1
|
Korn A, Simsek S, Fiet MD, Waas IS, Niessen HW, Krijnen PA. Application of adipose tissue-derived stem cell therapy with a clinically relevant dose does not significantly affect atherosclerotic plaque characteristics in a streptozotocin-induced hyperglycaemia mouse model. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 9:100083. [PMID: 39803590 PMCID: PMC11708420 DOI: 10.1016/j.jmccpl.2024.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 01/16/2025]
Abstract
Aims Diabetes mellitus (DM) induces increased inflammation of atherosclerotic plaques, resulting in elevated plaque instability. Mesenchymal stem cell (MSC) therapy was shown to decrease plaque size and increase stability in non-DM animal models. We now studied the effect of MSC therapy in a streptozotocin-induced hyperglycaemia mouse model using a clinically relevant dose of adipose tissue-derived MSCs (ASCs). Methods Hyperglycaemia was induced in male C57BL/6 ApoE-/- mice (n=24) via intraperitoneal streptozotocin (STZ) injection (0.05 mg/g bodyweight) for 5 consecutive days. 16 weeks after the first STZ injection, the mice received either 100,000 ASCs (n=9) or vehicle (n=14) intravenously. The effects of ASC treatment on the size and stability of aortic root atherosclerotic plaques were determined 4 weeks post-treatment via (immuno)histochemical analyses. Furthermore, plasma monocyte subsets within 3 days pre- and 3 days post-treatment, and 4 weeks post-treatment, were studied. Results ASC treatment did not significantly affect atherosclerotic plaque size or intra-plaque inflammation. Although ASC-treated mice had a higher percentage of intra-plaque fibrosis (42.5±3.3%) compared to vehicle-treated mice (37.6±6.8%, p=0.07), this did not reach significance. Additionally, although differences in the percentages of circulating pro- and anti-inflammatory monocytes were observed after ASC treatment compared to pre-treatment (p=0.005), their levels did not differ significantly at any time point compared to vehicle-treated mice. Conclusions ASC treatment with a clinically relevant dose did not significantly affect atherosclerotic plaque size or intra-plaque inflammation in a hyperglycaemia mouse model. Despite a borderline significant improvement in intraplaque fibrotic content, the potential of ASC treatment on atherosclerotic plaque stability in a diabetic environment remains to be determined.
Collapse
Affiliation(s)
- Amber Korn
- Department of Pathology, Amsterdam University Medical Centres (AUMC), Location VUmc, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Suat Simsek
- Department of Internal Medicine, Northwest Clinics, Alkmaar, the Netherlands
- Department of Internal Medicine, AUMC, Location VUmc, Amsterdam, the Netherlands
| | - Mitchell D. Fiet
- Department of Pathology, Amsterdam University Medical Centres (AUMC), Location VUmc, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | | | - Hans W.M. Niessen
- Department of Pathology, Amsterdam University Medical Centres (AUMC), Location VUmc, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Department of Cardiac Surgery, AUMC, Location VUmc, Amsterdam, the Netherlands
| | - Paul A.J. Krijnen
- Department of Pathology, Amsterdam University Medical Centres (AUMC), Location VUmc, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Navarro-Becerra JA, Borden MA. Targeted Microbubbles for Drug, Gene, and Cell Delivery in Therapy and Immunotherapy. Pharmaceutics 2023; 15:1625. [PMID: 37376072 DOI: 10.3390/pharmaceutics15061625] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Microbubbles are 1-10 μm diameter gas-filled acoustically-active particles, typically stabilized by a phospholipid monolayer shell. Microbubbles can be engineered through bioconjugation of a ligand, drug and/or cell. Since their inception a few decades ago, several targeted microbubble (tMB) formulations have been developed as ultrasound imaging probes and ultrasound-responsive carriers to promote the local delivery and uptake of a wide variety of drugs, genes, and cells in different therapeutic applications. The aim of this review is to summarize the state-of-the-art of current tMB formulations and their ultrasound-targeted delivery applications. We provide an overview of different carriers used to increase drug loading capacity and different targeting strategies that can be used to enhance local delivery, potentiate therapeutic efficacy, and minimize side effects. Additionally, future directions are proposed to improve the tMB performance in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
| | - Mark A Borden
- Mechanical Engineering Department, University of Colorado Boulder, Boulder, CO 80309, USA
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
3
|
Phan TN, Fan CH, Yeh CK. Application of Ultrasound to Enhancing Stem Cells Associated Therapies. Stem Cell Rev Rep 2023:10.1007/s12015-023-10546-w. [PMID: 37119453 DOI: 10.1007/s12015-023-10546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
Pluripotent stem cell therapy exhibits self-renewal capacity and multi-directional differentiation potential and is considered an important regenerative approach for the treatment of several diseases. However, insufficient cell transplantation efficiency, uncontrollable differentiation, low cell viability, and difficult tracing limit its clinical applications and treatment outcome. Ultrasound (US) has mechanical, cavitation, and thermal effects that can produce different biological effects on organs, tissues, and cells. US can be combined with different US-responsive particles for enhanced physical-chemical stimulation and drug delivery. In the meantime, US also can provide a noninvasive and harmless imaging modality for deep tissue in vivo. An in-depth evaluation of the role and mechanism of action of US in stem cell therapy would enhance understanding of US and encourage research in this field. In this article, we comprehensively review progress in the application of US alone and combined with US-responsive particles for the promotion of proliferation, differentiation, migration, and in vivo detection of stem cells and the potential clinical applications.
Collapse
Affiliation(s)
- Thi-Nhan Phan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
4
|
Frljak S, Gozdowska R, Klimczak-Tomaniak D, Kucia M, Kuch M, Jadczyk T, Vrtovec B, Sanz-Ruiz R. Stem Cells in Heart Failure: Future Perspective. CARDIOVASCULAR APPLICATIONS OF STEM CELLS 2023:491-514. [DOI: 10.1007/978-981-99-0722-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Tapeinos C, Gao H, Bauleth-Ramos T, Santos HA. Progress in Stimuli-Responsive Biomaterials for Treating Cardiovascular and Cerebrovascular Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200291. [PMID: 35306751 DOI: 10.1002/smll.202200291] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Cardiovascular and cerebrovascular diseases (CCVDs) describe abnormal vascular system conditions affecting the brain and heart. Among these, ischemic heart disease and ischemic stroke are the leading causes of death worldwide, resulting in 16% and 11% of deaths globally. Although several therapeutic approaches are presented over the years, the continuously increasing mortality rates suggest the need for more advanced strategies for their treatment. One of these strategies lies in the use of stimuli-responsive biomaterials. These "smart" biomaterials can specifically target the diseased tissue, and after "reading" the altered environmental cues, they can respond by altering their physicochemical properties and/or their morphology. In this review, the progress in the field of stimuli-responsive biomaterials for CCVDs in the last five years, aiming at highlighting their potential as early-stage therapeutics in the preclinical scenery, is described.
Collapse
Affiliation(s)
- Christos Tapeinos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Han Gao
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomedical Engineeringand and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Tomás Bauleth-Ramos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomedical Engineeringand and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomedical Engineeringand and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| |
Collapse
|
6
|
Bar-Zion A, Nourmahnad A, Mittelstein DR, Shivaei S, Yoo S, Buss MT, Hurt RC, Malounda D, Abedi MH, Lee-Gosselin A, Swift MB, Maresca D, Shapiro MG. Acoustically triggered mechanotherapy using genetically encoded gas vesicles. NATURE NANOTECHNOLOGY 2021; 16:1403-1412. [PMID: 34580468 DOI: 10.1038/s41565-021-00971-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/03/2021] [Indexed: 05/07/2023]
Abstract
Recent advances in molecular engineering and synthetic biology provide biomolecular and cell-based therapies with a high degree of molecular specificity, but limited spatiotemporal control. Here we show that biomolecules and cells can be engineered to deliver potent mechanical effects at specific locations inside the body through ultrasound-induced inertial cavitation. This capability is enabled by gas vesicles, a unique class of genetically encodable air-filled protein nanostructures. We show that low-frequency ultrasound can convert these biomolecules into micrometre-scale cavitating bubbles, unleashing strong local mechanical effects. This enables engineered gas vesicles to serve as remotely actuated cell-killing and tissue-disrupting agents, and allows genetically engineered cells to lyse, release molecular payloads and produce local mechanical damage on command. We demonstrate the capabilities of biomolecular inertial cavitation in vitro, in cellulo and in vivo, including in a mouse model of tumour-homing probiotic therapy.
Collapse
Affiliation(s)
- Avinoam Bar-Zion
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Atousa Nourmahnad
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David R Mittelstein
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Shirin Shivaei
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sangjin Yoo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Marjorie T Buss
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robert C Hurt
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dina Malounda
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mohamad H Abedi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Audrey Lee-Gosselin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Margaret B Swift
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David Maresca
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
7
|
Song HW, Lee HS, Kim SJ, Kim HY, Choi YH, Kang B, Kim CS, Park JO, Choi E. Sonazoid-Conjugated Natural Killer Cells for Tumor Therapy and Real-Time Visualization by Ultrasound Imaging. Pharmaceutics 2021; 13:pharmaceutics13101689. [PMID: 34683982 PMCID: PMC8537855 DOI: 10.3390/pharmaceutics13101689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Various cell therapy strategies, including chimeric antigen receptor-expressing T or natural killer (NK) cells and cell-mediated drug delivery, have been developed for tumor eradication. However, the efficiency of these strategies against solid tumors remains unclear. We hypothesized that real-time control and visualization of therapeutic cells, such as NK cells, would improve their therapeutic efficacy against solid tumors. In this study, we engineered Sonazoid microbubble-conjugated NK (NK_Sona) cells and demonstrated that they were detectable by ultrasound imaging in real-time and maintained their functions. The Sonazoid microbubbles on the cell membrane did not affect the cytotoxicity and viability of the NK cells in vitro. Additionally, the NK_Sona cells could be visualized by ultrasound imaging and inhibited tumor growth in vivo. Taken together, our findings demonstrate the feasibility of this new approach in the use of therapeutic cells, such as NK cells, against solid tumors.
Collapse
Affiliation(s)
- Hyeong-Woo Song
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
| | - Han-Sol Lee
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Korea
| | - Seok-Jae Kim
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Korea
| | - Ho Yong Kim
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
| | - You Hee Choi
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
| | - Byungjeon Kang
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- College of AI Convergence, Chonnam National University, Gwangju 61186, Korea
| | - Chang-Sei Kim
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Korea
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Korea
- Correspondence: (J.-O.P.); (E.C.)
| | - Eunpyo Choi
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Korea
- Correspondence: (J.-O.P.); (E.C.)
| |
Collapse
|
8
|
Abstract
With the increasing insight into molecular mechanisms of cardiovascular disease, a promising solution involves directly delivering genes, cells, and chemicals to the infarcted myocardium or impaired endothelium. However, the limited delivery efficiency after administration fails to reach the therapeutic dose and the adverse off-target effect even causes serious safety concerns. Controlled drug release via external stimuli seems to be a promising method to overcome the drawbacks of conventional drug delivery systems (DDSs). Microbubbles and magnetic nanoparticles responding to ultrasound and magnetic fields respectively have been developed as an important component of novel DDSs. In particular, several attempts have also been made for the design and fabrication of dual-responsive DDS. This review presents the recent advances in the ultrasound and magnetic fields responsive DDSs in cardiovascular application, followed by their current problems and future reformation.
Collapse
|
9
|
Deprez J, Lajoinie G, Engelen Y, De Smedt SC, Lentacker I. Opening doors with ultrasound and microbubbles: Beating biological barriers to promote drug delivery. Adv Drug Deliv Rev 2021; 172:9-36. [PMID: 33705877 DOI: 10.1016/j.addr.2021.02.015] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
Apart from its clinical use in imaging, ultrasound has been thoroughly investigated as a tool to enhance drug delivery in a wide variety of applications. Therapeutic ultrasound, as such or combined with cavitating nuclei or microbubbles, has been explored to cross or permeabilize different biological barriers. This ability to access otherwise impermeable tissues in the body makes the combination of ultrasound and therapeutics very appealing to enhance drug delivery in situ. This review gives an overview of the most important biological barriers that can be tackled using ultrasound and aims to provide insight on how ultrasound has shown to improve accessibility as well as the biggest hurdles. In addition, we discuss the clinical applicability of therapeutic ultrasound with respect to the main challenges that must be addressed to enable the further progression of therapeutic ultrasound towards an effective, safe and easy-to-use treatment tailored for drug delivery in patients.
Collapse
Affiliation(s)
- J Deprez
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - G Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Y Engelen
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - S C De Smedt
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - I Lentacker
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
10
|
Multiple Intravenous Injections of Valproic Acid-Induced Mesenchymal Stem Cell from Human-Induced Pluripotent Stem Cells Improved Cardiac Function in an Acute Myocardial Infarction Rat Model. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2863501. [PMID: 33381545 PMCID: PMC7759411 DOI: 10.1155/2020/2863501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 11/10/2020] [Accepted: 12/02/2020] [Indexed: 11/22/2022]
Abstract
Mounting evidence indicates that the mesenchymal stem cell (MSC) injection is safe and efficacious for treating cardiomyopathy; however, there is limited information relating to multiple intravenous injections of human-induced pluripotent stem cell-derived mesenchymal stem cell (hiPSC-MSC) and long-term evaluation of the cardiac function. In the current study, MSC-like cells were derived from human-induced pluripotent stem cells through valproic acid (VPA) induction and continuous cell passages. The derived spindle-like cells expressed MSC-related markers, secreted angiogenic and immune-regulatory factors, and could be induced to experience chondrogenic and adipogenic differentiation. During the induction process, expression of epithelial-to-mesenchymal transition- (EMT-) related gene N-cadherin and vimentin was upregulated to a very high level, and the expression of pluripotency-related genes Sox2 and Oct4 was downregulated or remained unchanged, indicating that VPA initiated EMT by upregulating the expression of EMT promoting genes and downregulating that of pluripotency-related genes. Two and four intravenous hiPSC-MSC injections (106 cells/per injections) were provided, respectively, to model rats one week after acute myocardial infarction (AMI). Cardiac function parameters were dynamically monitored during a 12-week period. Two and four cell injections significantly the improved left ventricular ejection fraction and left ventricular fractional shortening; four-injection markedly stimulated angiogenesis reduced the scar size and cell apoptosis number in the scar area in comparison with that of the untreated control model rats. Although the difference was insignificant, the hiPSC-MSC administration delayed the increase of left ventricular end-diastolic dimension to different extents compared with that of the PBS-injection control. No perceptible immune reaction symptom or hiPSC-MSC-induced tumour formation was found over 12 weeks. Compared with the PBS-injection control, four injections produced better outcome than two injections; as a result, at least four rounds of MSC injections were suggested for AMI treatment.
Collapse
|
11
|
Versluis M, Stride E, Lajoinie G, Dollet B, Segers T. Ultrasound Contrast Agent Modeling: A Review. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2117-2144. [PMID: 32546411 DOI: 10.1016/j.ultrasmedbio.2020.04.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 05/21/2023]
Abstract
Ultrasound is extensively used in medical imaging, being safe and inexpensive and operating in real time. Its scope of applications has been widely broadened by the use of ultrasound contrast agents (UCAs) in the form of microscopic bubbles coated by a biocompatible shell. Their increased use has motivated a large amount of research to understand and characterize their physical properties as well as their interaction with the ultrasound field and their surrounding environment. Here we review the theoretical models that have been proposed to study and predict the behavior of UCAs. We begin with a brief introduction on the development of UCAs. We then present the basics of free-gas-bubble dynamics upon which UCA modeling is based. We review extensively the linear and non-linear models for shell elasticity and viscosity and present models for non-spherical and asymmetric bubble oscillations, especially in the presence of surrounding walls or tissue. Then, higher-order effects such as microstreaming, shedding and acoustic radiation forces are considered. We conclude this review with promising directions for the modeling and development of novel agents.
Collapse
Affiliation(s)
- Michel Versluis
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, Technical Medical (TechMed) Center, University of Twente, Enschede, the Netherlands.
| | - Eleanor Stride
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Guillaume Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, Technical Medical (TechMed) Center, University of Twente, Enschede, the Netherlands
| | - Benjamin Dollet
- Centre National de la Recherche Scientifique (CNRS), Laboratoire Interdisciplinaire de Physique (LIPhy), Université Grenoble Alpes, Grenoble, France
| | - Tim Segers
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, Technical Medical (TechMed) Center, University of Twente, Enschede, the Netherlands
| |
Collapse
|
12
|
Han XJ, Li H, Liu CB, Luo ZR, Wang QL, Mou FF, Guo HD. Guanxin Danshen Formulation improved the effect of mesenchymal stem cells transplantation for the treatment of myocardial infarction probably via enhancing the engraftment. Life Sci 2019; 233:116740. [PMID: 31398416 DOI: 10.1016/j.lfs.2019.116740] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
Although intravenous injection is the most convenient and feasible approach for mesenchymal stem cells (MSCs) delivery, the proportion of donor stem cells in the target myocardium after transplantation is small. It is believed that TCM enhances the effect of stem cell therapy by improving the hostile microenvironment and promoting the migration and survival of stem cells. Guanxin Danshen (GXDS) formulation is one of the main prescriptions for clinical treatment of ischemic heart diseases in China. The purpose of this study was to evaluate the effects of GXDS formulation administration combined with MSCs transplantation on cardiac function improvement, apoptosis, angiogenesis and survival of transplanted cells in an acute model of acute myocardial infarction (MI). After being labeled with GFP, MSCs were transplanted via intravenous injection. Meanwhile, GXDS dripping pills were given by intragastric administration for 4 weeks from 2 days before MI. Echocardiography showed moderate improvement in cardiac function after administration of GXDS formulation or intravenous transplantation of MSCs. However, GXDS formulation combined with MSCs transplantation significantly improved cardiac function after MI. The myocardial infarct size in rats treated with MSCs was similar to that in rats treated with GXDS formulation. However, GXDS formulation combined with MSCs transplantation significantly reduced infarction area. In addition, GXDS formulation combined with MSCs transplantation not only decreased cell apoptosis according to the TUNEL staining, but also enhanced angiogenesis in the peri-infarction and infarction area. Interestingly, the use of GXDS formulation increased the number of injected MSCs in the infarct area. Furthermore, GXDS formulation combined with MSCs transplantation increased SDF-1 levels in the infarcted area, but did not affect the expression of YAP. Our study provided a more feasible and accessible strategy to enhance the migration of stem cells after intravenous injection by oral administration of GXDS formulation. The combination of GXDS formulation and stem cell therapy has practical significance and application prospects in the treatment of ischemic cardiomyopathy such as MI.
Collapse
Affiliation(s)
- Xiao-Jing Han
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Han Li
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | | | - Zhi-Rong Luo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qiang-Li Wang
- Department of Histoembryology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fang-Fang Mou
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hai-Dong Guo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
13
|
Chu DT, Nguyen Thi Phuong T, Tien NLB, Tran DK, Minh LB, Thanh VV, Gia Anh P, Pham VH, Thi Nga V. Adipose Tissue Stem Cells for Therapy: An Update on the Progress of Isolation, Culture, Storage, and Clinical Application. J Clin Med 2019; 8:E917. [PMID: 31247996 PMCID: PMC6678927 DOI: 10.3390/jcm8070917] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/10/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue stem cells (ASCs), known as multipotent stem cells, are most commonly used in the clinical applications in recent years. Adipose tissues (AT) have the advantage in the harvesting, isolation, and expansion of ASCs, especially an abundant amount of stem cells compared to bone marrow. ASCs can be found in stromal vascular fractions (SVF) which are easily obtained from the dissociation of adipose tissue. Both SVFs and culture-expanded ASCs exhibit the stem cell characteristics such as differentiation into multiple cell types, regeneration, and immune regulators. Therefore, SVFs and ASCs have been researched to evaluate the safety and benefits for human use. In fact, the number of clinical trials on ASCs is going to increase by years; however, most trials are in phase I and II, and lack phase III and IV. This systemic review highlights and updates the process of the harvesting, characteristics, isolation, culture, storage, and application of ASCs, as well as provides further directions on the therapeutic use of ASCs.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam.
| | - Thuy Nguyen Thi Phuong
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea
| | - Nguyen Le Bao Tien
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam
| | - Dang Khoa Tran
- Department of Anatomy, University of Medicine Pham Ngoc Thach, Ho Chi Minh City 700000, Vietnam
| | - Le Bui Minh
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh St., Ward 13, District 4, Ho Chi Minh City 700000, Vietnam
| | - Vo Van Thanh
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam
- Department of Surgery, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Pham Gia Anh
- Oncology Department, Viet Duc Hospital, Hanoi 100000, Vietnam
| | - Van Huy Pham
- AI Lab, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Vu Thi Nga
- Institute for Research and Development, Duy Tan University, Danang 550000, Vietnam.
| |
Collapse
|
14
|
Biological active matter aggregates: Inspiration for smart colloidal materials. Adv Colloid Interface Sci 2019; 263:38-51. [PMID: 30504078 DOI: 10.1016/j.cis.2018.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/02/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022]
Abstract
Aggregations of social organisms exhibit a remarkable range of properties and functionalities. Multiple examples, such as fire ants or slime mold, show how a population of individuals is able to overcome an existential threat by gathering into a solid-like aggregate with emergent functionality. Surprisingly, these aggregates are driven by simple rules, and their mechanisms show great parallelism among species. At the same time, great effort has been made by the scientific community to develop active colloidal materials, such as microbubbles or Janus particles, which exhibit similar behaviors. However, a direct connection between these two realms is still not evident, and it would greatly benefit future studies. In this review, we first discuss the current understanding of living aggregates, point out the mechanisms in their formation and explore the vast range of emergent properties. Second, we review the current knowledge in aggregated colloidal systems, the methods used to achieve the aggregations and their potential functionalities. Based on this knowledge, we finally identify a set of over-arching principles commonly found in biological aggregations, and further suggest potential future directions for the creation of bio-inspired colloid aggregations.
Collapse
|
15
|
StemBell therapy stabilizes atherosclerotic plaques after myocardial infarction. Cytotherapy 2018; 20:1143-1154. [DOI: 10.1016/j.jcyt.2018.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 01/10/2023]
|
16
|
Affiliation(s)
- Chaopin Yang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yue Li
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meng Du
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Abstract
During the past decades, stem cell-based therapy has acquired a promising role in regenerative medicine. The application of novel cell therapeutics for the treatment of cardiovascular diseases could potentially achieve the ambitious aim of effective cardiac regeneration. Despite the highly positive results from preclinical studies, data from phase I/II clinical trials are inconsistent and the improvement of cardiac remodeling and heart performance was found to be quite limited. The major issues which cardiac stem cell therapy is facing include inefficient cell delivery to the site of injury, accompanied by low cell retention and weak effectiveness of remaining stem cells in tissue regeneration. According to preclinical and clinical studies, various stem cells (adult stem cells, embryonic stem cells, and induced pluripotent stem cells) represent the most promising cell types so far. Beside the selection of the appropriate cell type, researchers have developed several strategies to produce “second-generation” stem cell products with improved regenerative capacity. Genetic and nongenetic modifications, chemical and physical preconditioning, and the application of biomaterials were found to significantly enhance the regenerative capacity of transplanted stem cells. In this review, we will give an overview of the recent developments in stem cell engineering with the goal to facilitate stem cell delivery and to promote their cardiac regenerative activity.
Collapse
|
18
|
Izadifar Z, Babyn P, Chapman D. Mechanical and Biological Effects of Ultrasound: A Review of Present Knowledge. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1085-1104. [PMID: 28342566 DOI: 10.1016/j.ultrasmedbio.2017.01.023] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 05/12/2023]
Abstract
Ultrasound is widely used for medical diagnosis and increasingly for therapeutic purposes. An understanding of the bio-effects of sonography is important for clinicians and scientists working in the field because permanent damage to biological tissues can occur at high levels of exposure. Here the underlying principles of thermal mechanisms and the physical interactions of ultrasound with biological tissues are reviewed. Adverse health effects derived from cellular studies, animal studies and clinical reports are reviewed to provide insight into the in vitro and in vivo bio-effects of ultrasound.
Collapse
Affiliation(s)
- Zahra Izadifar
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Paul Babyn
- Department of Medical Imaging, Royal University Hospital, University of Saskatchewan and Saskatoon Health Region, Saskatoon, Saskatchewan, Canada
| | - Dean Chapman
- Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
19
|
Jamaiyar A, Wan W, Ohanyan V, Enrick M, Janota D, Cumpston D, Song H, Stevanov K, Kolz CL, Hakobyan T, Dong F, Newby BMZ, Chilian WM, Yin L. Alignment of inducible vascular progenitor cells on a micro-bundle scaffold improves cardiac repair following myocardial infarction. Basic Res Cardiol 2017; 112:41. [PMID: 28540527 DOI: 10.1007/s00395-017-0631-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/18/2017] [Indexed: 12/26/2022]
Abstract
Ischemic heart disease is still the leading cause of death even with the advancement of pharmaceutical therapies and surgical procedures. Early vascularization in the ischemic heart is critical for a better outcome. Although stem cell therapy has great potential for cardiovascular regeneration, the ideal cell type and delivery method of cells have not been resolved. We tested a new approach of stem cell therapy by delivery of induced vascular progenitor cells (iVPCs) grown on polymer micro-bundle scaffolds in a rat model of myocardial infarction. iVPCs partially reprogrammed from vascular endothelial cells (ECs) had potent angiogenic potential and were able to simultaneously differentiate into vascular smooth muscle cells (SMCs) and ECs in 2D culture. Under hypoxic conditions, iVPCs also secreted angiogenic cytokines such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) as measured by enzyme-linked immunosorbent assay (ELISA). A longitudinal micro-scaffold made from poly(lactic-co-glycolic acid) was sufficient for the growth and delivery of iVPCs. Co-cultured ECs and SMCs aligned well on the micro-bundle scaffold similarly as in the vessels. 3D cell/polymer micro-bundles formed by iVPCs and micro-scaffolds were transplanted into the ischemic myocardium in a rat model of myocardial infarction (MI) with ligation of the left anterior descending artery. Our in vivo data showed that iVPCs on the micro-bundle scaffold had higher survival, and better retention and engraftment in the myocardium than free iVPCs. iVPCs on the micro-bundles promoted better cardiomyocyte survival than free iVPCs. Moreover, iVPCs and iVPC/polymer micro-bundles treatment improved cardiac function (ejection fraction and fractional shortening, endocardial systolic volume) measured by echocardiography, increased vessel density, and decreased infarction size [endocardial and epicardial infarct (scar) length] better than untreated controls at 8 weeks after MI. We conclude that iVPCs grown on a polymer micro-bundle scaffold are new promising approach for cell-based therapy designed for cardiovascular regeneration in ischemic heart disease.
Collapse
Affiliation(s)
- Anurag Jamaiyar
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Weiguo Wan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Molly Enrick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Danielle Janota
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Devan Cumpston
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Hokyung Song
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Kelly Stevanov
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Christopher L Kolz
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Tatev Hakobyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Bi-Min Zhang Newby
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, USA
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA.
| |
Collapse
|
20
|
Emmens RW, Oedayrajsingh-Varma M, Woudstra L, Kamp O, Meinster E, van Dijk A, Helder MN, Wouters D, Zeerleder S, van Ham SM, de Jong N, Niessen HW, Juffermans LJ, Krijnen PA. A comparison in therapeutic efficacy of several time points of intravenous StemBell administration in a rat model of acute myocardial infarction. Cytotherapy 2017; 19:131-140. [DOI: 10.1016/j.jcyt.2016.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/07/2016] [Accepted: 10/12/2016] [Indexed: 12/21/2022]
|