1
|
Radonjić NV, Ayoub AE, Memi F, Yu X, Maroof A, Jakovcevski I, Anderson SA, Rakic P, Zecevic N. Diversity of cortical interneurons in primates: the role of the dorsal proliferative niche. Cell Rep 2014; 9:2139-51. [PMID: 25497090 PMCID: PMC4306459 DOI: 10.1016/j.celrep.2014.11.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/16/2014] [Accepted: 11/17/2014] [Indexed: 11/25/2022] Open
Abstract
Evolutionary elaboration of tissues starts with changes in the genome and location of the stem cells. For example, GABAergic interneurons of the mammalian neocortex are generated in the ventral telencephalon and migrate tangentially to the neocortex, in contrast to the projection neurons originating in the ventricular/subventricular zone (VZ/SVZ) of the dorsal telencephalon. In human and nonhuman primates, evidence suggests that an additional subset of neocortical GABAergic interneurons is generated in the cortical VZ and a proliferative niche, the outer SVZ. The origin, magnitude, and significance of this species-specific difference are not known. We use a battery of assays applicable to the human, monkey, and mouse organotypic cultures and supravital tissue to identify neuronal progenitors in the cortical VZ/SVZ niche that produce a subset of GABAergic interneurons. Our findings suggest that these progenitors constitute an evolutionary novelty contributing to the elaboration of higher cognitive functions in primates.
Collapse
Affiliation(s)
- Nevena V Radonjić
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA; Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia
| | - Albert E Ayoub
- Department of Neurobiology, Yale University School of Medicine and Kavli Institute for Neuroscience, New Haven, CT 06510, USA
| | - Fani Memi
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Xiaojing Yu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Asif Maroof
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Igor Jakovcevski
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA; Experimental Neurophysiology, German Center for Neurodegenerative Diseases, 53175 Bonn, Germany
| | - Stewart A Anderson
- The Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4318, USA
| | - Pasko Rakic
- Department of Neurobiology, Yale University School of Medicine and Kavli Institute for Neuroscience, New Haven, CT 06510, USA
| | - Nada Zecevic
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
2
|
Radonjić NV, Memi F, Ortega JA, Glidden N, Zhan H, Zecevic N. The Role of Sonic Hedgehog in the Specification of Human Cortical Progenitors In Vitro. Cereb Cortex 2014; 26:131-43. [PMID: 25146370 DOI: 10.1093/cercor/bhu183] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Impaired sonic hedgehog (Shh) signaling is involved in the pathology of cortical formation found in neuropsychiatric disorders. However, its role in the specification of human cortical progenitors is not known. Here, we report that Shh is expressed in the human developing cortex at mid-gestation by radial glia cells (RGCs) and cortical neurons. We used RGC cultures, established from the dorsal (cortical) telencephalon of human brain at mid-gestation to study the effect of Shh signaling. Cortical RGCs in vitro maintained their regional characteristics, expressed components of Shh signaling, and differentiated into Nkx2.1, Lhx6, and calretinin-positive (CalR(+)) cells, potential cortical interneuron progenitors. Treatment with exogenous Shh increased the pool of Nkx2.1(+) progenitors, decreased Lhx6 expression, and suppressed the generation of CalR(+) cells. The blockade of endogenous Shh signaling increased the number of CalR(+) cells, but did not affect Nkx2.1 expression, implying the existence of parallel Shh-independent pathways for cortical Nkx2.1 regulation. These results support the idea that, during human brain development, Shh plays an important role in the specification of cortical progenitors. Since direct functional studies in humans are limited, the in vitro system that we established here could be of great interest for modeling the development of human cortical progenitors.
Collapse
Affiliation(s)
- Nevena V Radonjić
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Fani Memi
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Juan Alberto Ortega
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Nicole Glidden
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Haiying Zhan
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Nada Zecevic
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
3
|
Clowry GJ. An enhanced role and expanded developmental origins for gamma-aminobutyric acidergic interneurons in the human cerebral cortex. J Anat 2014; 227:384-93. [PMID: 24839870 DOI: 10.1111/joa.12198] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2014] [Indexed: 12/16/2022] Open
Abstract
Human beings have considerably expanded cognitive abilities compared with all other species and they also have a relatively larger cerebral cortex compared with their body size. But is a bigger brain the only reason for higher cognition or have other features evolved in parallel? Humans have more and different types of GABAergic interneurons, found in different places, than our model species. Studies are beginning to show differences in function. Is this expanded repertoire of functional types matched by an evolution of their developmental origins? Recent studies support the idea that generation of interneurons in the ventral telencephalon may be more complicated in primates, which have evolved a large and complex outer subventricular zone in the ganglionic eminences. In addition, proportionally more interneurons appear to be produced in the caudal ganglionic eminence, the majority of which populate the superficial layers of the cortex. Whether or not the cortical proliferative zones are a source of interneurogenesis, and to what extent and of what significance, is a contentious issue. As there is growing evidence that conditions such as autism, schizophrenia and congenital epilepsy may have developmental origins in the failure of interneuron production and migration, it is important we understand fully the similarities and differences between human development and our animal models.
Collapse
Affiliation(s)
- Gavin J Clowry
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
4
|
Malchenko S, Xie J, de Fatima Bonaldo M, Vanin EF, Bhattacharyya BJ, Belmadani A, Xi G, Galat V, Goossens W, Seftor RE, Tomita T, Crispino J, Miller RJ, Bohn MC, Hendrix MJ, Soares MB. Onset of rosette formation during spontaneous neural differentiation of hESC and hiPSC colonies. Gene 2014; 534:400-7. [DOI: 10.1016/j.gene.2013.07.101] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/26/2013] [Accepted: 07/28/2013] [Indexed: 11/16/2022]
|
5
|
Neural lineage development in the rhesus monkey with embryonic stem cells. Transl Neurosci 2013. [DOI: 10.2478/s13380-013-0135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThere are three controversial and undetermined models of neurogenesis and gliogenesis from neuroepithelial cells in the early neural tube; the first in which neurons and glia were proposed to originate from a single homogenous population, the second from two separate pools of committed glial and neuronal progenitors, or, lastly, from transit radial glial (RG). Issues concerning embryonic neural lineage development in primates are not well understood due to restrictions imposed by ethics and material sources. In this study, early neural lineage development was investigated in vitro with rhesus monkey embryonic stem cells (rESC) by means of immunofluorescence with lineage specific markers. It was revealed that neural differentiation likely progresses in a sequential lineage restriction pathway from neuroepithelial stem/progenitor cells to neurons and glia via RG and intermediate precursors: neuronal precursors and glial progenitors. In conclusion, our results suggest that the early neural lineage development of rESC in vitro supported the model in which neuroepithelial cells develop into RG capable of generating both neurons and glia. This work should facilitate understanding of the mechanism of development of the nervous system in primates.
Collapse
|