1
|
Bobrin VA, Sharma-Brymer SE, Monteiro MJ. Temperature-Directed Morphology Transformation Method for Precision-Engineered Polymer Nanostructures. ACS NANO 2025; 19:3054-3084. [PMID: 39801086 DOI: 10.1021/acsnano.4c14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
With polymer nanoparticles now playing an influential role in biological applications, the synthesis of nanoparticles with precise control over size, shape, and chemical functionality, along with a responsive ability to environmental changes, remains a significant challenge. To address this challenge, innovative polymerization methods must be developed that can incorporate diverse functional groups and stimuli-responsive moieties into polymer nanostructures, which can then be tailored for specific biological applications. By combining the advantages of emulsion polymerization in an environmentally friendly reaction medium, high polymerization rates due to the compartmentalization effect, chemical functionality, and scalability, with the precise control over polymer chain growth achieved through reversible-deactivation radical polymerization, our group developed the temperature-directed morphology transformation (TDMT) method to produce polymer nanoparticles. This method utilized temperature or pH responsive nanoreactors for controlled particle growth and with the added advantages of controlled surface chemical functionality and the ability to produce well-defined asymmetric structures (e.g., tadpoles and kettlebells). This review summarizes the fundamental thermodynamic and kinetic principles that govern particle formation and control using the TDMT method, allowing precision-engineered polymer nanoparticles, offering a versatile and an efficient means to produce 3D nanostructures directly in water with diverse morphologies, high purity, high solids content, and controlled surface and internal functionality. With such control over the nanoparticle features, the TDMT-generated nanostructures could be designed for a wide variety of biological applications, including antiviral coatings effective against SARS-CoV-2 and other pathogens, reversible scaffolds for stem cell expansion and release, and vaccine and drug delivery systems.
Collapse
Affiliation(s)
- Valentin A Bobrin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Surya E Sharma-Brymer
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
2
|
Differential Effects of Extracellular Matrix Glycoproteins Fibronectin and Laminin-5 on Dental Pulp Stem Cell Phenotypes and Responsiveness. J Funct Biomater 2023; 14:jfb14020091. [PMID: 36826890 PMCID: PMC9963712 DOI: 10.3390/jfb14020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are mesenchymal stem cells (MSCs) with the potential to differentiate in a limited number of other tissue types. Some evidence has suggested the modulation of DPSC growth may be mediated, in part, by exogenous extracellular matrix (ECM) glycoproteins, including fibronectin (FN) and laminin-5 (LN5). Although preliminary research suggests that some ECM glycoproteins may work as functional biomaterials to modulate DPSC growth responses, the primary goal of this project is to determine the specific effects of FN and LN5 on DPSC growth and viability. Using an existing DPSC repository, n = 16 DPSC isolates were cultured and 96-well growth assays were performed, which revealed FN, LN5 and the combination of these were sufficient to induce statistically significant changes in growth among five (n = 5) DPSC isolates. In addition, the administration of FN (either alone or in combination) was sufficient to induce the expression of alkaline phosphatase (ALP) and dentin sialophosphoprotein (DSPP), while LN5 induced the expression of ALP only, suggesting differential responsiveness among DPSCs. Moreover, these responses appeared to correlate with the expression of MSC biomarkers NANOG, Oct4 and Sox2. These results add to the growing body of evidence suggesting that functional biomaterials, such as ECM glycoproteins FN and LN5, are sufficient to induce phenotypic and differentiation-specific effects in a specific subset of DPSC isolates. More research will be needed to determine which biomarkers or additional factors are necessary and sufficient to induce the differentiation and development of DPSCs ex vivo and in vitro for biomedical applications.
Collapse
|
3
|
Aladal M, You W, Huang R, Huang J, Deng Z, Duan L, Wang D, Li W, Sun W. Insights into the implementation of Fibronectin 1 in the cartilage tissue engineering. Biomed Pharmacother 2022; 148:112782. [PMID: 35248846 DOI: 10.1016/j.biopha.2022.112782] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 11/02/2022] Open
Abstract
Recently, cartilage tissue engineering has become a cornerstone to treat cartilage degeneration and osteoarthritis (OA). Fibronectin1 (FN1) is described as multiple functional glycoproteins that play an essential role in chondrogenic and osteogenic differentiation. Few studies reported the potential of FN1 to enhance tissue engineering and reduce the death of chondrocytes in OA. Further, FN1 possesses multiple binding domains including collagen, integrin, and heparin that can interact with heparan sulfate proteoglycans at the surface of chondrocyte leading to promote cell signaling and differentiation. Recent studies suggested that FN1 can promote chondrocyte differentiation by upregulating TGF-β/PI3K/Akt pathways. Further, FN1 can inhibit the apoptosis of chondrocytes by preventing the release of metalloproteinases through lowering the expression of p-PI3K/PI3K and p-AKT/AKT pathways. However, the use of FN1 in cartilage repair studies using animal models or clinical trials was rarely reported. Therefore, this article provides new insights into the importance of FN1 in cartilage tissue engineering to encourage more studies concerning FN1 in cartilage repair studies. Further, we provided new suggestions for advanced applications of FN1 to treat OA and cartilage degeneration.
Collapse
Affiliation(s)
- Murad Aladal
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518000, China; Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center), Shenzhen 518035, China
| | - Wei You
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518000, China
| | - Rongxiang Huang
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518000, China
| | - Jianghong Huang
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518000, China
| | - Zhiqin Deng
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518000, China
| | - Li Duan
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518000, China
| | - Daping Wang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center), Shenzhen 518035, China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Wencui Li
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518000, China.
| | - Wei Sun
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518000, China.
| |
Collapse
|
4
|
Shen J, Zhu Y, Zhang S, Lyu S, Lyu C, Feng Z, Hoyle DL, Wang ZZ, Cheng T. Vitronectin-activated αvβ3 and αvβ5 integrin signalling specifies haematopoietic fate in human pluripotent stem cells. Cell Prolif 2021; 54:e13012. [PMID: 33656760 PMCID: PMC8016644 DOI: 10.1111/cpr.13012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/20/2021] [Accepted: 02/07/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Vitronectin (VTN) has been widely used for the maintenance and expansion of human pluripotent stem cells (hPSCs) as feeder-free conditions. However, the effect of VTN on hPSC differentiation remains unclear. Here, we investigated the role of VTN in early haematopoietic development of hPSCs. MATERIALS AND METHODS A chemically defined monolayer system was applied to study the role of different matrix or basement membrane proteins in haematopoietic development of hPSCs. The role of integrin signalling in VTN-mediated haematopoietic differentiation was investigated by integrin antagonists. Finally, small interfering RNA was used to knock down integrin gene expression in differentiated cells. RESULTS We found that the haematopoietic differentiation of hPSCs on VTN was far more efficient than that on Matrigel that is also often used for hPSC culture. VTN promoted the fate determination of endothelial-haematopoietic lineage during mesoderm development to generate haemogenic endothelium (HE). Moreover, we demonstrated that the signals through αvβ3 and αvβ5 integrins were required for VTN-promoted haematopoietic differentiation. Blocking αvβ3 and αvβ5 integrins by the integrin antagonists impaired the development of HE, but not endothelial-to-haematopoietic transition (EHT). Finally, both αvβ3 and αvβ5 were confirmed acting synergistically for early haematopoietic differentiation by knockdown the expression of αv, β3 or β5. CONCLUSION The established VTN-based monolayer system of haematopoietic differentiation of hPSCs presents a valuable platform for further investigating niche signals involved in human haematopoietic development.
Collapse
Affiliation(s)
- Jun Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Yaoyao Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Shuo Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Shuzhen Lyu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Cuicui Lyu
- Department of Hematology, the First Central Hospital of Tianjin, Tianjin, China
| | - Zicen Feng
- Center of Reproductive Medicine, Tianjin Central Hospital of Gynaecology and Obstetrics, Tianjin, China
| | - Dixie L Hoyle
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zack Z Wang
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China.,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.,Tianjin Key Laboratory of Blood Cell Therapy and Technology, Tianjin, China
| |
Collapse
|
5
|
Chhibber T, Bagchi S, Lahooti B, Verma A, Al-Ahmad A, Paul MK, Pendyala G, Jayant RD. CNS organoids: an innovative tool for neurological disease modeling and drug neurotoxicity screening. Drug Discov Today 2020; 25:456-465. [PMID: 31783130 PMCID: PMC7039749 DOI: 10.1016/j.drudis.2019.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/28/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
The paradigm of central nervous system (CNS) drug discovery has mostly relied on traditional approaches of rodent models or cell-based in vitro models. Owing to the issues of species differences between humans and rodents, it is difficult to correlate the robustness of data for neurodevelopmental studies. With advances in the stem-cell field, 3D CNS organoids have been developed and explored owing to their resemblance to the human brain architecture and functions. Further, CNS organoids provide a unique opportunity to mimic the human brain physiology and serve as a modeling tool to study the normal versus pathological brain or the elucidation of mechanisms of neurological disorders. Here, we discuss the recent application of a CNS organoid explored for neurodevelopment disease or a screening tool for CNS drug development.
Collapse
Affiliation(s)
- Tanya Chhibber
- Department of Pharmaceutical Sciences, JH School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX 79106, USA
| | - Sounak Bagchi
- Department of Pharmaceutical Sciences, JH School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX 79106, USA
| | - Behnaz Lahooti
- Department of Pharmaceutical Sciences, JH School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX 79106, USA
| | - Angela Verma
- Department of Pharmaceutical Sciences, JH School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX 79106, USA
| | - Abraham Al-Ahmad
- Department of Pharmaceutical Sciences, JH School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX 79106, USA
| | - Manash K Paul
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Rahul Dev Jayant
- Department of Pharmaceutical Sciences, JH School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX 79106, USA.
| |
Collapse
|