible for AD and related disorders in humans. In this review, we will discuss current research advances in AD pathogenesis and stem cell technologies; additionally, the potential challenges and strategies for using cell-based therapies for AD and related disorders will be discussed.
Collapse
Affiliation(s)
- Leslie M Tong
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Helen Fong
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| |
Collapse
|
14
|
Hammad M, Schmidt SL, Zhang X, Bray R, Frohlich F, Ghashghaei HT. Transplantation of GABAergic Interneurons into the Neonatal Primary Visual Cortex Reduces Absence Seizures in Stargazer Mice. Cereb Cortex 2014; 25:2970-9. [PMID: 24812085 DOI: 10.1093/cercor/bhu094] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epilepsies are debilitating neurological disorders characterized by repeated episodes of pathological seizure activity. Absence epilepsy (AE) is a poorly understood type of seizure with an estimated 30% of affected patients failing to respond to antiepileptic drugs. Thus, novel therapies are needed for the treatment of AE. A promising cell-based therapeutic strategy is centered on transplantation of embryonic neural stem cells from the medial ganglionic eminence (MGE), which give rise to gamma-aminobutyric acidergic (GABAergic) interneurons during embyronic development. Here, we used the Stargazer (Stg) mouse model of AE to map affected loci using c-Fos immunohistochemistry, which revealed intense seizure-induce activity in visual and somatosensory cortices. We report that transplantation of MGE cells into the primary visual cortex (V1) of Stg mice significantly reduces AE episodes and lowers mortality. Electrophysiological analysis in acute cortical slices of visual cortex demonstrated that Stg V1 neurons exhibit more pronounced increases in activity in response to a potassium-mediated excitability challenge than wildtypes (WT). The defective network activity in V1 was significantly altered following WT MGE transplantation, associating it with behavioral rescue of seizures in Stgs. Taken together, these findings present MGE grafting in the V1 as a possible clinical approach in the treatment of AE.
Collapse
Affiliation(s)
- Mohamed Hammad
- Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine
| | - Stephen L Schmidt
- UNC Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xuying Zhang
- Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine
| | - Ryan Bray
- Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine
| | - Flavio Frohlich
- UNC Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - H Troy Ghashghaei
- Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine Program in Genetics, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
15
|
Tyson JA, Anderson SA. GABAergic interneuron transplants to study development and treat disease. Trends Neurosci 2014; 37:169-77. [PMID: 24508416 PMCID: PMC4396846 DOI: 10.1016/j.tins.2014.01.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/06/2014] [Accepted: 01/06/2014] [Indexed: 01/06/2023]
Abstract
Advances in stem cell technology have engendered keen interest in cell-based therapies for neurological disorders. Postnatal engraftments of most neuronal precursors result in little cellular migration, a crucial prerequisite for transplants to integrate within the host circuitry. This may occur because most neurons migrate along substrates, such as radial glial processes, that are not abundant in adults. However, cortical GABAergic interneurons migrate tangentially from the subcortical forebrain into the cerebral cortex. Accordingly, transplants of cortical interneuron precursors migrate extensively after engraftment into a variety of CNS tissues, where they can become synaptically connected with host circuitry. We review how this remarkable ability to integrate post-transplant is being applied to the development of cell-based therapies for a variety of CNS disorders.
Collapse
Affiliation(s)
- Jennifer A Tyson
- Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10021, USA; Department of Psychiatry, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Stewart A Anderson
- Department of Psychiatry, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
A modular gain-of-function approach to generate cortical interneuron subtypes from ES cells. Neuron 2014; 80:1145-58. [PMID: 24314726 DOI: 10.1016/j.neuron.2013.09.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2013] [Indexed: 01/18/2023]
Abstract
Whereas past work indicates that cortical interneurons (cINs) can be generically produced from stem cells, generating large numbers of specific subtypes of this population has remained elusive. This reflects an information gap in our understanding of the transcriptional programs required for different interneuron subtypes. Here, we have utilized the directed differentiation of stem cells into specific subpopulations of cortical interneurons as a means to identify some of these missing factors. To establish this approach, we utilized two factors known to be required for the generation of cINs, Nkx2-1 and Dlx2. As predicted, their regulated transient expression greatly improved the differentiation efficiency and specificity over baseline. We extended upon this "cIN-primed" model in order to establish a modular system whereby a third transcription factor could be systematically introduced. Using this approach, we identified Lmo3 and Pou3f4 as genes that can augment the differentiation and/or subtype specificity of cINs in vitro.
Collapse
|