1
|
Giustini A, Maiocchi A, Serangeli I, Pedrini M, Quintiliani A, Sabato V, Bonato F, Seneci P, Lupo G, Passarella D, Miranda E. An Inducible Neural Stem Progenitor Cell Model for Testing Therapeutic Interventions Against Neurodegeneration FENIB. Drug Dev Res 2025; 86:e70041. [PMID: 39749681 PMCID: PMC11696822 DOI: 10.1002/ddr.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/04/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025]
Abstract
Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a neurodegenerative pathology caused by accumulation of mutant neuroserpin (NS) polymers inside the endoplasmic reticulum (ER) of neurons, leading to cellular toxicity and neuronal death. To date, there is no cure for FENIB, and only palliative care is available for FENIB patients, underlining the urgency to develop therapeutic strategies. The purpose of this work was to create a cellular system designed for testing small molecules able to reduce the formation of NS polymers. Our results show the generation and characterisation of a novel cell culture model for FENIB based on neural stem progenitor cells (NPCs) with inducible expression of either wild type (WT) or G392E NS, a variant that causes severe FENIB. We also report the use of these novel cell lines to explore the effects of four different proteolysis targeting chimaera (PROTAC) compounds, small bivalent molecules engineered to bind to the E3 ubiquitin ligase cereblon, and to NS through a recruiting motif based on the small molecule embelin. This approach aims to enhance the degradation of mutant NS after retro-translocation to the cytosol by facilitating its targeting to the proteasome. Our results show little toxicity and no variation in NS levels with any of the compounds tested. In conclusion, this work sets the basis for future attempts to identify molecules able to prevent NS accumulation inside the ER of cultured cells.
Collapse
Affiliation(s)
- Alessandro Giustini
- Department of Biology and Biotechnologies ‘Charles Darwin’Sapienza University of RomeRomeItaly
| | | | - Ilaria Serangeli
- Department of Biology and Biotechnologies ‘Charles Darwin’Sapienza University of RomeRomeItaly
- Present address:
Veneto Institute of Molecular MedicinePadovaItaly
| | | | - Anna Quintiliani
- Department of Biology and Biotechnologies ‘Charles Darwin’Sapienza University of RomeRomeItaly
| | - Valentina Sabato
- Department of Biology and Biotechnologies ‘Charles Darwin’Sapienza University of RomeRomeItaly
| | | | | | - Giuseppe Lupo
- Department of Biology and Biotechnologies ‘Charles Darwin’Sapienza University of RomeRomeItaly
| | | | - Elena Miranda
- Department of Biology and Biotechnologies ‘Charles Darwin’Sapienza University of RomeRomeItaly
| |
Collapse
|
2
|
Mautone L, Cordella F, Soloperto A, Ghirga S, Di Gennaro G, Gigante Y, Di Angelantonio S. Understanding retinal tau pathology through functional 2D and 3D iPSC-derived in vitro retinal models. Acta Neuropathol Commun 2025; 13:19. [PMID: 39881365 PMCID: PMC11780910 DOI: 10.1186/s40478-024-01920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/21/2024] [Indexed: 01/31/2025] Open
Abstract
The generation of retinal models from human induced pluripotent stem cells holds significant potential for advancing our understanding of retinal development, neurodegeneration, and the in vitro modeling of neurodegenerative disorders. The retina, as an accessible part of the central nervous system, offers a unique window into these processes, making it invaluable for both study and early diagnosis. This study investigates the impact of the Frontotemporal Dementia-linked IVS 10 + 16 MAPT mutation on retinal development and function using 2D and 3D retinal models derived from human induced pluripotent stem cells. Our findings reveal that the MAPT mutation leads to delayed retinal cell differentiation and maturation, with tau-mutant disease models exhibiting sustained higher expression of retinal progenitor cell markers and a reduced presence of post-mitotic neurons. Both 2D and 3D tau-mutant retinal models demonstrated an imbalance in tau isoforms, favoring 4R tau, along with increased tau phosphorylation, altered neurite morphology, and impaired cytoskeletal maturation. These changes are associated with impaired synaptic development, reduced neuronal connectivity, and enhanced cellular stress responses, including the increased formation of stress granules, markers of apoptosis and autophagy, and the presence of intracellular toxic tau aggregates. This study highlights the value of retinal models derived from human induced pluripotent stem cells in exploring the mechanisms underlying retinal pathology associated with tau mutations. These models offer essential insights into the development of therapeutic strategies for neurodegenerative diseases characterized by tau aggregation.
Collapse
Affiliation(s)
- Lorenza Mautone
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - Federica Cordella
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - Alessandro Soloperto
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - Silvia Ghirga
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161, Rome, Italy
- D-Tails Srl BC, 00165, Rome, Italy
| | - Giorgia Di Gennaro
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy
| | - Ylenia Gigante
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161, Rome, Italy
- D-Tails Srl BC, 00165, Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy.
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161, Rome, Italy.
- D-Tails Srl BC, 00165, Rome, Italy.
| |
Collapse
|
3
|
Silvestri B, Mochi M, Mawrie D, de Turris V, Colantoni A, Borhy B, Medici M, Anderson EN, Garone MG, Zammerilla CP, Simula M, Ballarino M, Pandey UB, Rosa A. HuD impairs neuromuscular junctions and induces apoptosis in human iPSC and Drosophila ALS models. Nat Commun 2024; 15:9618. [PMID: 39511225 PMCID: PMC11544248 DOI: 10.1038/s41467-024-54004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/25/2024] [Indexed: 11/15/2024] Open
Abstract
Defects at the neuromuscular junction (NMJ) are among the earliest hallmarks of amyotrophic lateral sclerosis (ALS). According to the "dying-back" hypothesis, NMJ disruption not only precedes but also triggers the subsequent degeneration of motoneurons in both sporadic (sALS) and familial (fALS) ALS. Using human induced pluripotent stem cells (iPSCs), we show that the RNA-binding protein HuD (ELAVL4) contributes to NMJ defects and apoptosis in FUS-ALS. HuD overexpression mimics the severe FUSP525L mutation, while its knockdown rescues the FUSP525L phenotypes. In Drosophila, neuronal overexpression of the HuD ortholog, elav, induces motor dysfunction, and its knockdown improves motor function in a FUS-ALS model. Finally, we report increased HuD levels upon oxidative stress in human motoneurons and in sALS patients with an oxidative stress signature. Based on these findings, we propose that HuD plays a role downstream of FUS mutations in fALS and in sALS related to oxidative stress.
Collapse
Affiliation(s)
- Beatrice Silvestri
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michela Mochi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Darilang Mawrie
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Valeria de Turris
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Alessio Colantoni
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Beatrice Borhy
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Margherita Medici
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Eric Nathaniel Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Maria Giovanna Garone
- Stem Cell Medicine Department, Murdoch Children's Research Institute, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW Melbourne, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Christopher Patrick Zammerilla
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Marco Simula
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Monica Ballarino
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Alessandro Rosa
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy.
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy.
| |
Collapse
|
4
|
Sneha NP, Dharshini SAP, Taguchi YH, Gromiha MM. Tracing ALS Degeneration: Insights from Spinal Cord and Cortex Transcriptomes. Genes (Basel) 2024; 15:1431. [PMID: 39596631 PMCID: PMC11593627 DOI: 10.3390/genes15111431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Amyotrophic Lateral Sclerosis is a progressive neurodegenerative disorder characterized by the loss of upper and lower motor neurons. Key factors contributing to neuronal death include mitochondrial energy damage, oxidative stress, and excitotoxicity. The frontal cortex is crucial for action initiation, planning, and voluntary movements whereas the spinal cord facilitates communication with the brain, walking, and reflexes. By investigating transcriptome data from the frontal cortex and spinal cord, we aim to elucidate common pathological mechanisms and pathways involved in ALS for understanding the disease progression and identifying potential therapeutic targets. METHODS In this study, we quantified gene and transcript expression patterns, predicted variants, and assessed their functional effects using computational tools. It also includes predicting variant-associated regulatory effects, constructing functional interaction networks, and performing a gene enrichment analysis. RESULTS We found novel genes for the upregulation of immune response, and the downregulation of metabolic-related and defective degradation processes in both the spinal cord and frontal cortex. Additionally, we observed the dysregulation of histone regulation and blood pressure-related genes specifically in the frontal cortex. CONCLUSIONS These results highlight the distinct and shared molecular disruptions in ALS, emphasizing the critical roles of immune response and metabolic dysfunction in neuronal degeneration. Targeting these pathways may provide new therapeutic avenues to combat neurodegeneration and preserve neuronal health.
Collapse
Affiliation(s)
- Nela Pragathi Sneha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India; (N.P.S.); (S.A.P.D.)
| | - S. Akila Parvathy Dharshini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India; (N.P.S.); (S.A.P.D.)
| | - Y.-h. Taguchi
- Department of Physics, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan;
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India; (N.P.S.); (S.A.P.D.)
| |
Collapse
|
5
|
Silvestri B, Mochi M, Mawrie D, de Turris V, Colantoni A, Borhy B, Medici M, Anderson EN, Garone MG, Zammerilla CP, Pandey UB, Rosa A. HuD (ELAVL4) gain-of-function impairs neuromuscular junctions and induces apoptosis in in vitro and in vivo models of amyotrophic lateral sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.22.554258. [PMID: 38464028 PMCID: PMC10925158 DOI: 10.1101/2023.08.22.554258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Early defects at the neuromuscular junction (NMJ) are among the first hallmarks of the progressive neurodegenerative disease amyotrophic lateral sclerosis (ALS). According to the "dying back" hypothesis, disruption of the NMJ not only precedes, but is also a trigger for the subsequent degeneration of the motoneuron in both sporadic and familial ALS, including ALS caused by the severe FUS pathogenic variant P525L. However, the mechanisms linking genetic and environmental factors to NMJ defects remain elusive. By taking advantage of co-cultures of motoneurons and skeletal muscle derived from human induced pluripotent stem cells (iPSCs), we show that the neural RNA binding protein HuD (ELAVL4) may underlie NMJ defects and apoptosis in FUS-ALS. HuD overexpression in motoneurons phenocopies the severe FUSP525L mutation, while HuD knockdown in FUSP525L co-cultures produces phenotypic rescue. We validated these findings in vivo in a Drosophila FUS-ALS model. Neuronal-restricted overexpression of the HuD-related gene, elav, produces per se a motor phenotype, while neuronal-restricted elav knockdown significantly rescues motor dysfunction caused by FUS. Finally, we show that HuD levels increase upon oxidative stress in human motoneurons and in sporadic ALS patients with an oxidative stress signature. On these bases, we propose HuD as an important player downstream of FUS mutation in familial ALS, with potential implications for sporadic ALS related to oxidative stress.
Collapse
Affiliation(s)
- Beatrice Silvestri
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
- Center for Life Nano-& Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Michela Mochi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Darilang Mawrie
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, PA, USA
| | - Valeria de Turris
- Center for Life Nano-& Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Alessio Colantoni
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
- Center for Life Nano-& Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Beatrice Borhy
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Margherita Medici
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Eric Nathaniel Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, PA, USA
| | - Maria Giovanna Garone
- Department of Stem Cell Biology, Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Melbourne, Victoria, Australia
| | | | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, PA, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA USA
| | - Alessandro Rosa
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
- Center for Life Nano-& Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| |
Collapse
|
6
|
Kishimoto T, Nishimura K, Morishita K, Fukuda A, Miyamae Y, Kumagai Y, Sumaru K, Nakanishi M, Hisatake K, Sano M. An engineered ligand-responsive Csy4 endoribonuclease controls transgene expression from Sendai virus vectors. J Biol Eng 2024; 18:9. [PMID: 38229076 DOI: 10.1186/s13036-024-00404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Viral vectors are attractive gene delivery vehicles because of their broad tropism, high transduction efficiency, and durable expression. With no risk of integration into the host genome, the vectors developed from RNA viruses such as Sendai virus (SeV) are especially promising. However, RNA-based vectors have limited applicability because they lack a convenient method to control transgene expression by an external inducer. RESULTS We engineered a Csy4 switch in Sendai virus-based vectors by combining Csy4 endoribonuclease with mutant FKBP12 (DD: destabilizing domain) that becomes stabilized when a small chemical Shield1 is supplied. In this Shield1-responsive Csy4 (SrC) switch, Shield1 increases Csy4 fused with DD (DD-Csy4), which then cleaves and downregulates the transgene mRNA containing the Csy4 recognition sequence (Csy4RS). Moreover, when Csy4RS is inserted in the viral L gene, the SrC switch suppresses replication and transcription of the SeV vector in infected cells in a Shield1-dependent manner, thus enabling complete elimination of the vector from the cells. By temporally controlling BRN4 expression, a BRN4-expressing SeV vector equipped with the SrC switch achieves efficient, stepwise differentiation of embryonic stem cells into neural stem cells, and then into astrocytes. CONCLUSION SeV-based vectors with the SrC switch should find wide applications in stem cell research, regenerative medicine, and gene therapy, especially when precise control of reprogramming factor expression is desirable.
Collapse
Grants
- JP19H03203, JP19K22945, JP19K07343, JP21H02678, JP19K06501 Japan Society for the Promotion of Science
- JP19H03203, JP19K22945, JP19K07343, JP21H02678, JP19K06501 Japan Society for the Promotion of Science
- JP19H03203, JP19K22945, JP19K07343, JP21H02678, JP19K06501 Japan Society for the Promotion of Science
- JP19H03203, JP19K22945, JP19K07343, JP21H02678, JP19K06501 Japan Society for the Promotion of Science
Collapse
Affiliation(s)
- Takumi Kishimoto
- Laboratory of Gene Regulation, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Kana Morishita
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Aya Fukuda
- Laboratory of Gene Regulation, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yusaku Miyamae
- Institute of Life and Environment Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yutaro Kumagai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kimio Sumaru
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Mahito Nakanishi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- TOKIWA-Bio, Inc, 2-1-6 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Koji Hisatake
- Laboratory of Gene Regulation, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masayuki Sano
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
7
|
Rashid MI, Ito T, Miya F, Shimojo D, Arimoto K, Onodera K, Okada R, Nagashima T, Yamamoto K, Khatun Z, Shimul RI, Niwa JI, Katsuno M, Sobue G, Okano H, Sakurai H, Shimizu K, Doyu M, Okada Y. Simple and efficient differentiation of human iPSCs into contractible skeletal muscles for muscular disease modeling. Sci Rep 2023; 13:8146. [PMID: 37231024 DOI: 10.1038/s41598-023-34445-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/30/2023] [Indexed: 05/27/2023] Open
Abstract
Pathophysiological analysis and drug discovery targeting human diseases require disease models that suitably recapitulate patient pathology. Disease-specific human induced pluripotent stem cells (hiPSCs) differentiated into affected cell types can potentially recapitulate disease pathology more accurately than existing disease models. Such successful modeling of muscular diseases requires efficient differentiation of hiPSCs into skeletal muscles. hiPSCs transduced with doxycycline-inducible MYOD1 (MYOD1-hiPSCs) have been widely used; however, they require time- and labor-consuming clonal selection, and clonal variations must be overcome. Moreover, their functionality should be carefully examined. Here, we demonstrated that bulk MYOD1-hiPSCs established with puromycin selection rather than G418 selection showed rapid and highly efficient differentiation. Interestingly, bulk MYOD1-hiPSCs exhibited average differentiation properties of clonally established MYOD1-hiPSCs, suggesting that it is possible to minimize clonal variations. Moreover, disease-specific hiPSCs of spinal bulbar muscular atrophy (SBMA) could be efficiently differentiated via this method into skeletal muscle that showed disease phenotypes, suggesting the applicability of this method for disease analysis. Finally, three-dimensional muscle tissues were fabricated from bulk MYOD1-hiPSCs, which exhibited contractile force upon electrical stimulation, indicating their functionality. Thus, our bulk differentiation requires less time and labor than existing methods, efficiently generates contractible skeletal muscles, and may facilitate the generation of muscular disease models.
Collapse
Affiliation(s)
- Muhammad Irfanur Rashid
- Department of Neural iPSC Research, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Takuji Ito
- Department of Neural iPSC Research, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Fuyuki Miya
- Center for Medical Genetics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Daisuke Shimojo
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kanae Arimoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Kazunari Onodera
- Department of Neural iPSC Research, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, 466-8650, Japan
| | - Rina Okada
- Department of Neural iPSC Research, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Takunori Nagashima
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Kazuki Yamamoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Zohora Khatun
- Department of Neural iPSC Research, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Rayhanul Islam Shimul
- Department of Neural iPSC Research, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Jun-Ichi Niwa
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, 466-8650, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, 466-8650, Japan
| | - Gen Sobue
- Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kazunori Shimizu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Manabu Doyu
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yohei Okada
- Department of Neural iPSC Research, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| |
Collapse
|
8
|
Morera C, Kim J, Paredes-Redondo A, Nobles M, Rybin D, Moccia R, Kowala A, Meng J, Garren S, Liu P, Morgan JE, Muntoni F, Christoforou N, Owens J, Tinker A, Lin YY. CRISPR-mediated correction of skeletal muscle Ca 2+ handling in a novel DMD patient-derived pluripotent stem cell model. Neuromuscul Disord 2022; 32:908-922. [PMID: 36418198 DOI: 10.1016/j.nmd.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
Abstract
Mutations in the dystrophin gene cause the most common and currently incurable Duchenne muscular dystrophy (DMD) characterized by progressive muscle wasting. Although abnormal Ca2+ handling is a pathological feature of DMD, mechanisms underlying defective Ca2+ homeostasis remain unclear. Here we generate a novel DMD patient-derived pluripotent stem cell (PSC) model of skeletal muscle with an isogenic control using clustered regularly interspaced short palindromic repeat (CRISPR)-mediated precise gene correction. Transcriptome analysis identifies dysregulated gene sets in the absence of dystrophin, including genes involved in Ca2+ handling, excitation-contraction coupling and muscle contraction. Specifically, analysis of intracellular Ca2+ transients and mathematical modeling of Ca2+ dynamics reveal significantly reduced cytosolic Ca2+ clearance rates in DMD-PSC derived myotubes. Pharmacological assays demonstrate Ca2+ flux in myotubes is determined by both intracellular and extracellular sources. DMD-PSC derived myotubes display significantly reduced velocity of contractility. Compared with a non-isogenic wildtype PSC line, these pathophysiological defects could be rescued by CRISPR-mediated precise gene correction. Our study provides new insights into abnormal Ca2+ homeostasis in DMD and suggests that Ca2+ signaling pathways amenable to pharmacological modulation are potential therapeutic targets. Importantly, we have established a human physiology-relevant in vitro model enabling rapid pre-clinical testing of potential therapies for DMD.
Collapse
Affiliation(s)
- Cristina Morera
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom; Stem Cell Laboratory, National Bowel Research Centre, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 2 Newark Street, London E1 2AT, United Kingdom
| | - Jihee Kim
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom; Stem Cell Laboratory, National Bowel Research Centre, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 2 Newark Street, London E1 2AT, United Kingdom
| | - Amaia Paredes-Redondo
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom; Stem Cell Laboratory, National Bowel Research Centre, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 2 Newark Street, London E1 2AT, United Kingdom; Centre for Predictive in vitro Model, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Muriel Nobles
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Denis Rybin
- Rare Disease Research Unit, Pfizer, 610 Main Street, Cambridge, MA 02139, USA
| | - Robert Moccia
- Rare Disease Research Unit, Pfizer, 610 Main Street, Cambridge, MA 02139, USA
| | - Anna Kowala
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom; Stem Cell Laboratory, National Bowel Research Centre, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 2 Newark Street, London E1 2AT, United Kingdom; Centre for Predictive in vitro Model, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Jinhong Meng
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Seth Garren
- Rare Disease Research Unit, Pfizer, 610 Main Street, Cambridge, MA 02139, USA
| | - Pentao Liu
- School of Biomedical Sciences, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Jennifer E Morgan
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom; NIHR Biomedical Research Centre at Great Ormond Street Hospital, Great Ormond Street, London, United Kingdom
| | - Francesco Muntoni
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom; NIHR Biomedical Research Centre at Great Ormond Street Hospital, Great Ormond Street, London, United Kingdom
| | | | - Jane Owens
- Rare Disease Research Unit, Pfizer, 610 Main Street, Cambridge, MA 02139, USA
| | - Andrew Tinker
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Yung-Yao Lin
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom; Stem Cell Laboratory, National Bowel Research Centre, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 2 Newark Street, London E1 2AT, United Kingdom; Centre for Predictive in vitro Model, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.
| |
Collapse
|
9
|
Iberite F, Gruppioni E, Ricotti L. Skeletal muscle differentiation of human iPSCs meets bioengineering strategies: perspectives and challenges. NPJ Regen Med 2022; 7:23. [PMID: 35393412 PMCID: PMC8991236 DOI: 10.1038/s41536-022-00216-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 03/01/2022] [Indexed: 12/31/2022] Open
Abstract
Although skeletal muscle repairs itself following small injuries, genetic diseases or severe damages may hamper its ability to do so. Induced pluripotent stem cells (iPSCs) can generate myogenic progenitors, but their use in combination with bioengineering strategies to modulate their phenotype has not been sufficiently investigated. This review highlights the potential of this combination aimed at pushing the boundaries of skeletal muscle tissue engineering. First, the overall organization and the key steps in the myogenic process occurring in vivo are described. Second, transgenic and non-transgenic approaches for the myogenic induction of human iPSCs are compared. Third, technologies to provide cells with biophysical stimuli, biomaterial cues, and biofabrication strategies are discussed in terms of recreating a biomimetic environment and thus helping to engineer a myogenic phenotype. The embryonic development process and the pro-myogenic role of the muscle-resident cell populations in co-cultures are also described, highlighting the possible clinical applications of iPSCs in the skeletal muscle tissue engineering field.
Collapse
Affiliation(s)
- Federica Iberite
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127, Pisa (PI), Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127, Pisa (PI), Italy.
| | - Emanuele Gruppioni
- Centro Protesi INAIL, Istituto Nazionale per l'Assicurazione contro gli Infortuni sul Lavoro, 40054, Vigorso di Budrio (BO), Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127, Pisa (PI), Italy.,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127, Pisa (PI), Italy
| |
Collapse
|
10
|
Badu-Mensah A, Guo X, Hickman JJ. ALS Skeletal Muscle: Victim or Culprit. THE NEUROSCIENCE CHRONICLES 2022; 2:31-33. [PMID: 35098252 PMCID: PMC8793963 DOI: 10.46439/neuroscience.2.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Agnes Badu-Mensah
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, Florida, USA.,Hickman Hybrid Systems Laboratory NanoScience Technology Center University of Central Florida Orlando, Florida, USA
| | - Xiufang Guo
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, Florida, USA.,Hickman Hybrid Systems Laboratory NanoScience Technology Center University of Central Florida Orlando, Florida, USA
| | - James J Hickman
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, Florida, USA.,Hickman Hybrid Systems Laboratory NanoScience Technology Center University of Central Florida Orlando, Florida, USA
| |
Collapse
|
11
|
Jalal S, Dastidar S, Tedesco FS. Advanced models of human skeletal muscle differentiation, development and disease: Three-dimensional cultures, organoids and beyond. Curr Opin Cell Biol 2021; 73:92-104. [PMID: 34384976 PMCID: PMC8692266 DOI: 10.1016/j.ceb.2021.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 02/08/2023]
Abstract
Advanced in vitro models of human skeletal muscle tissue are increasingly needed to model complex developmental dynamics and disease mechanisms not recapitulated in animal models or in conventional monolayer cell cultures. There has been impressive progress towards creating such models by using tissue engineering approaches to recapitulate a range of physical and biochemical components of native human skeletal muscle tissue. In this review, we discuss recent studies focussed on developing complex in vitro models of human skeletal muscle beyond monolayer cell cultures, involving skeletal myogenic differentiation from human primary myoblasts or pluripotent stem cells, often in the presence of structural scaffolding support. We conclude with our outlook on the future of advanced skeletal muscle three-dimensional cultures (e.g. organoids and biofabrication) to produce physiologically and clinically relevant platforms for disease modelling and therapy development in musculoskeletal and neuromuscular disorders.
Collapse
Affiliation(s)
- Salma Jalal
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, United Kingdom
| | - Sumitava Dastidar
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, United Kingdom
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, United Kingdom; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom; Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom; Department of Paediatric Neurology, Great Ormond Street Hospital for Children, WC1N 3JH London, United Kingdom.
| |
Collapse
|
12
|
Fralish Z, Lotz EM, Chavez T, Khodabukus A, Bursac N. Neuromuscular Development and Disease: Learning From in vitro and in vivo Models. Front Cell Dev Biol 2021; 9:764732. [PMID: 34778273 PMCID: PMC8579029 DOI: 10.3389/fcell.2021.764732] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
The neuromuscular junction (NMJ) is a specialized cholinergic synaptic interface between a motor neuron and a skeletal muscle fiber that translates presynaptic electrical impulses into motor function. NMJ formation and maintenance require tightly regulated signaling and cellular communication among motor neurons, myogenic cells, and Schwann cells. Neuromuscular diseases (NMDs) can result in loss of NMJ function and motor input leading to paralysis or even death. Although small animal models have been instrumental in advancing our understanding of the NMJ structure and function, the complexities of studying this multi-tissue system in vivo and poor clinical outcomes of candidate therapies developed in small animal models has driven the need for in vitro models of functional human NMJ to complement animal studies. In this review, we discuss prevailing models of NMDs and highlight the current progress and ongoing challenges in developing human iPSC-derived (hiPSC) 3D cell culture models of functional NMJs. We first review in vivo development of motor neurons, skeletal muscle, Schwann cells, and the NMJ alongside current methods for directing the differentiation of relevant cell types from hiPSCs. We further compare the efficacy of modeling NMDs in animals and human cell culture systems in the context of five NMDs: amyotrophic lateral sclerosis, myasthenia gravis, Duchenne muscular dystrophy, myotonic dystrophy, and Pompe disease. Finally, we discuss further work necessary for hiPSC-derived NMJ models to function as effective personalized NMD platforms.
Collapse
Affiliation(s)
| | | | | | | | - Nenad Bursac
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
13
|
Tiago T, Hummel B, Morelli FF, Basile V, Vinet J, Galli V, Mediani L, Antoniani F, Pomella S, Cassandri M, Garone MG, Silvestri B, Cimino M, Cenacchi G, Costa R, Mouly V, Poser I, Yeger-Lotem E, Rosa A, Alberti S, Rota R, Ben-Zvi A, Sawarkar R, Carra S. Small heat-shock protein HSPB3 promotes myogenesis by regulating the lamin B receptor. Cell Death Dis 2021; 12:452. [PMID: 33958580 PMCID: PMC8102500 DOI: 10.1038/s41419-021-03737-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023]
Abstract
One of the critical events that regulates muscle cell differentiation is the replacement of the lamin B receptor (LBR)-tether with the lamin A/C (LMNA)-tether to remodel transcription and induce differentiation-specific genes. Here, we report that localization and activity of the LBR-tether are crucially dependent on the muscle-specific chaperone HSPB3 and that depletion of HSPB3 prevents muscle cell differentiation. We further show that HSPB3 binds to LBR in the nucleoplasm and maintains it in a dynamic state, thus promoting the transcription of myogenic genes, including the genes to remodel the extracellular matrix. Remarkably, HSPB3 overexpression alone is sufficient to induce the differentiation of two human muscle cell lines, LHCNM2 cells, and rhabdomyosarcoma cells. We also show that mutant R116P-HSPB3 from a myopathy patient with chromatin alterations and muscle fiber disorganization, forms nuclear aggregates that immobilize LBR. We find that R116P-HSPB3 is unable to induce myoblast differentiation and instead activates the unfolded protein response. We propose that HSPB3 is a specialized chaperone engaged in muscle cell differentiation and that dysfunctional HSPB3 causes neuromuscular disease by deregulating LBR.
Collapse
Affiliation(s)
- Tatiana Tiago
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Federica F Morelli
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Valentina Basile
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Jonathan Vinet
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Veronica Galli
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Laura Mediani
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Francesco Antoniani
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Silvia Pomella
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Matteo Cassandri
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Maria Giovanna Garone
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - Beatrice Silvestri
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161, Rome, Italy
| | - Marco Cimino
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences DIBINEM, University of Bologna, Bologna, Italy; Centre for Applied Biomedical Research - CRBA, University of Bologna, IRCCS St. Orsola Hospital, Bologna, Italy
| | - Roberta Costa
- Department of Biomedical and Neuromotor Sciences DIBINEM, University of Bologna, Bologna, Italy; Centre for Applied Biomedical Research - CRBA, University of Bologna, IRCCS St. Orsola Hospital, Bologna, Italy
| | - Vincent Mouly
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, Institut de Myologie, F-75013, Paris, France
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Dewpoint Therapeutics GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Alessandro Rosa
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161, Rome, Italy
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Anat Ben-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Medical Research Council (MRC), University of Cambridge, Cambridge, CB2 1QR, UK
| | - Serena Carra
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy.
| |
Collapse
|
14
|
Cavallo F, Troglio F, Fagà G, Fancelli D, Shyti R, Trattaro S, Zanella M, D'Agostino G, Hughes JM, Cera MR, Pasi M, Gabriele M, Lazzarin M, Mihailovich M, Kooy F, Rosa A, Mercurio C, Varasi M, Testa G. High-throughput screening identifies histone deacetylase inhibitors that modulate GTF2I expression in 7q11.23 microduplication autism spectrum disorder patient-derived cortical neurons. Mol Autism 2020; 11:88. [PMID: 33208191 PMCID: PMC7677843 DOI: 10.1186/s13229-020-00387-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental condition affecting almost 1% of children, and represents a major unmet medical need with no effective drug treatment available. Duplication at 7q11.23 (7Dup), encompassing 26–28 genes, is one of the best characterized ASD-causing copy number variations and offers unique translational opportunities, because the hemideletion of the same interval causes Williams–Beuren syndrome (WBS), a condition defined by hypersociability and language strengths, thereby providing a unique reference to validate treatments for the ASD symptoms. In the above-indicated interval at 7q11.23, defined as WBS critical region, several genes, such as GTF2I, BAZ1B, CLIP2 and EIF4H, emerged as critical for their role in the pathogenesis of WBS and 7Dup both from mouse models and human studies. Methods We performed a high-throughput screening of 1478 compounds, including central nervous system agents, epigenetic modulators and experimental substances, on patient-derived cortical glutamatergic neurons differentiated from our cohort of induced pluripotent stem cell lines (iPSCs), monitoring the transcriptional modulation of WBS interval genes, with a special focus on GTF2I, in light of its overriding pathogenic role. The hits identified were validated by measuring gene expression by qRT-PCR and the results were confirmed by western blotting. Results We identified and selected three histone deacetylase inhibitors (HDACi) that decreased the abnormal expression level of GTF2I in 7Dup cortical glutamatergic neurons differentiated from four genetically different iPSC lines. We confirmed this effect also at the protein level. Limitations In this study, we did not address the molecular mechanisms whereby HDAC inhibitors act on GTF2I. The lead compounds identified will now need to be advanced to further testing in additional models, including patient-derived brain organoids and mouse models recapitulating the gene imbalances of the 7q11.23 microduplication, in order to validate their efficacy in rescuing phenotypes across multiple functional layers within a translational pipeline towards clinical use. Conclusions These results represent a unique opportunity for the development of a specific class of compounds for treating 7Dup and other forms of intellectual disability and autism.
Collapse
Affiliation(s)
- Francesca Cavallo
- Department of Oncology and Hemato-Oncology, University of Milan, c/o High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Flavia Troglio
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Giovanni Fagà
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Daniele Fancelli
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Reinald Shyti
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Sebastiano Trattaro
- Department of Oncology and Hemato-Oncology, University of Milan, c/o High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Matteo Zanella
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,Evotec SE, Hamburg, Germany
| | - Giuseppe D'Agostino
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - James M Hughes
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,FPO - IRCCS, Candiolo Cancer Institute, SP 142 Km 3.95, 10060, Candiolo, TO, Italy
| | - Maria Rosaria Cera
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Maurizio Pasi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Michele Gabriele
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | - Maddalena Lazzarin
- Department of Oncology and Hemato-Oncology, University of Milan, c/o High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Marija Mihailovich
- Department of Oncology and Hemato-Oncology, University of Milan, c/o High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Alessandro Rosa
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.,Center for Life Nano Science, Istituto Italiano Di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Ciro Mercurio
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Mario Varasi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Giuseppe Testa
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy. .,Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy. .,Human Technopole, Via Cristina Belgioioso, 171, 20157, Milan, Italy.
| |
Collapse
|
15
|
Guo X, Badu-Mensah A, Thomas MC, McAleer CW, Hickman JJ. Characterization of Functional Human Skeletal Myotubes and Neuromuscular Junction Derived-From the Same Induced Pluripotent Stem Cell Source. Bioengineering (Basel) 2020; 7:E133. [PMID: 33105732 PMCID: PMC7712960 DOI: 10.3390/bioengineering7040133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/25/2020] [Accepted: 10/15/2020] [Indexed: 01/16/2023] Open
Abstract
In vitro generation of functional neuromuscular junctions (NMJs) utilizing the same induced pluripotent stem cell (iPSC) source for muscle and motoneurons would be of great value for disease modeling and tissue engineering. Although, differentiation and characterization of iPSC-derived motoneurons are well established, and iPSC-derived skeletal muscle (iPSC-SKM) has been reported, there is a general lack of systemic and functional characterization of the iPSC-SKM. This study performed a systematic characterization of iPSC-SKM differentiated using a serum-free, small molecule-directed protocol. Morphologically, the iPSC-SKM demonstrated the expression and appropriate distribution of acetylcholine, ryanodine and dihydropyridine receptors. Fiber type analysis revealed a mixture of human fast (Type IIX, IIA) and slow (Type I) muscle types and the absence of animal Type IIB fibers. Functionally, the iPSC-SKMs contracted synchronously upon electrical stimulation, with the contraction force comparable to myofibers derived from primary myoblasts. Most importantly, when co-cultured with human iPSC-derived motoneurons from the same iPSC source, the myofibers contracted in response to motoneuron stimulation indicating the formation of functional NMJs. By demonstrating comparable structural and functional capacity to primary myoblast-derived myofibers, this defined, iPSC-SKM system, as well as the personal NMJ system, has applications for patient-specific drug testing and investigation of muscle physiology and disease.
Collapse
Affiliation(s)
- Xiufang Guo
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; (X.G.); (A.B.-M.); (M.C.T.)
| | - Agnes Badu-Mensah
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; (X.G.); (A.B.-M.); (M.C.T.)
- Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA
| | - Michael C. Thomas
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; (X.G.); (A.B.-M.); (M.C.T.)
| | | | - James J. Hickman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; (X.G.); (A.B.-M.); (M.C.T.)
- Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA
- Hesperos Inc., 12501 Research Pkwy, Suite 100, Orlando, FL 32826, USA;
| |
Collapse
|
16
|
Badu-Mensah A, Guo X, McAleer CW, Rumsey JW, Hickman JJ. Functional skeletal muscle model derived from SOD1-mutant ALS patient iPSCs recapitulates hallmarks of disease progression. Sci Rep 2020; 10:14302. [PMID: 32868812 PMCID: PMC7459299 DOI: 10.1038/s41598-020-70510-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Recent findings suggest a pathologic role of skeletal muscle in amyotrophic lateral sclerosis (ALS) onset and progression. However, the exact mechanism by which this occurs remains elusive due to limited human-based studies. To this end, phenotypic ALS skeletal muscle models were developed from induced pluripotent stem cells (iPSCs) derived from healthy individuals (WT) and ALS patients harboring mutations in the superoxide dismutase 1 (SOD1) gene. Although proliferative, SOD1 myoblasts demonstrated delayed and reduced fusion efficiency compared to WT. Additionally, SOD1 myotubes exhibited significantly reduced length and cross-section. Also, SOD1 myotubes had loosely arranged myosin heavy chain and reduced acetylcholine receptor expression per immunocytochemical analysis. Functional analysis indicated considerably reduced contractile force and synchrony in SOD1 myotubes. Mitochondrial assessment indicated reduced inner mitochondrial membrane potential (ΔΨm) and metabolic plasticity in the SOD1-iPSC derived myotubes. This work presents the first well-characterized in vitro iPSC-derived muscle model that demonstrates SOD1 toxicity effects on human muscle regeneration, contractility and metabolic function in ALS. Current findings align with previous ALS patient biopsy studies and suggest an active contribution of skeletal muscle in NMJ dysfunction. Further, the results validate this model as a human-relevant platform for ALS research and drug discovery studies.
Collapse
Affiliation(s)
- Agnes Badu-Mensah
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA.,College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32816, USA
| | - Xiufang Guo
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | | | - John W Rumsey
- Hesperos Inc., 12501 Research Pkwy, Suite 100, Orlando, FL, 32826, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA. .,Hesperos Inc., 12501 Research Pkwy, Suite 100, Orlando, FL, 32826, USA.
| |
Collapse
|
17
|
Martone J, Lisi M, Castagnetti F, Rosa A, Di Carlo V, Blanco E, Setti A, Mariani D, Colantoni A, Santini T, Perone L, Di Croce L, Bozzoni I. Trans-generational epigenetic regulation associated with the amelioration of Duchenne Muscular Dystrophy. EMBO Mol Med 2020; 12:e12063. [PMID: 32596946 PMCID: PMC7411655 DOI: 10.15252/emmm.202012063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 01/04/2023] Open
Abstract
Exon skipping is an effective strategy for the treatment of many Duchenne Muscular Dystrophy (DMD) mutations. Natural exon skipping observed in several DMD cases can help in identifying novel therapeutic tools. Here, we show a DMD study case where the lack of a splicing factor (Celf2a), which results in exon skipping and dystrophin rescue, is due to a maternally inherited trans‐generational epigenetic silencing. We found that the study case and his mother express a repressive long non‐coding RNA, DUXAP8, whose presence correlates with silencing of the Celf2a coding region. We also demonstrate that DUXAP8 expression is lost upon cell reprogramming and that, upon induction of iPSCs into myoblasts, Celf2a expression is recovered leading to the loss of exon skipping and loss of dystrophin synthesis. Finally, CRISPR/Cas9 inactivation of the splicing factor Celf2a was proven to ameliorate the pathological state in other DMD backgrounds establishing Celf2a ablation or inactivation as a novel therapeutic approach for the treatment of Duchenne Muscular Dystrophy.
Collapse
Affiliation(s)
- Julie Martone
- Department of Biology and Biotechnology, 'Charles Darwin', Sapienza University of Rome, Rome, Italy.,CNR Institute of Molecular Biology and Pathology (IBPM), Rome, Italy
| | - Michela Lisi
- Department of Biology and Biotechnology, 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Francesco Castagnetti
- Department of Biology and Biotechnology, 'Charles Darwin', Sapienza University of Rome, Rome, Italy.,Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alessandro Rosa
- Department of Biology and Biotechnology, 'Charles Darwin', Sapienza University of Rome, Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | | | | | - Adriano Setti
- Department of Biology and Biotechnology, 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Davide Mariani
- Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alessio Colantoni
- Department of Biology and Biotechnology, 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Tiziana Santini
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Lucia Perone
- Cell Culture and Cytogenetics Core, Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Luciano Di Croce
- Center for Genomic Regulation, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Irene Bozzoni
- Department of Biology and Biotechnology, 'Charles Darwin', Sapienza University of Rome, Rome, Italy.,CNR Institute of Molecular Biology and Pathology (IBPM), Rome, Italy.,Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| |
Collapse
|
18
|
Caputo L, Granados A, Lenzi J, Rosa A, Ait-Si-Ali S, Puri PL, Albini S. Acute conversion of patient-derived Duchenne muscular dystrophy iPSC into myotubes reveals constitutive and inducible over-activation of TGFβ-dependent pro-fibrotic signaling. Skelet Muscle 2020; 10:13. [PMID: 32359374 PMCID: PMC7195779 DOI: 10.1186/s13395-020-00224-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/24/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Duchenne muscular dystrophy (DMD), DYSTROPHIN deficiency exposes myofibers to repeated cycles of contraction/degeneration, ultimately leading to muscle loss and replacement by fibrotic tissue. DMD pathology is typically exacerbated by excessive secretion of TGFβ and consequent accumulation of pro-fibrotic components of the extra-cellular matrix (ECM), which in turn impairs compensatory regeneration and complicates the efficacy of therapeutic strategies. It is currently unclear whether DMD skeletal muscle fibers directly contribute to excessive activation of TGFβ. Development of skeletal myofibers from DMD patient-derived induced pluripotent stem cells (iPSC), as an "in dish" model of disease, can be exploited to determine the myofiber contribution to pathogenic TGFβ signaling in DMD and might provide a screening platform for the identification of anti-fibrotic interventions in DMD. METHODS We describe a rapid and efficient method for the generation of contractile human skeletal muscle cells from DMD patient-derived hiPSC, based on the inducible expression of MyoD and BAF60C (encoded by SMARCD3 gene), using an enhanced version of piggyBac (epB) transposone vectors. DMD iPSC-derived myotubes were tested as an "in dish" disease model and exposed to environmental and mechanical cues that recapitulate salient pathological features of DMD. RESULTS We show that DMD iPSC-derived myotubes exhibit a constitutive activation of TGFβ-SMAD2/3 signaling. High-content screening (HCS)-based quantification of nuclear phosphorylated SMAD2/3 signal revealed that DMD iPSC-derived myotubes also exhibit increased activation of the TGFβ-SMAD2/3 signaling following exposure to either recombinant TGFβ or electrical pacing-induced contraction. CONCLUSIONS Acute conversion of DMD patient-derived iPSC into skeletal muscles, by the ectopic expression of MyoD and BAF60C, provides a rapid and reliable protocol for an "in dish" DMD model that recapitulates key pathogenic features of disease pathology, such as the constitutive activation of the TGFβ/SMAD signaling as well as the deregulated response to pathogenic stimuli, e.g., ECM-derived signals or mechanical cues. Thus, this model is suitable for the identification of new therapeutic targets in DMD patient-specific muscles.
Collapse
Affiliation(s)
- Luca Caputo
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Alice Granados
- Epigenetics and Cell Fate (EDC), Centre National de la Recherche Scientifique (CNRS), Université Paris Diderot, Université de Paris, F-75013, Paris, France
| | - Jessica Lenzi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le Aldo Moro 5, Rome, Italy
| | - Alessandro Rosa
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le Aldo Moro 5, Rome, Italy.,Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Slimane Ait-Si-Ali
- Epigenetics and Cell Fate (EDC), Centre National de la Recherche Scientifique (CNRS), Université Paris Diderot, Université de Paris, F-75013, Paris, France
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.
| | - Sonia Albini
- Epigenetics and Cell Fate (EDC), Centre National de la Recherche Scientifique (CNRS), Université Paris Diderot, Université de Paris, F-75013, Paris, France. .,Genethon, 1bis, Rue de l'Internationale, 91000, EVRY, France.
| |
Collapse
|
19
|
Iberite F, Salerno M, Canale C, Rosa A, Ricotti L. Influence of substrate stiffness on human induced pluripotent stem cells: preliminary results. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:1039-1043. [PMID: 31946071 DOI: 10.1109/embc.2019.8857397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Skeletal muscle differentiation was proven to be influenced by changes in the substrate stiffness. However, a lack of knowledge features this field, concerning skeletal muscle tissues obtained from human induced pluripotent stem cells. Here we report the fabrication of polydimethylsiloxane-based substrates in a range of stiffness values from 3.5 to 141 kPa and the response of human induced pluripotent stem cells cultured on them for 5 days. The substrates were able to sustain cell adhesion and proliferation throughout the whole period. An inversely proportional relationship (although not significant) was found between the proliferation rate and the substrate stiffness. Initial analyses of iPSCs skeletal muscle differentiation shown no influences on markers of the early stages. These results lay the foundations for further studies on the influence of extrinsic mechanical stimuli on induced pluripotent stem cells-derived skeletal muscle tissues.
Collapse
|
20
|
Lynch E, Semrad T, Belsito VS, FitzGibbons C, Reilly M, Hayakawa K, Suzuki M. C9ORF72-related cellular pathology in skeletal myocytes derived from ALS-patient induced pluripotent stem cells. Dis Model Mech 2019; 12:12/8/dmm039552. [PMID: 31439573 PMCID: PMC6737948 DOI: 10.1242/dmm.039552] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/10/2019] [Indexed: 12/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset neuromuscular disease with no cure and limited treatment options. Patients experience a gradual paralysis leading to death from respiratory complications on average only 2-5 years after diagnosis. There is increasing evidence that skeletal muscle is affected early in the disease process, yet the pathological processes occurring in the skeletal muscle of ALS patients are still mostly unknown. Specifically, the most common genetic cause of ALS, a hexanucleotide repeat expansion in the C9ORF72 gene, has yet to be fully characterized in the context of skeletal muscle. In this study, we used the protocol previously developed in our lab to differentiate skeletal myocytes from induced pluripotent stem cells (iPSCs) of C9ORF72 ALS (C9-ALS) patients in order to create an in vitro disease model of C9-ALS skeletal muscle pathology. Of the three C9ORF72 mutation hallmarks, we did not see any evidence of haploinsufficiency, but we did detect RNA foci and dipeptide repeat (DPR) proteins. Additional abnormalities included changes in the expression of mitochondrial genes and a susceptibility to oxidative stress, indicating that mitochondrial dysfunction may be a critical feature of C9-ALS skeletal muscle pathology. Finally, the C9-ALS myocytes had increased expression and aggregation of TDP-43. Together, these data show that skeletal muscle cells experience pathological changes due to the C9ORF72 mutation. Our in vitro model could facilitate further study of cellular and molecular pathology in ALS skeletal muscle in order to discover new therapeutic targets against this devastating disease. This article has an associated First Person interview with the first author of the paper. Summary: Evidence of protein aggregation and mitochondrial dysfunction were found in skeletal myocytes differentiated from ALS-patient induced pluripotent stem cells with the C9ORF72 mutation.
Collapse
Affiliation(s)
- Eileen Lynch
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Theran Semrad
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Vincent S Belsito
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Claire FitzGibbons
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Megan Reilly
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Koji Hayakawa
- Department of Toxicology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA .,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
21
|
Halpern M, Brennand KJ, Gregory J. Examining the relationship between astrocyte dysfunction and neurodegeneration in ALS using hiPSCs. Neurobiol Dis 2019; 132:104562. [PMID: 31381978 DOI: 10.1016/j.nbd.2019.104562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/28/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex and fatal neurodegenerative disease for which the causes of disease onset and progression remain unclear. Recent advances in human induced pluripotent stem cell (hiPSC)-based models permit the study of the genetic factors associated with ALS in patient-derived neural cell types, including motor neurons and glia. While astrocyte dysfunction has traditionally been thought to exacerbate disease progression, astrocytic dysfunction may play a more direct role in disease initiation and progression. Such non-cell autonomous mechanisms expand the potential targets of therapeutic intervention, but only a handful of ALS risk-associated genes have been examined for their impact on astrocyte dysfunction and neurodegeneration. This review summarizes what is currently known about astrocyte function in ALS and suggests ways in which hiPSC-based models can be used to more effectively study the role of astrocytes in neurodegenerative disease.
Collapse
Affiliation(s)
- Madeline Halpern
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Kristen J Brennand
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America.
| | - James Gregory
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, United States of America.
| |
Collapse
|
22
|
Del Carmen Ortuño-Costela M, García-López M, Cerrada V, Gallardo ME. iPSCs: A powerful tool for skeletal muscle tissue engineering. J Cell Mol Med 2019; 23:3784-3794. [PMID: 30933431 PMCID: PMC6533516 DOI: 10.1111/jcmm.14292] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/15/2022] Open
Abstract
Both volumetric muscle loss (VML) and muscle degenerative diseases lead to an important decrease in skeletal muscle mass, condition that nowadays lacks an optimal treatment. This issue has driven towards an increasing interest in new strategies in tissue engineering, an emerging field that can offer very promising approaches. In addition, the discovery of induced pluripotent stem cells (iPSCs) has completely revolutionized the actual view of personalized medicine, and their utilization in skeletal muscle tissue engineering could, undoubtedly, add myriad benefits. In this review, we want to provide a general vision of the basic aspects to consider when engineering skeletal muscle tissue using iPSCs. Specifically, we will focus on the three main pillars of tissue engineering: the scaffold designing, the selection of the ideal cell source and the addition of factors that can enhance the resemblance with the native tissue.
Collapse
Affiliation(s)
- María Del Carmen Ortuño-Costela
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols", Universidad Autónoma de Madrid, Spain, (UAM-CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain.,Grupo de Investigación, Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Marta García-López
- Grupo de Investigación, Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Victoria Cerrada
- Grupo de Investigación, Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María Esther Gallardo
- Grupo de Investigación, Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBERER), Madrid, Spain
| |
Collapse
|
23
|
Vila OF, Uzel SG, Ma SP, Williams D, Pak J, Kamm RD, Vunjak-Novakovic G. Quantification of human neuromuscular function through optogenetics. Am J Cancer Res 2019; 9:1232-1246. [PMID: 30867827 PMCID: PMC6401498 DOI: 10.7150/thno.25735] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 12/23/2018] [Indexed: 01/15/2023] Open
Abstract
The study of human neuromuscular diseases has traditionally been performed in animal models, due to the difficulty of performing studies in human subjects. Despite the unquestioned value of animal models, inter-species differences hamper the translation of these findings to clinical trials. Tissue-engineered models of the neuromuscular junction (NMJ) allow for the recapitulation of the human physiology in tightly controlled in vitro settings. Methods: Here we report the first human patient-specific tissue-engineered model of the neuromuscular junction (NMJ) that combines stem cell technology with tissue engineering, optogenetics, microfabrication and image processing. The combination of custom-made hardware and software allows for repeated, quantitative measurements of NMJ function in a user-independent manner. Results: We demonstrate the utility of this model for basic and translational research by characterizing in real time the functional changes during physiological and pathological processes. Principal Conclusions: This system holds great potential for the study of neuromuscular diseases and drug screening, allowing for the extraction of quantitative functional data from a human, patient-specific system.
Collapse
|
24
|
Patel S, Athirasala A, Menezes PP, Ashwanikumar N, Zou T, Sahay G, Bertassoni LE. Messenger RNA Delivery for Tissue Engineering and Regenerative Medicine Applications. Tissue Eng Part A 2019; 25:91-112. [PMID: 29661055 PMCID: PMC6352544 DOI: 10.1089/ten.tea.2017.0444] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/09/2018] [Indexed: 12/25/2022] Open
Abstract
The ability to control cellular processes and precisely direct cellular reprogramming has revolutionized regenerative medicine. Recent advances in in vitro transcribed (IVT) mRNA technology with chemical modifications have led to development of methods that control spatiotemporal gene expression. Additionally, there is a current thrust toward the development of safe, integration-free approaches to gene therapy for translational purposes. In this review, we describe strategies of synthetic IVT mRNA modifications and nonviral technologies for intracellular delivery. We provide insights into the current tissue engineering approaches that use a hydrogel scaffold with genetic material. Furthermore, we discuss the transformative potential of novel mRNA formulations that when embedded in hydrogels can trigger controlled genetic manipulation to regenerate tissues and organs in vitro and in vivo. The role of mRNA delivery in vascularization, cytoprotection, and Cas9-mediated xenotransplantation is additionally highlighted. Harmonizing mRNA delivery vehicle interactions with polymeric scaffolds can be used to present genetic cues that lead to precise command over cellular reprogramming, differentiation, and secretome activity of stem cells-an ultimate goal for tissue engineering.
Collapse
Affiliation(s)
- Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
| | - Avathamsa Athirasala
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
| | - Paula P. Menezes
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Postgraduate Program in Health Sciences, Department of Pharmacy, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - N. Ashwanikumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
| | - Ting Zou
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
- Department of Biomedical Engineering, Collaborative Life Science Building, Oregon Health and Science University, Portland, Oregon
| | - Luiz E. Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Department of Biomedical Engineering, Collaborative Life Science Building, Oregon Health and Science University, Portland, Oregon
- Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
25
|
De Santis R, Garone MG, Pagani F, de Turris V, Di Angelantonio S, Rosa A. Direct conversion of human pluripotent stem cells into cranial motor neurons using a piggyBac vector. Stem Cell Res 2018; 29:189-196. [DOI: 10.1016/j.scr.2018.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/23/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022] Open
|
26
|
De Santis R, Santini L, Colantoni A, Peruzzi G, de Turris V, Alfano V, Bozzoni I, Rosa A. FUS Mutant Human Motoneurons Display Altered Transcriptome and microRNA Pathways with Implications for ALS Pathogenesis. Stem Cell Reports 2017; 9:1450-1462. [PMID: 28988989 PMCID: PMC5830977 DOI: 10.1016/j.stemcr.2017.09.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
The FUS gene has been linked to amyotrophic lateral sclerosis (ALS). FUS is a ubiquitous RNA-binding protein, and the mechanisms leading to selective motoneuron loss downstream of ALS-linked mutations are largely unknown. We report the transcriptome analysis of human purified motoneurons, obtained from FUS wild-type or mutant isogenic induced pluripotent stem cells (iPSCs). Gene ontology analysis of differentially expressed genes identified significant enrichment of pathways previously associated to sporadic ALS and other neurological diseases. Several microRNAs (miRNAs) were also deregulated in FUS mutant motoneurons, including miR-375, involved in motoneuron survival. We report that relevant targets of miR-375, including the neural RNA-binding protein ELAVL4 and apoptotic factors, are aberrantly increased in FUS mutant motoneurons. Characterization of transcriptome changes in the cell type primarily affected by the disease contributes to the definition of the pathogenic mechanisms of FUS-linked ALS.
Collapse
Affiliation(s)
- Riccardo De Santis
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Laura Santini
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessio Colantoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Valeria de Turris
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Vincenzo Alfano
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Irene Bozzoni
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Institute Pasteur Fondazione Cenci-Bolognetti, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandro Rosa
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
27
|
Mis K, Grubic Z, Lorenzon P, Sciancalepore M, Mars T, Pirkmajer S. In Vitro Innervation as an Experimental Model to Study the Expression and Functions of Acetylcholinesterase and Agrin in Human Skeletal Muscle. Molecules 2017; 22:molecules22091418. [PMID: 28846617 PMCID: PMC6151842 DOI: 10.3390/molecules22091418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022] Open
Abstract
Acetylcholinesterase (AChE) and agrin, a heparan-sulfate proteoglycan, reside in the basal lamina of the neuromuscular junction (NMJ) and play key roles in cholinergic transmission and synaptogenesis. Unlike most NMJ components, AChE and agrin are expressed in skeletal muscle and α-motor neurons. AChE and agrin are also expressed in various other types of cells, where they have important alternative functions that are not related to their classical roles in NMJ. In this review, we first focus on co-cultures of embryonic rat spinal cord explants with human skeletal muscle cells as an experimental model to study functional innervation in vitro. We describe how this heterologous rat-human model, which enables experimentation on highly developed contracting human myotubes, offers unique opportunities for AChE and agrin research. We then highlight innovative approaches that were used to address salient questions regarding expression and alternative functions of AChE and agrin in developing human skeletal muscle. Results obtained in co-cultures are compared with those obtained in other models in the context of general advances in the field of AChE and agrin neurobiology.
Collapse
Affiliation(s)
- Katarina Mis
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Zoran Grubic
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Paola Lorenzon
- Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127 Trieste, Italy.
| | - Marina Sciancalepore
- Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127 Trieste, Italy.
| | - Tomaz Mars
- Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127 Trieste, Italy.
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
28
|
Happe CL, Tenerelli KP, Gromova AK, Kolb F, Engler AJ. Mechanically patterned neuromuscular junctions-in-a-dish have improved functional maturation. Mol Biol Cell 2017; 28:1950-1958. [PMID: 28495800 PMCID: PMC5541845 DOI: 10.1091/mbc.e17-01-0046] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/03/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022] Open
Abstract
Motor neuron (MN) diseases are progressive disorders resulting from degeneration of neuromuscular junctions (NMJs), which form the connection between MNs and muscle fibers. NMJ-in-a-dish models have been developed to examine human MN-associated dysfunction with disease; however such coculture models have randomly oriented myotubes with immature synapses that contract asynchronously. Mechanically patterned (MP) extracellular matrix with alternating soft and stiff stripes improves current NMJ-in-a-dish models by inducing both mouse and human myoblast durotaxis to stripes where they aligned, differentiated, and fused into patterned myotubes. Compared to conventional culture on rigid substrates or unpatterned hydrogels, MP substrates supported increased differentiation and fusion, significantly larger acetylcholine (ACh) receptor clusters, and increased expression of MuSK and Lrp4, two cell surface receptors required for NMJ formation. Robust contractions were observed when mouse myotubes were stimulated by ACh, with twitch duration and frequency most closely resembling those for mature muscle on MP substrates. Fused myotubes, when cocultured with MNs, were able to form even larger NMJs. Thus MP matrices produce more functionally active NMJs-in-a-dish, which could be used to elucidate disease pathology and facilitate drug discovery.
Collapse
Affiliation(s)
- Cassandra L Happe
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Kevin P Tenerelli
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Anastasia K Gromova
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA 92093
| | - Frederic Kolb
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA 92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| |
Collapse
|
29
|
|