1
|
Cheng C, Katoch P, Zhong YP, Higgins CT, Moredock M, Chang MEK, Flory MR, Randell SH, Streeter PR. Identification of a Novel Subset of Human Airway Epithelial Basal Stem Cells. Int J Mol Sci 2024; 25:9863. [PMID: 39337350 PMCID: PMC11432080 DOI: 10.3390/ijms25189863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
The basal cell maintains the airway's respiratory epithelium as the putative resident stem cell. Basal cells are known to self-renew and differentiate into airway ciliated and secretory cells. However, it is not clear if every basal cell functions as a stem cell. To address functional heterogeneity amongst the basal cell population, we developed a novel monoclonal antibody, HLO1-6H5, that identifies a subset of KRT5+ (cytokeratin 5) basal cells. We used HLO1-6H5 and other known basal cell-reactive reagents to isolate viable airway subsets from primary human airway epithelium by Fluorescence Activated Cell Sorting. Isolated primary cell subsets were assessed for the stem cell capabilities of self-renewal and differentiation in the bronchosphere assay, which revealed that bipotent stem cells were, at minimum 3-fold enriched in the HLO1-6H5+ cell subset. Crosslinking-mass spectrometry identified the HLO1-6H5 target as a glycosylated TFRC/CD71 (transferrin receptor) proteoform. The HLO1-6H5 antibody provides a valuable new tool for identifying and isolating a subset of primary human airway basal cells that are substantially enriched for bipotent stem/progenitor cells and reveals TFRC as a defining surface marker for this novel cell subset.
Collapse
Affiliation(s)
- Christopher Cheng
- Oregon Stem Cell Center, Papè Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Parul Katoch
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Yong-Ping Zhong
- Oregon Stem Cell Center, Papè Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Claire T. Higgins
- Oregon Stem Cell Center, Papè Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Maria Moredock
- Oregon Stem Cell Center, Papè Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Matthew E. K. Chang
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Mark R. Flory
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Scott H. Randell
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7248, USA
| | - Philip R. Streeter
- Oregon Stem Cell Center, Papè Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239-3098, USA
| |
Collapse
|
2
|
Feng J, Zhao D, Lv F, Yuan Z. Epigenetic Inheritance From Normal Origin Cells Can Determine the Aggressive Biology of Tumor-Initiating Cells and Tumor Heterogeneity. Cancer Control 2022; 29:10732748221078160. [PMID: 35213254 PMCID: PMC8891845 DOI: 10.1177/10732748221078160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The acquisition of genetic- and epigenetic-abnormalities during transformation has been recognized as the two fundamental factors that lead to tumorigenesis and determine the aggressive biology of tumor cells. However, there is a regularity that tumors derived from less-differentiated normal origin cells (NOCs) usually have a higher risk of vascular involvement, lymphatic and distant metastasis, which can be observed in both lymphohematopoietic malignancies and somatic cancers. Obviously, the hypothesis of genetic- and epigenetic-abnormalities is not sufficient to explain how the linear relationship between the cellular origin and the biological behavior of tumors is formed, because the cell origin of tumor is an independent factor related to tumor biology. In a given system, tumors can originate from multiple cell types, and tumor-initiating cells (TICs) can be mapped to different differentiation hierarchies of normal stem cells, suggesting that the heterogeneity of the origin of TICs is not completely chaotic. TIC’s epigenome includes not only genetic- and epigenetic-abnormalities, but also established epigenetic status of genes inherited from NOCs. In reviewing previous studies, we found much evidence supporting that the status of many tumor-related “epigenetic abnormalities” in TICs is consistent with that of the corresponding NOC of the same differentiation hierarchy, suggesting that they may not be true epigenetic abnormalities. So, we speculate that the established statuses of genes that control NOC’s migration, adhesion and colonization capabilities, cell-cycle quiescence, expression of drug transporters, induction of mesenchymal formation, overexpression of telomerase, and preference for glycolysis can be inherited to TICs through epigenetic memory and be manifested as their aggressive biology. TICs of different origins can maintain different degrees of innate stemness from NOC, which may explain why malignancies with stem cell phenotypes are usually more aggressive.
Collapse
Affiliation(s)
- Jiliang Feng
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Dawei Zhao
- Medical Imaging Department, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Fudong Lv
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Zhongyu Yuan
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| |
Collapse
|
3
|
Ogawa M, Jiang JX, Xia S, Yang D, Ding A, Laselva O, Hernandez M, Cui C, Higuchi Y, Suemizu H, Dorrell C, Grompe M, Bear CE, Ogawa S. Generation of functional ciliated cholangiocytes from human pluripotent stem cells. Nat Commun 2021; 12:6504. [PMID: 34764255 PMCID: PMC8586142 DOI: 10.1038/s41467-021-26764-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
The derivation of mature functional cholangiocytes from human pluripotent stem cells (hPSCs) provides a model for studying the pathogenesis of cholangiopathies and for developing therapies to treat them. Current differentiation protocols are not efficient and give rise to cholangiocytes that are not fully mature, limiting their therapeutic applications. Here, we generate functional hPSC-derived cholangiocytes that display many characteristics of mature bile duct cells including high levels of cystic fibrosis transmembrane conductance regulator (CFTR) and the presence of primary cilia capable of sensing flow. With this level of maturation, these cholangiocytes are amenable for testing the efficacy of cystic fibrosis drugs and for studying the role of cilia in cholangiocyte development and function. Transplantation studies show that the mature cholangiocytes generate ductal structures in the liver of immunocompromised mice indicating that it may be possible to develop cell-based therapies to restore bile duct function in patients with biliary disease.
Collapse
Affiliation(s)
- Mina Ogawa
- grid.231844.80000 0004 0474 0428McEwen Stem Cell Institute, University Health Network, Toronto, ON Canada
| | - Jia-Xin Jiang
- grid.42327.300000 0004 0473 9646Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON Canada
| | - Sunny Xia
- grid.42327.300000 0004 0473 9646Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON Canada
| | - Donghe Yang
- grid.231844.80000 0004 0474 0428McEwen Stem Cell Institute, University Health Network, Toronto, ON Canada
| | - Avrilynn Ding
- grid.231844.80000 0004 0474 0428McEwen Stem Cell Institute, University Health Network, Toronto, ON Canada
| | - Onofrio Laselva
- grid.42327.300000 0004 0473 9646Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON Canada
| | - Marcela Hernandez
- grid.231844.80000 0004 0474 0428McEwen Stem Cell Institute, University Health Network, Toronto, ON Canada
| | - Changyi Cui
- grid.231844.80000 0004 0474 0428McEwen Stem Cell Institute, University Health Network, Toronto, ON Canada
| | - Yuichiro Higuchi
- grid.452212.20000 0004 0376 978XCentral Institute for Experimental Animals, Kawasaki, Kanagawa Japan
| | - Hiroshi Suemizu
- grid.452212.20000 0004 0376 978XCentral Institute for Experimental Animals, Kawasaki, Kanagawa Japan
| | - Craig Dorrell
- grid.5288.70000 0000 9758 5690Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR USA
| | - Markus Grompe
- grid.5288.70000 0000 9758 5690Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR USA
| | - Christine E. Bear
- grid.42327.300000 0004 0473 9646Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Physiology, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Biochemistry, University of Toronto, Toronto, ON Canada
| | - Shinichiro Ogawa
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada. .,Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada. .,Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Cui K, Bian X. The microRNA cluster miR-30b/-30d prevents tumor cell switch from an epithelial to a mesenchymal-like phenotype in GBC. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:716-725. [PMID: 33738326 PMCID: PMC7937539 DOI: 10.1016/j.omtm.2020.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
As a malignancy of the gastrointestinal tract, gallbladder cancer (GBC) continues to exhibit notable rates of mortality. The current study aimed at investigating the effects associated with miR-30b and miR-30d (miR-30b/-30d) patterns in tumor cells undergoing epithelial-to-mesenchymal transition (EMT) in GBC. It identified that miR-30b and miR-30d, composed as a miRNA cluster, exhibited lower levels in the cancerous tissues from 50 patients with GBC relative to the gallbladder tissues from 35 patients with chronic cholecystitis. As expected, elevated expression of miR-30b/-30d was found to inhibit the EMT process, as evidenced by enhanced E-cadherin and reduced N-cadherin and vimentin in human GBC cells treated with miR-30b mimic, miR-30d mimic, and miR-30b/-30d mimic. Semaphorin-6B (SEMA6B) was identified as a target gene of miR-30b/-30d. Silencing of SEMA6B by its specific small interfering RNA (siRNA) mimicked the effect of miR-30b/-30d upregulation on the GBC cell EMT. Consistently, SEMA6B overexpression promoted this phenotypic switch even in the presence of miR-30b/-30d mimic. The tumorigenicity assay data obtained from nude mice also further supported the notion that miR-30b/-30d inhibited EMT of GBC cells. Thus, based on the key findings of the current study, we concluded that the miR-30b/-30d cluster may provide a potential avenue for targeting mesenchymal-like, invasive tumor cells in GBC.
Collapse
Affiliation(s)
- Kang Cui
- Clinical Laboratory, Linyi People's Hospital, Linyi 276003, P.R. China
| | - Xinyan Bian
- Anorectal Branch, Linyi People's Hospital, Linyi 276003, P.R. China
| |
Collapse
|
5
|
Kras G12D upregulates Notch signaling to induce gallbladder tumorigenesis in mice. Oncoscience 2017; 4:131-138. [PMID: 29142904 PMCID: PMC5672897 DOI: 10.18632/oncoscience.368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/17/2017] [Indexed: 11/25/2022] Open
Abstract
Background Kras mutations and increased Notch activation occur frequently in gallbladder cancer. However, their roles in gallbladder carcinogenesis have not been defined. This study was aimed at determining whether expression of mutant Kras was sufficient to induce gallbladder carcinoma and whether Notch deregulation played a role in this context. Methods We determined Cre recombination activity of Pdx1-Cre in the gallbladder using a reporter strain and examined gallbladder tumor development in the KrasLSL- G12D/+;Pdx1-Cre mice. We analyzed expression of Notch pathway genes in the mouse gallbladder by immunohistochemistry, quantitative RT-PCR, and Western blot analysis. We also determined the effect of Jag1 deletion on Kras-induced gallbladder tumor development. Results Pdx1-Cre exhibits robust recombination activity in the gallbladder epithelium. KrasLSL-G12D/+;Pdx1-Cre mice form early onset adenoma in the gallbladder and adjacent biliary tract with complete penetrance, albeit short of invasive adenocarcinoma. KrasG12D upregulates expressions of Notch2, Notch3, Notch4, Jag1 and downstream target genes Hes1, Hey1 and Hey2, and deletion of Jag1 partially suppresses KrasG12D-induced adenoma development. Conclusions KrasG12D induces gallbladder adenoma and Notch plays a key role in Kras-initiated gallbladder tumorigenesis.
Collapse
|
6
|
Galivo F, Benedetti E, Wang Y, Pelz C, Schug J, Kaestner KH, Grompe M. Reprogramming human gallbladder cells into insulin-producing β-like cells. PLoS One 2017; 12:e0181812. [PMID: 28813430 PMCID: PMC5558938 DOI: 10.1371/journal.pone.0181812] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/12/2017] [Indexed: 12/20/2022] Open
Abstract
The gallbladder and cystic duct (GBCs) are parts of the extrahepatic biliary tree and share a common developmental origin with the ventral pancreas. Here, we report on the very first genetic reprogramming of patient-derived human GBCs to β-like cells for potential autologous cell replacement therapy for type 1 diabetes. We developed a robust method for large-scale expansion of human GBCs ex vivo. GBCs were reprogrammed into insulin-producing pancreatic β-like cells by a combined adenoviral-mediated expression of hallmark pancreatic endocrine transcription factors PDX1, MAFA, NEUROG3, and PAX6 and differentiation culture in vitro. The reprogrammed GBCs (rGBCs) strongly induced the production of insulin and pancreatic endocrine genes and these responded to glucose stimulation in vitro. rGBCs also expressed an islet-specific surface marker, which was used to enrich for the most highly reprogrammed cells. More importantly, global mRNA and microRNA expression profiles and protein immunostaining indicated that rGBCs adopted an overall β-like state and these rGBCs engrafted in immunodeficient mice. Furthermore, comparative global expression analyses identified putative regulators of human biliary to β cell fate conversion. In summary, we have developed, for the first time, a reliable and robust genetic reprogramming and culture expansion of primary human GBCs—derived from multiple unrelated donors—into pancreatic β-like cells ex vivo, thus showing that human gallbladder is a potentially rich source of reprogrammable cells for autologous cell therapy in diabetes.
Collapse
Affiliation(s)
- Feorillo Galivo
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail: (FG); (MG)
| | - Eric Benedetti
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Yuhan Wang
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Carl Pelz
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jonathan Schug
- Department of Genetics, School of Medicine and Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Klaus H. Kaestner
- Department of Genetics, School of Medicine and Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Markus Grompe
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail: (FG); (MG)
| |
Collapse
|