1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Clayton JS, Johari M, Taylor RL, Dofash L, Allan G, Monahan G, Houweling PJ, Ravenscroft G, Laing NG. An Update on Reported Variants in the Skeletal Muscle α-Actin ( ACTA1) Gene. Hum Mutat 2024; 2024:6496088. [PMID: 40225930 PMCID: PMC11918651 DOI: 10.1155/2024/6496088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 04/15/2025]
Abstract
The ACTA1 gene encodes skeletal muscle alpha-actin, which forms the core of the sarcomeric thin filament in adult skeletal muscle. ACTA1 represents one of six highly conserved actin proteins that have all been associated with human disease. The first 15 pathogenic variants in ACTA1 were reported in 1999, which expanded to 177 in 2009. Here, we update on the now 607 total variants reported in LOVD, HGMD, and ClinVar, which includes 343 reported pathogenic/likely pathogenic (P/LP) variants. We also provide suggested ACTA1-specific modifications to ACMG variant interpretation guidelines based on our analysis of known variants, gnomAD reports, and pathogenicity in other actin isoforms. Using these criteria, we report a total of 447 P/LP ACTA1 variants. From a clinical perspective, the number of reported ACTA1 disease phenotypes has grown from five to 20, albeit with some overlap. The vast majority (74%) of ACTA1 variants cause nemaline myopathy (NEM), but there are increasing numbers that cause cardiomyopathy and novel phenotypes such as distal myopathy. We highlight challenges associated with identifying genotype-phenotype correlations for ACTA1. Finally, we summarize key animal models and review the current state of preclinical treatments for ACTA1 disease. This update provides important resources and recommendations for the study and interpretation of ACTA1 variants.
Collapse
Affiliation(s)
- Joshua S. Clayton
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Mridul Johari
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
- Folkhälsan Research Center, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Rhonda L. Taylor
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Lein Dofash
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Georgina Allan
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Gavin Monahan
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Peter J. Houweling
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Pediatrics, University of Melbourne, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Nigel G. Laing
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| |
Collapse
|