1
|
Huang S, Xu X, Guo J, Li Z, Wu Y, Liu Y, Sun Q, Wang S, Yan H, Su Y, Guo W. Single-Cell Transcriptome Decoding Umbilical Cord-Derived Mesenchymal Stem Cell Heterogeneity Reveals a Unique IL1R1 HighPDGFRA High Ultroser-G-MSC With Osteogenesis and Chondrogenesis Signatures. J Cell Physiol 2025; 240:e70004. [PMID: 39956958 DOI: 10.1002/jcp.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 02/18/2025]
Abstract
The heterogeneity of human umbilical cord mesenchymal stem cells (hUC-MSCs) is culturing-dependent, resulting in functional non-uniformness. To achieve the best clinical benefit, a comprehensive understanding of the origin of the heterogeneity in different culture systems can identify functional subgroups to direct the precise application of hUC-MSCs. Here, we create a single-cell transcriptome atlas of hUC-MSC in different culture systems for the identification of a subgroup of Ultroser-G-MSCs with high osteogenic and chondrogenic potentials featured by high expressions of IL1R1 and PDGFRA. Further experimental validations surprisingly reveal that IL1R1highPDGFRAhigh Ultroser-G-MSCs possess advantages over "traditional" hUC-MSCs in the treatments of modeled osteoarthritis, leading to a cell-cell communication network centered in Clusters 0 and 2. Moreover, we found that Wnt5 signaling is the key pathway for the dynamic transformation of osteogenic and chondrogenic phenotypes in hUC-MSC. Overall, the present study paves the way for the clarification of heterogenetic nature of hUC-MSC in different culture systems for the selection of optimal MSC types to achieve the precision on clinical treatments.
Collapse
Affiliation(s)
- Shihao Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xinyu Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jiaqi Guo
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Zhuolan Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yanlin Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qinyi Sun
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Sihan Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Huilin Yan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yueyan Su
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Wei Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Paul SK, Oshima M, Patil A, Sone M, Kato H, Maezawa Y, Kaneko H, Fukuyo M, Rahmutulla B, Ouchi Y, Tsujimura K, Nakanishi M, Kaneda A, Iwama A, Yokote K, Eto K, Takayama N. Retrotransposons in Werner syndrome-derived macrophages trigger type I interferon-dependent inflammation in an atherosclerosis model. Nat Commun 2024; 15:4772. [PMID: 38858384 PMCID: PMC11164933 DOI: 10.1038/s41467-024-48663-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/07/2024] [Indexed: 06/12/2024] Open
Abstract
The underlying mechanisms of atherosclerosis, the second leading cause of death among Werner syndrome (WS) patients, are not fully understood. Here, we establish an in vitro co-culture system using macrophages (iMφs), vascular endothelial cells (iVECs), and vascular smooth muscle cells (iVSMCs) derived from induced pluripotent stem cells. In co-culture, WS-iMφs induces endothelial dysfunction in WS-iVECs and characteristics of the synthetic phenotype in WS-iVSMCs. Transcriptomics and open chromatin analysis reveal accelerated activation of type I interferon signaling and reduced chromatin accessibility of several transcriptional binding sites required for cellular homeostasis in WS-iMφs. Furthermore, the H3K9me3 levels show an inverse correlation with retrotransposable elements, and retrotransposable element-derived double-stranded RNA activates the DExH-box helicase 58 (DHX58)-dependent cytoplasmic RNA sensing pathway in WS-iMφs. Conversely, silencing type I interferon signaling in WS-iMφs rescues cell proliferation and suppresses cellular senescence and inflammation. These findings suggest that Mφ-specific inhibition of type I interferon signaling could be targeted to treat atherosclerosis in WS patients.
Collapse
Affiliation(s)
- Sudip Kumar Paul
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Masamitsu Sone
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Hibernation Metabolism, Physiology and Development Group, Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Hisaya Kato
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiyori Kaneko
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuo Ouchi
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kyoko Tsujimura
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Koji Eto
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
| | - Naoya Takayama
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
3
|
Fujisaki H, Watanabe T, Yoshihara S, Fukuda H, Tomono Y, Tometsuka C, Mizuno K, Nishiyama T, Hattori S. Laminin 511 E8 fragment promotes to form basement membrane-like structure in human skin equivalents. Regen Ther 2024; 26:717-728. [PMID: 39286641 PMCID: PMC11403260 DOI: 10.1016/j.reth.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/22/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Laminin 511 (LM511), a component of the skin basement membrane (BM), is known to enhance the adhesion of some cell types and it has been reported to affect cell behavior. A recombinant fragment consisting of the integrin recognition site; E8 region of LM511 (511E8) has also been studied. 511E8 has been reported by many as a superior culture substrate. However, the effects of 511E8 on human skin cells remain unclear. In this study, we added 511E8 during the culture period of a reconstituted skin equivalent (SE) and investigated its effect on the formation of BM-like structures. Methods SEs were formed by air-liquid culture of human foreskin keratinocytes (HFKs) on contracted type I collagen (Col-I) gels containing human fibroblasts. We compared the BM-like structures formed with and without 511E8 during HFKs culture periods. Morphological analysis, gene expression analysis of extracellular matrix components, and localization analysis of 511E8 in order to identify where 511E8 works were performed. Results Immunohistochemical observation by light microscopy showed an accumulation of BM components between the gels and cell layers regardless of the addition of 511E8. There was a stronger and more continuous positive staining for LM α3, type IV collagen, and type VII collagen in the 511E8-added group compared to the no-added group. Transmission electron microscopic observation showed that the continuity of BM-like structures was increased with the addition of 511E8. Furthermore, gene expression analysis showed that the 511E8 addition increased some BM component genes expression, with collagen type IV and type VII α1 chains showing significant increases. His-tagged 511E8 was stained around the basal cells of HFK layers, not in basal regions. Co-staining with anti-His-tag and anti-integrin β1 antibodies revealed the co-localization of theses in some intercellular regions among basal cells. Conclusion These results suggest that 511E8 effected on HFKs, enhancing the production of BM components and strengthening the anchoring between the Col-I gels and the HFK layers.
Collapse
Affiliation(s)
- Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Takafumi Watanabe
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Shusuke Yoshihara
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Hideki Fukuda
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | | | - Chisa Tometsuka
- Nippi Research Institute of Biomatrix, 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Toshio Nishiyama
- Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
| |
Collapse
|
4
|
Chen SJ, Hashimoto K, Fujio K, Hayashi K, Paul SK, Yuzuriha A, Qiu WY, Nakamura E, Kanashiro MA, Kabata M, Nakamura S, Sugimoto N, Kaneda A, Yamamoto T, Saito H, Takayama N, Eto K. A let-7 microRNA-RALB axis links the immune properties of iPSC-derived megakaryocytes with platelet producibility. Nat Commun 2024; 15:2588. [PMID: 38519457 PMCID: PMC10960040 DOI: 10.1038/s41467-024-46605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 03/04/2024] [Indexed: 03/25/2024] Open
Abstract
We recently achieved the first-in-human transfusion of induced pluripotent stem cell-derived platelets (iPSC-PLTs) as an alternative to standard transfusions, which are dependent on donors and therefore variable in supply. However, heterogeneity characterized by thrombopoiesis-biased or immune-biased megakaryocytes (MKs) continues to pose a bottleneck against the standardization of iPSC-PLT manufacturing. To address this problem, here we employ microRNA (miRNA) switch biotechnology to distinguish subpopulations of imMKCLs, the MK cell lines producing iPSC-PLTs. Upon miRNA switch-based screening, we find imMKCLs with lower let-7 activity exhibit an immune-skewed transcriptional signature. Notably, the low activity of let-7a-5p results in the upregulation of RAS like proto-oncogene B (RALB) expression, which is crucial for the lineage determination of immune-biased imMKCL subpopulations and leads to the activation of interferon-dependent signaling. The dysregulation of immune properties/subpopulations, along with the secretion of inflammatory cytokines, contributes to a decline in the quality of the whole imMKCL population.
Collapse
Affiliation(s)
- Si Jing Chen
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuya Hashimoto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kosuke Fujio
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Karin Hayashi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Sudip Kumar Paul
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akinori Yuzuriha
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Wei-Yin Qiu
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Emiri Nakamura
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | | | - Mio Kabata
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Sou Nakamura
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Naoshi Sugimoto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Hirohide Saito
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
| | - Naoya Takayama
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Koji Eto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
5
|
Kayama A, Eto K. Mass production of iPSC-derived platelets toward the clinical application. Regen Ther 2024; 25:213-219. [PMID: 38260088 PMCID: PMC10801197 DOI: 10.1016/j.reth.2023.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024] Open
Abstract
The ex vivo production of platelets from induced pluripotent cells (iPSCs) may offer a safer and sustainable alternative for transfusions and drug delivery systems (DDS). However, the mass production of the clinically required number of iPSC-derived platelets (iPSC-PLTs) is challenging. Here, we introduce recent technologies for mass production and the first-in-human clinical trial using ex vivo iPSC-PLTs. To this end, we established immortalized megakaryocyte progenitor cell lines (imMKCLs) as an expandable master cell bank (MCB) through the overexpression of c-MYC, BMI1 and BCL-XL, which modulated megakaryopoiesis and thrombopoiesis. We also optimized a culture cocktail for maturation of the imMKCLs by mixing an aryl hydrocarbon receptor (AhR) antagonist, SR1/GNF-316; a Rho-associated protein kinase (ROCK) inhibitor, Y-27632/Y-39983; and a small-molecule compound replacing recombinant thrombopoietin (TPO), TA-316. Finally, we discovered the importance of turbulence on the manufacturing of intact iPSC-PLTs, allowing us to develop a turbulence-based bioreactor, VerMES. Combination of the MCB and VerMES enabled us to produce more than 100 billion iPSC-PLTs, leading to the first-in-human clinical trial. Despite these advancements, many challenges remain before expanding the clinical implementation of this strategy.
Collapse
|
6
|
Production and nonclinical evaluation of an autologous iPSC-derived platelet product for the iPLAT1 clinical trial. Blood Adv 2022; 6:6056-6069. [PMID: 36149941 PMCID: PMC9706535 DOI: 10.1182/bloodadvances.2022008512] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022] Open
Abstract
Donor-derived platelets are used to treat or prevent hemorrhage in patients with thrombocytopenia. However, ∼5% or more of these patients are complicated with alloimmune platelet transfusion refractoriness (allo-PTR) due to alloantibodies against HLA-I or human platelet antigens (HPA). In these cases, platelets from compatible donors are necessary, but it is difficult to find such donors for patients with rare HLA-I or HPA. To produce platelet products for patients with aplastic anemia with allo-PTR due to rare HPA-1 mismatch in Japan, we developed an ex vivo good manufacturing process (GMP)-based production system for an induced pluripotent stem cell-derived platelet product (iPSC-PLTs). Immortalized megakaryocyte progenitor cell lines (imMKCLs) were established from patient iPSCs, and a competent imMKCL clone was selected for the master cell bank (MCB) and confirmed for safety, including negativity of pathogens. From this MCB, iPSC-PLTs were produced using turbulent flow bioreactors and new drugs. In extensive nonclinical studies, iPSC-PLTs were confirmed for quality, safety, and efficacy, including hemostasis in a rabbit model. This report presents a complete system for the GMP-based production of iPSC-PLTs and the required nonclinical studies and thus supports the iPLAT1 study, the first-in-human clinical trial of iPSC-PLTs in a patient with allo-PTR and no compatible donor using the autologous product. It also serves as a comprehensive reference for the development of widely applicable allogeneic iPSC-PLTs and other cell products that use iPSC-derived progenitor cells as MCB.
Collapse
|
7
|
Iwamuro M, Shiraha H, Kobashi M, Horiguchi S, Okada H. Laminin 511-E8 Fragment Offers Superior Adhesion Properties for Gastric Cancer Cells Compared with Full-Length Laminin 511. Curr Issues Mol Biol 2022; 44:1539-1551. [PMID: 35723363 PMCID: PMC9164087 DOI: 10.3390/cimb44040105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The interaction between cancer cells and laminin (Ln) is a key event in tumor invasion and metastasis. Previously, we determined the effect of full-length Ln511 on gastric cancer cells. However, the interactions between the Ln511-E8 fragment, a truncated protein of Ln511, and gastric cancer cells have not been investigated. METHODS We investigated the adhesion properties of gastric cancer cells to full-length Ln511 and Ln511-E8 fragments. RESULTS The proliferation of four gastric cancer cell lines (SH-10-TC, MKN74, SC-6-JCK, and MKN45) was highest on the Ln511-E8 fragment. Further, a larger cytoplasm was observed in SH-10-TC and MKN74 cells cultured on full-length Ln511 or Ln511-E8 fragments. The percentage of adhesive cells was highest on the Ln511-E8 fragment in all four cell lines. Moreover, adhesion of the gastric cancer cells to Ln511-E8 fragment-coated plates was reduced by the Cdc42 GTPase inhibitor in a dose-dependent manner, suggesting the involvement of Cdc42 in the Ln511-E8 fragment-induced enhanced adhesion of gastric cancer cells. CONCLUSIONS The Ln511-E8 fragment had a greater impact on the adhesion, morphology, and proliferation of gastric cancer cells than full-length laminin. Thus, the Ln511-E8 fragment is suitable for investigating the interaction between gastric cancer cells and extracellular matrices in tumor invasion and metastasis.
Collapse
Affiliation(s)
- Masaya Iwamuro
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.S.); (M.K.); (H.O.)
| | - Hidenori Shiraha
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.S.); (M.K.); (H.O.)
| | - Mayu Kobashi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.S.); (M.K.); (H.O.)
| | - Shigeru Horiguchi
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan;
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.S.); (M.K.); (H.O.)
| |
Collapse
|
8
|
miR-126 in Extracellular Vesicles Derived from Hepatoblastoma Cells Promotes the Tumorigenesis of Hepatoblastoma through Inducing the Differentiation of BMSCs into Cancer Stem Cells. J Immunol Res 2021; 2021:6744715. [PMID: 34746322 PMCID: PMC8570887 DOI: 10.1155/2021/6744715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background Extracellular vesicles (EVs) can deliver miRNAs between cells and play a crucial role in hepatoblastoma progression. In this study, we explored the differentially expressed miRNAs related to tumor cell-derived EVs and the mechanism by which EVs regulate hepatoblastoma progression. Methods Bioinformatics analysis was performed to explore the differentially expressed miRNAs between the hepatoblastoma and adjacent normal tissues. TEM, NTA, and western blotting were conducted to identify EVs. The expression of miR-126-3p, miR-126-5p, miR-30b-3p, miR-30b-3p, SRY, IL-1α, IL-6, and TGF-β was detected by RT-qPCR. Immunofluorescence (IF) was used to analyze the expression of PKH67, and flow cytometry was applied to assess the ratio of CD44+ CD90+ CD133+ cells. ELISA was used to evaluate the levels of IL-6 and TGF-β. A xenograft mouse model was constructed to detect the function of EVs with downregulated miR-126. IHC was performed to calculate β-catenin levels in tumor tissues. Results miR-126 was upregulated in hepatoblastoma. EVs derived from hepatoblastoma cells significantly increased the ratio of CD44+ CD90+ CD133+ cells and increased the expression of IL-6, Oct4, SRY, and TGF-β in bone marrow mesenchymal stem cells (BMSCs), while EVs with downregulated miR-126 reversed these phenomena. miR-126 downregulation notably attenuated hepatoblastoma tumor growth and decreased the ratio of CD44+ CD90+ CD133+ cells and increased the expression of IL-6, Oct4, SRY, TGF-β, and β-catenin in tumor tissues of mice. Furthermore, EVs with downregulated miR-126 inhibited the differentiation of BMSCs into cancer stem cells. Conclusions Exosomal miR-126 derived from hepatoblastoma cells promoted the tumorigenesis of liver cancer through inducing the differentiation of BMSCs into cancer stem cells.
Collapse
|
9
|
Yuzuriha A, Eto K. Revised "hPSC-Sac Method" for Simple and Efficient Differentiation of Human Pluripotent Stem Cells to Hematopoietic Progenitor Cells. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2454:411-422. [PMID: 34724185 DOI: 10.1007/7651_2021_443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human hematopoietic differentiation in vitro of human pluripotent stem cells (hPSCs) has provided new tools to elucidate the mechanisms of related genetic abnormalities, such as congenital diseases and acquired hematopoietic malignancies, and to discover new treatments. The differentiation can also be applied to developing a stable source of blood products for transfusion with minimal risk of several blood-borne infections. We previously proposed a method for hematopoietic progenitor cell (HPC) differentiation, the "hPSC-sac method", in which hPSCs are cocultured with C3H10T1/2 mouse stromal cells and mixed with a single cytokine, VEGF. The hPSC-sac method can differentiate hPSCs to multiple blood lineages. Here we describe improvements in the method by adding bFGF, TGFβ inhibitor and heparin to the culture, which increases the yield of CD34+CD43+ HPCs 50-fold compared with the original protocol. This revised hPSC-sac method is expected to contribute to the development of disease models and regenerative medicine using hematopoietic lineage cells.
Collapse
Affiliation(s)
- Akinori Yuzuriha
- Department of Clinical Application, CiRA, Kyoto University, Kyoto, Japan
| | - Koji Eto
- Department of Clinical Application, CiRA, Kyoto University, Kyoto, Japan. .,Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.
| |
Collapse
|