1
|
Schrade L, Mah N, Bandrowski A, Chen Y, Dewender J, Diecke S, Hiepen C, Lancaster MA, Marques-Bonet T, Martinez S, Mueller SC, Navara C, Prigione A, Seltmann S, Sochacki J, Sutcliffe MA, Zywitza V, Hildebrandt TB, Kurtz A. A Standardized Nomenclature Design for Systematic Referencing and Identification of Animal Cellular Material. Animals (Basel) 2024; 14:1541. [PMID: 38891588 PMCID: PMC11171381 DOI: 10.3390/ani14111541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
The documentation, preservation and rescue of biological diversity increasingly uses living biological samples. Persistent associations between species, biosamples, such as tissues and cell lines, and the accompanying data are indispensable for using, exchanging and benefiting from these valuable materials. Explicit authentication of such biosamples by assigning unique and robust identifiers is therefore required to allow for unambiguous referencing, avoid identification conflicts and maintain reproducibility in research. A predefined nomenclature based on uniform rules would facilitate this process. However, such a nomenclature is currently lacking for animal biological material. We here present a first, standardized, human-readable nomenclature design, which is sufficient to generate unique and stable identifying names for animal cellular material with a focus on wildlife species. A species-specific human- and machine-readable syntax is included in the proposed standard naming scheme, allowing for the traceability of donated material and cultured cells, as well as data FAIRification. Only when it is consistently applied in the public domain, as publications and inter-institutional samples and data are exchanged, distributed and stored centrally, can the risks of misidentification and loss of traceability be mitigated. This innovative globally applicable identification system provides a standard for a sustainable structure for the long-term storage of animal bio-samples in cryobanks and hence facilitates current as well as future species conservation and biomedical research.
Collapse
Affiliation(s)
- Lisa Schrade
- Fraunhofer Institute for Biomedical Engineering (IBMT), 66280 Sulzbach, Germany
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research (IZW), 10315 Berlin, Germany
| | - Nancy Mah
- Fraunhofer Institute for Biomedical Engineering (IBMT), 66280 Sulzbach, Germany
| | - Anita Bandrowski
- Department of Neuroscience, FAIR Data Informatics Lab, University of California San Diego, San Diego, CA 92093, USA
- SciCrunch Inc., San Diego, CA 92192, USA
| | - Ying Chen
- Fraunhofer Institute for Biomedical Engineering (IBMT), 66280 Sulzbach, Germany
| | - Johannes Dewender
- Fraunhofer Institute for Biomedical Engineering (IBMT), 66280 Sulzbach, Germany
| | - Sebastian Diecke
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Christian Hiepen
- Fraunhofer Institute for Biomedical Engineering (IBMT), 66280 Sulzbach, Germany
| | - Madeline A. Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology, Pompeu Fabra University—Spanish National Research Council, ICREA, 08003 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Centro Nacional de Analisis Genomico (CNAG), 08028 Barcelona, Spain
- Catalan Institute of Palaeontology Miquel Crusafont, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Sira Martinez
- Institute of Evolutionary Biology, Pompeu Fabra University—Spanish National Research Council, ICREA, 08003 Barcelona, Spain
- European Molecular Biology Laboratory (EMBL) Barcelona, 08003 Barcelona, Spain
| | - Sabine C. Mueller
- Fraunhofer Institute for Biomedical Engineering (IBMT), 66280 Sulzbach, Germany
| | - Christopher Navara
- San Antonio Cellular Therapeutics Institute, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Duesseldorf University Hospital, Medical Faculty, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Stefanie Seltmann
- Fraunhofer Institute for Biomedical Engineering (IBMT), 66280 Sulzbach, Germany
| | - Jaroslaw Sochacki
- European Molecular Biology Laboratory (EMBL) Barcelona, 08003 Barcelona, Spain
| | | | - Vera Zywitza
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Thomas B. Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research (IZW), 10315 Berlin, Germany
- Faculty of Veterinary Medicine, Free University of Berlin, 14163 Berlin, Germany
| | - Andreas Kurtz
- Fraunhofer Institute for Biomedical Engineering (IBMT), 66280 Sulzbach, Germany
- Berlin Institute of Health (BIH), Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
| |
Collapse
|
2
|
KIMURA K, NAGAKURA H, TSUKAMOTO M, YOSHIDA T, SUGISAKI H, SHISHIDA K, TACHI Y, SHIMASAKI S, SUGIURA K, HATOYA S. Canine induced pluripotent stem cells can be successfully maintained in weekend-free culture systems. J Vet Med Sci 2024; 86:247-257. [PMID: 38171744 PMCID: PMC10963097 DOI: 10.1292/jvms.23-0422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
Canine induced pluripotent stem cells (ciPSCs) can provide useful insights into novel therapies in both veterinary and medical fields. However, limited accessibility to the present culture medium and requirement of considerable time, effort, and cost for routine ciPSC maintenance restrict advancement in ciPSC research. In addition, it is unknown whether ciPSC culture conditions influence differentiation propensity. We investigated the availability of the common human pluripotent stem cells (hPSCs) culture systems for ciPSC maintenance and the differentiation propensities of the ciPSCs maintained in these culture systems. StemFlex and mTeSR Plus supported PSC-like colony formation and pluripotency markers expression in ciPSCs even after five passages. Additionally, ciPSCs were maintained under weekend-free culture conditions with a stable growth rate, pluripotency marker expression, and differentiation abilities using vitronectin (VTN-N) and Geltrex. Following maintenance of spontaneously differentiated ciPSCs under various conditions by embryoid body formation, there were few differences in the differentiation propensities of ciPSCs among the tested culture conditions. Thus, ciPSCs were successfully cultured under weekend-free conditions for ciPSC maintenance using StemFlex or mTeSR Plus with VTN-N or Geltrex. The present study offers simpler and more effort-, time-, and cost-saving options for ciPSC culture systems, which may lead to further development in research using ciPSCs.
Collapse
Affiliation(s)
- Kazuto KIMURA
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| | - Hiroya NAGAKURA
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| | - Masaya TSUKAMOTO
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| | - Takumi YOSHIDA
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| | - Hiroko SUGISAKI
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| | - Kohei SHISHIDA
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| | - Yuta TACHI
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| | - Shoko SHIMASAKI
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| | - Kikuya SUGIURA
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| | - Shingo HATOYA
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
3
|
Miyamae J, Okano M, Katakura F, Kulski JK, Moritomo T, Shiina T. Large-Scale Polymorphism Analysis of Dog Leukocyte Antigen Class I and Class II Genes ( DLA-88, DLA-12/88L and DLA-DRB1) and Comparison of the Haplotype Diversity between Breeds in Japan. Cells 2023; 12:809. [PMID: 36899945 PMCID: PMC10001263 DOI: 10.3390/cells12050809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Polymorphisms of canine leukocyte antigen (DLA) class I (DLA-88 and DLA-12/88L) and class II (DLA-DRB1) genes are important for disease susceptibility studies, but information on the genetic diversity among dog breeds is still lacking. To better elucidate the polymorphism and genetic diversity between breeds, we genotyped DLA-88, DLA-12/88L, and DLA-DRB1 loci using 829 dogs of 59 breeds in Japan. Genotyping by Sanger sequencing identified 89, 43, and 61 alleles in DLA-88, DLA-12/88L, and DLA-DRB1 loci, respectively, and a total of 131 DLA-88-DLA-12/88L-DLA-DRB1 haplotypes (88-12/88L-DRB1) were detected more than once. Of the 829 dogs, 198 were homozygotes for one of the 52 different 88-12/88L-DRB1 haplotypes (homozygosity rate: 23.8%). Statistical modeling suggests that 90% of the DLA homozygotes or heterozygotes with one or other of the 52 different 88-12/88L-DRB1 haplotypes within somatic stem cell lines would benefit graft outcome after 88-12/88L-DRB1-matched transplantation. As previously reported for DLA class II haplotypes, the diversity of 88-12/88L-DRB1 haplotypes varied remarkably between breeds but was relatively conserved within most breeds. Therefore, the genetic characteristics of high DLA homozygosity rate and poor DLA diversity within a breed are useful for transplantation therapy, but they may affect biological fitness as homozygosity progresses.
Collapse
Affiliation(s)
- Jiro Miyamae
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari 794-8555, Japan
| | - Masaharu Okano
- Department of Legal Medicine, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Fumihiko Katakura
- Department of Veterinary Medicine, College of Bioresource Science, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Jerzy K. Kulski
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1143, Japan
| | - Tadaaki Moritomo
- Department of Veterinary Medicine, College of Bioresource Science, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1143, Japan
| |
Collapse
|
4
|
Menzorov AG. Pluripotent Stem Cells of Order Carnivora: Technical Perspective. Int J Mol Sci 2023; 24:ijms24043905. [PMID: 36835318 PMCID: PMC9963171 DOI: 10.3390/ijms24043905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Human and mouse induced pluripotent stem cells (PSCs) are widely used for studying early embryonic development and for modeling of human diseases. Derivation and studying of PSCs from model organisms beyond commonly used mice and rats may provide new insights into the modeling and treating human diseases. The order Carnivora representatives possess unique features and are already used for modeling human-related traits. This review focuses on the technical aspects of derivation of the Carnivora species PSCs as well as their characterization. Current data on dog, feline, ferret, and American mink PSCs are summarized.
Collapse
Affiliation(s)
- Aleksei G. Menzorov
- Sector of Cell Collections, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Natural Sciences Department, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Leeb T, Bannasch D, Schoenebeck JJ. Identification of Genetic Risk Factors for Monogenic and Complex Canine Diseases. Annu Rev Anim Biosci 2023; 11:183-205. [PMID: 36322969 DOI: 10.1146/annurev-animal-050622-055534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Advances in DNA sequencing and other technologies have greatly facilitated the identification of genetic risk factors for inherited diseases in dogs. We review recent technological developments based on selected examples from canine disease genetics. The identification of disease-causing variants in dogs with monogenic diseases may become a widely employed diagnostic approach in clinical veterinary medicine in the not-too-distant future. Diseases with complex modes of inheritance continue to pose challenges to researchers but have also become much more tangible than in the past. In addition to strategies for identifying genetic risk factors, we provide some thoughts on the interpretation of sequence variants that are largely inspired by developments in human clinical genetics.
Collapse
Affiliation(s)
- Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland;
| | - Danika Bannasch
- Department of Population Health and Reproduction, University of California, Davis, California, USA;
| | - Jeffrey J Schoenebeck
- The Roslin Institute and Royal (Dick) School for Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom;
| |
Collapse
|
6
|
Verma R, Lee Y, Salamone DF. iPSC Technology: An Innovative Tool for Developing Clean Meat, Livestock, and Frozen Ark. Animals (Basel) 2022; 12:3187. [PMID: 36428414 PMCID: PMC9686897 DOI: 10.3390/ani12223187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) technology is an emerging technique to reprogram somatic cells into iPSCs that have revolutionary benefits in the fields of drug discovery, cellular therapy, and personalized medicine. However, these applications are just the tip of an iceberg. Recently, iPSC technology has been shown to be useful in not only conserving the endangered species, but also the revival of extinct species. With increasing consumer reliance on animal products, combined with an ever-growing population, there is a necessity to develop alternative approaches to conventional farming practices. One such approach involves the development of domestic farm animal iPSCs. This approach provides several benefits in the form of reduced animal death, pasture degradation, water consumption, and greenhouse gas emissions. Hence, it is essentially an environmentally-friendly alternative to conventional farming. Additionally, this approach ensures decreased zoonotic outbreaks and a constant food supply. Here, we discuss the iPSC technology in the form of a "Frozen Ark", along with its potential impact on spreading awareness of factory farming, foodborne disease, and the ecological footprint of the meat industry.
Collapse
Affiliation(s)
- Rajneesh Verma
- VG Biomed Thailand Ltd., 888 Polaris Tower, 6th Floor, Soi Sukhumvit 20, Bangkok 10110, Thailand
| | - Younghyun Lee
- VG Biomed Thailand Ltd., 888 Polaris Tower, 6th Floor, Soi Sukhumvit 20, Bangkok 10110, Thailand
- Laboratory of Reproductive Biotechnology, Building 454, Rm 343, Gyeongsang National University, 501 Jinjudae-ro, Jinju 52828, Republic of Korea
| | - Daniel F. Salamone
- Department de Produccion Animal, Facultad de Agronomia, University of Buenos Aires, Av. San Martin 4453 Ciudad Autonoma de Buenos Aires, Buenos Aires B1406, Argentina
| |
Collapse
|
7
|
Yoshimatsu S, Yamazaki A, Edamura K, Koushige Y, Shibuya H, Qian E, Sato T, Okahara J, Kishi N, Noce T, Yamaguchi Y, Okano H. Step-by-step protocols for non-viral derivation of transgene-free induced pluripotent stem cells from somatic fibroblasts of multiple mammalian species. Dev Growth Differ 2022; 64:325-341. [PMID: 35841539 DOI: 10.1111/dgd.12798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
Abstract
Potentials of immortal proliferation and unlimited differentiation into all the three germ layers and germ cells in induced pluripotent stem cells (iPSCs) render them important bioresources for in vitro reconstitution and modeling of intravital tissues and organs in various animal models, thus contributing to the elucidation of pathomechanisms, drug discovery and stem cell-based regenerative medicine. We previously reported promising approaches for deriving transgene-free iPSCs from somatic fibroblasts of multiple mammalian species by episomal vector or RNA transfection, although the respective step-by-step protocols and the combinatorial usage of these methods, which achieved high induction efficiency, have not been described in literature so far. Here, we provide the detailed, step-by-step description of these methods with critical tips and slight modifications (improvements) from previously reported methods. We also report novel establishment of iPSCs from the Syrian hamster (also known as golden hamster; Mesocricetus auratus), a unique animal model of hibernation. We anticipate this methodology would contribute to the scientific communities of Stem Cell Biology and Regenerative Medicine.
Collapse
Affiliation(s)
- Sho Yoshimatsu
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.,Department of Physiology, School of Medicine, Keio University, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Atsushi Yamazaki
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kanagawa, Japan.,Vetanic Inc., Tokyo, Japan
| | - Kazuya Edamura
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kanagawa, Japan.,Vetanic Inc., Tokyo, Japan
| | | | - Hisashi Shibuya
- Laboratory of Veterinary Pathology, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Emi Qian
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Tsukika Sato
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.,Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Junko Okahara
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Noriyuki Kishi
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Toshiaki Noce
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Yoshifumi Yamaguchi
- Hibernation Metabolism, Physiology, and Development Group, Institute of Low Temperature Science, Hokkaido University, Hokkaido, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
8
|
Genetic Basis of Dilated Cardiomyopathy in Dogs and Its Potential as a Bidirectional Model. Animals (Basel) 2022; 12:ani12131679. [PMID: 35804579 PMCID: PMC9265105 DOI: 10.3390/ani12131679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/16/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Heart disease is a leading cause of death for both humans and dogs. Inherited heart diseases, including dilated cardiomyopathy (DCM), account for a proportion of these cases. Human and canine patients with DCM suffer from an enlarged heart that can no longer pump efficiently, resulting in heart failure. This causes symptoms or clinical signs like difficulty breathing, irregular heartbeat, and eventually death. The symptoms or clinical signs of this disease vary in age of onset at the beginning of symptoms, sex predisposition, and overall disease progression. Despite the many similarities in DCM in both species, only a few candidate genes so far have been linked to this disease in dogs versus tens of genes identified in human DCM. Additionally, the use of induced pluripotent stem cells, or engineered stem cells, has been widely used in the study of human genetic heart disease but has not yet been fully adapted to study heart disease in dogs. This review describes the current knowledge on the genetics and subtypes of naturally occurring DCM in dogs, and how advances in research might benefit the dog but also the human patient. Additionally, a novel method using canine engineered stem cells to uncover unknown contributions of mistakes in DNA to the progression of DCM will be introduced along with its applications for human DCM disease modeling and treatment. Abstract Cardiac disease is a leading cause of death for both humans and dogs. Genetic cardiomyopathies, including dilated cardiomyopathy (DCM), account for a proportion of these cases in both species. Patients may suffer from ventricular enlargement and systolic dysfunction resulting in congestive heart failure and ventricular arrhythmias with high risk for sudden cardiac death. Although canine DCM has similar disease progression and subtypes as in humans, only a few candidate genes have been found to be associated with DCM while the genetic background of human DCM has been more thoroughly studied. Additionally, experimental disease models using induced pluripotent stem cells have been widely adopted in the study of human genetic cardiomyopathy but have not yet been fully adapted for the in-depth study of canine genetic cardiomyopathies. The clinical presentation of DCM is extremely heterogeneous for both species with differences occurring based on sex predisposition, age of onset, and the rate of disease progression. Both genetic predisposition and environmental factors play a role in disease development which are identical in dogs and humans in contrast to other experimental animals. Interestingly, different dog breeds have been shown to develop distinct DCM phenotypes, and this presents a unique opportunity for modeling as there are multiple breed-specific models for DCM with less genetic variance than human DCM. A better understanding of DCM in dogs has the potential for improved selection for breeding and could lead to better overall care and treatment for human and canine DCM patients. At the same time, progress in research made for human DCM can have a positive impact on the care given to dogs affected by DCM. Therefore, this review will analyze the feasibility of canines as a naturally occurring bidirectional disease model for DCM in both species. The histopathology of the myocardium in canine DCM will be evaluated in three different breeds compared to control tissue, and the known genetics that contributes to both canine and human DCM will be summarized. Lastly, the prospect of canine iPSCs as a novel method to uncover the contributions of genetic variants to the pathogenesis of canine DCM will be introduced along with the applications for disease modeling and treatment.
Collapse
|