1
|
Wijaya LS, Kunnen SJ, Trairatphisan P, Fisher CP, Crosby ME, Schaefer K, Bodié K, Vaughan EE, Breidenbach L, Reich T, Clausznitzer D, Bonnet S, Zheng S, Pont C, Stevens JL, Le Dévédec SE, van de Water B. Spatio-temporal transcriptomic analysis reveals distinct nephrotoxicity, DNA damage, and regeneration response after cisplatin. Cell Biol Toxicol 2025; 41:49. [PMID: 39982567 PMCID: PMC11845422 DOI: 10.1007/s10565-025-10003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Nephrotoxicity caused by drug or chemical exposure involves complex mechanisms as well as a temporal integration of injury and repair responses in different nephron segments. Distinct cellular transcriptional programs regulate the time-dependent tissue injury and regeneration responses. Whole kidney transcriptome analysis cannot dissect the complex spatio-temporal injury and regeneration responses in the different nephron segments. Here, we used laser capture microdissection of formalin-fixed paraffin embedded sections followed by whole genome targeted RNA-sequencing-TempO-Seq and co-expression gene-network (module) analysis to determine the spatial-temporal responses in rat kidney glomeruli (GM), cortical proximal tubules (CPT) and outer-medulla proximal tubules (OMPT) comparison with whole kidney, after a single dose of the nephrotoxicant cisplatin. We demonstrate that cisplatin induced early onset of DNA damage in both CPT and OMPT, but not GM. Sustained DNA damage response was strongest in OMPT coinciding with OMPT specific inflammatory signaling, actin cytoskeletal remodeling and increased glycolytic metabolism with suppression of mitochondrial activity. Later responses reflected regeneration-related cell cycle pathway activation and ribosomal biogenesis in the injured OMPT regions. Activation of modules containing kidney injury biomarkers was strongest in OMPT, with OMPT Clu expression highly correlating with urinary clusterin biomarker measurements compared the correlation of Kim1. Our findings also showed that whole kidney responses were less sensitive than OMPT. In conclusion, our LCM-TempO-Seq method reveals a detailed spatial mechanistic understanding of renal injury/regeneration after nephrotoxicant exposure and identifies the most representative mechanism-based nephron segment specific renal injury biomarkers.
Collapse
Affiliation(s)
- Lukas S Wijaya
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Steven J Kunnen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Panuwat Trairatphisan
- Abbvie Deutschland, GmbH & Co KG, Ludwigshafen, Germany
- , Sanofi, Frankfurt, Hesse, Germany
| | | | - Meredith E Crosby
- Global Pharmaceutical Research and Development, AbbVie, North Chicago, IL, USA
- Drug Safety and Pharmacometrics, Regeneron Pharmaceuticals Inc, Tarrytown, NY, USA
| | - Kai Schaefer
- Abbvie Deutschland, GmbH & Co KG, Ludwigshafen, Germany
| | - Karen Bodié
- Abbvie Deutschland, GmbH & Co KG, Ludwigshafen, Germany
| | - Erin E Vaughan
- Global Pharmaceutical Research and Development, AbbVie, North Chicago, IL, USA
| | | | - Thomas Reich
- Abbvie Deutschland, GmbH & Co KG, Ludwigshafen, Germany
| | | | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Sipeng Zheng
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Chantal Pont
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - James L Stevens
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sylvia E Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
2
|
Ma H, Peng G, Hu Y, Lu B, Zheng Y, Wu Y, Feng W, Shi Y, Pan X, Song L, Stützer I, Liu Y, Fei J. Revealing the biological features of the axolotl pancreas as a new research model. Front Cell Dev Biol 2025; 13:1531903. [PMID: 39958891 PMCID: PMC11825805 DOI: 10.3389/fcell.2025.1531903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025] Open
Abstract
Introduction The pancreas plays a crucial role in digestion and blood glucose regulation. Current animal models, primarily mice and zebrafish, have limited the exploration of pancreatic biology from an evolutionary-developmental perspective. Tetrapod vertebrate axolotl (Ambystoma mexicanum) serves as a valuable model in developmental, regenerative, and evolutionary biology. However, the fundamental biology of the axolotl pancreas remains underexplored. This study aims to characterize the unique developmental, functional, and evolutionary features of the axolotl pancreas to expand the understanding of pancreatic biology. Methods We conducted morphological, histological, and transcriptomic analyses to investigate the axolotl pancreas. Pancreatic development was observed using in situ hybridization and immunostaining for key pancreatic markers. RNA sequencing was performed to profile global gene expression during larva and adult stages. And differential gene expression analysis was used to characterize the conserved and unique gene patterns in the axolotl pancreas. Functional assays, including glucose tolerance tests and insulin tolerance tests, were optimized for individual axolotls. To assess pancreatic gene function, Pdx1 mutants were generated using CRISPR/Cas9-mediated gene editing, and their effects on pancreatic morphology, endocrine cell populations, and glucose homeostasis were analyzed. Results The axolotl pancreas contains all known pancreatic cell types and develops from dorsal and ventral buds. Both of buds contribute to exocrine and endocrine glands. The dorsal bud produces the major endocrine cell types, while the ventral bud generates α and δ cells, but not β cells. Differential gene expression analysis indicated a transition in global gene expression from pancreatic cell fate commitment and the cell cycle to glucose response, hormone synthesis, and secretion, following the development progression. Notably, the adult axolotl pancreas exhibits slower metabolic activity compared to mammals, as evidenced by the results of GTT and ITT. The mutation of Pdx1 resulted in hyperglycemia and a significant reduction in pancreatic cell mass, including a complete loss of endocrine cells, although it did not lead to a lethal phenotype. Discussion This study examines the axolotl pancreas, highlighting the conservation of pancreatic development. Our study highlights the unique features of the axolotl pancreas and broadens the scope of animal models available for pancreatic evolution and disease research.
Collapse
Affiliation(s)
- Hui Ma
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- BGI Research, Qingdao, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guangcong Peng
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yan Hu
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Binbin Lu
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yiying Zheng
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yingxian Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Weimin Feng
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Yu Shi
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Xiangyu Pan
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Li Song
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ina Stützer
- Deutsche Forschungsgemeinschaft (DFG)-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jifeng Fei
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Zhang Y, Feng X, Zheng B, Liu Y. Regulation and mechanistic insights into tensile strain in mesenchymal stem cell osteogenic differentiation. Bone 2024; 187:117197. [PMID: 38986825 DOI: 10.1016/j.bone.2024.117197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are integral to bone remodeling and homeostasis, as they are capable of differentiating into osteogenic and adipogenic lineages. This differentiation is substantially influenced by mechanosensitivity, particularly to tensile strain, which is a prevalent mechanical stimulus known to enhance osteogenic differentiation. This review specifically examines the effects of various cyclic tensile stress (CTS) conditions on BMSC osteogenesis. It delves into the effects of different loading devices, magnitudes, frequencies, elongation levels, dimensionalities, and coculture conditions, providing a comparative analysis that aids identification of the most conducive parameters for the osteogenic differentiation of BMSCs. Subsequently, this review delineates the signaling pathways activated by CTS, such as Wnt/β-catenin, BMP, Notch, MAPK, PI3K/Akt, and Hedgehog, which are instrumental in mediating the osteogenic differentiation of BMSCs. Through a detailed examination of these pathways, this study elucidates the intricate mechanisms whereby tensile strain promotes osteogenic differentiation, offering valuable guidance for optimizing therapeutic strategies aimed at enhancing bone regeneration.
Collapse
Affiliation(s)
- Yongxin Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang 110002, China; Shenyang Clinical Medical Research Center of Orthodontic Disease, China
| | - Xu Feng
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang 110002, China; Shenyang Clinical Medical Research Center of Orthodontic Disease, China
| | - Bowen Zheng
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang 110002, China; Shenyang Clinical Medical Research Center of Orthodontic Disease, China.
| | - Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang 110002, China; Shenyang Clinical Medical Research Center of Orthodontic Disease, China.
| |
Collapse
|
4
|
He J, Liu H, Li Z, Xu M, Zhang Y, Jiang T, Mo L. Integrated transcriptomic and metabolomic analysis of the hepatotoxicity of dichloroacetonitrile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172237. [PMID: 38582105 DOI: 10.1016/j.scitotenv.2024.172237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Dichloroacetonitrile (DCAN), an emerged nitrogenous disinfection by-product (N-DBP) in drinking water, has garnered attention owing to its strong cytotoxicity, genotoxicity, and carcinogenicity. However, there are limited studies on its potential hepatotoxicity mechanisms. Understanding hepatotoxicity is essential in order to identify and assess the potential risks posed by environmental pollutants on liver health and to safeguard public health. Here, we investigated the viability, reactive oxygen species (ROS) levels, and cell cycle profile of DCAN-exposed HepG2 cells and analyzed the mechanism of DCAN-induced hepatotoxicity using both transcriptomic and metabolomic techniques. The study revealed that there was a decrease in cell viability, increase in ROS production, and increase in the number of cells in the G2/M phase with an increase in the concentration of DCAN. Omics analyses showed that DCAN exposure increased cellular ROS levels, leading to oxidative damage in hepatocytes, which further induced DNA damage, cell cycle arrest, and cell growth impairment. Thus, DCAN has significant toxic effects on hepatocytes. Integrated analysis of transcriptomics and metabolomics offers new insights into the mechanisms of DCAN-induced hepatoxicity.
Collapse
Affiliation(s)
- Jinfeng He
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Hongyan Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China.
| | - Zemeng Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Minhua Xu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Yong Zhang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Tiemin Jiang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Lingyun Mo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| |
Collapse
|
5
|
Yang B, Li X. Unveiling the Mechanisms of Bone Marrow Toxicity Induced by Lead Acetate Exposure. Biol Trace Elem Res 2024; 202:1041-1066. [PMID: 37378799 DOI: 10.1007/s12011-023-03733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Lead (Pb), a widespread heavy metal, causes severe toxicity in human and animal organs (e.g., bone marrow), whereas the mechanisms of the bone marrow toxicity induced by Pb exposure are unclear. Hence, this study was designed to reveal the hub genes involved in Pb-induced bone marrow toxicity. GSE59894 dataset obtained from Gene Expression Omnibus (GEO) was composed of lead acetate (PbAc2)-treated and control bone marrow samples. Totally 120 and 85 differentially expressed genes (DEGs) were identified on the 1st day, while 153 and 157 DEGs on the 3rd day in the bone marrow treated with 200 and 600 mg/kg of PbAc2, respectively. Notably, a total of 28 and 32 overlapping DEGs were identified in the bone marrow on the 1st and 3rd day treated with PbAc2, respectively. Biological process analysis suggested that the common DEGs were primarily participated in cell differentiation, the response to drug, xenobiotic stimulus, and organic cyclic compound. Pathway analysis demonstrated that the overlapping DEGs were primarily linked to PI3K-Akt, TGF-β, MAPK, and osteoclast differentiation signaling pathways. Moreover, the hub genes, including PLD2, DAPK1, ALB, TNF, FOS, CDKN1A, and TGFB3, might contribute to PbAc2-induced bone marrow toxicity. Overall, our study offers an important insight into the molecular mechanisms of Pb-induced bone marrow toxicity.
Collapse
Affiliation(s)
- Bing Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Xiaofeng Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China.
| |
Collapse
|
6
|
Hauser M, Zirman A, Rak R, Nachman I. Challenges and opportunities in cell expansion for cultivated meat. Front Nutr 2024; 11:1315555. [PMID: 38385010 PMCID: PMC10879929 DOI: 10.3389/fnut.2024.1315555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
The cultivation of meat using in vitro grown animal stem cells offers a promising solution to pressing global concerns around climate change, ethical considerations, and public health. However, cultivated meat introduces an unprecedented necessity: the generation of mass scales of cellular biomaterial, achieved by fostering cell proliferation within bioreactors. Existing methods for in vitro cell proliferation encounter substantial challenges in terms of both scalability and economic viability. Within this perspective, we discuss the current landscape of cell proliferation optimization, focusing on approaches pertinent to cellular agriculture. We examine the mechanisms governing proliferation rates, while also addressing intrinsic and conditional rate limitations. Furthermore, we expound upon prospective strategies that could lead to a significant enhancement of the overall scalability and cost-efficiency of the cell proliferation phase within the cultivated meat production process. By exploring knowledge from basic cell cycle studies, pathological contexts and tissue engineering, we may identify innovative solutions toward optimizing cell expansion.
Collapse
Affiliation(s)
- Michelle Hauser
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amit Zirman
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Institute for Animal Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Roni Rak
- Institute for Animal Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Iftach Nachman
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Bourgery M, Ekholm E, Hiltunen A, Heino TJ, Pursiheimo JP, Bendre A, Yatkin E, Laitala T, Määttä J, Säämänen AM. Signature of circulating small non-coding RNAs during early fracture healing in mice. Bone Rep 2022; 17:101627. [PMID: 36304905 PMCID: PMC9593857 DOI: 10.1016/j.bonr.2022.101627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/04/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Fracture healing is a complex process with multiple overlapping metabolic and differentiation phases. Small non-coding RNAs are involved in the regulation of fracture healing and their presence in circulation is under current interest due to their obvious value as potential biomarkers. Circulating microRNAs (miRNAs) have been characterized to some extent but the current knowledge on tRNA-derived small RNA fragments (tsRNAs) is relatively scarce, especially in circulation. In this study, the spectrum of circulating miRNAs and tsRNAs was analysed by next generation sequencing to show their differential expression during fracture healing in vivo. Analysed tsRNA fragments included stress-induced translation interfering tRNA fragments (tiRNAs or tRNA halves) and internal tRNA fragments (i-tRF), within the size range of 28–36 bp. To unveil the expression of these non-coding RNAs, genome-wide analysis was performed on two months old C57BL/6 mice on days 1, 5, 7, 10, and 14 (D1, D5, D7, D10, and D14) after a closed tibial fracture. Valine isoacceptor tRNA-derived Val-AAC 5′end and Val-CAC 5′end fragments were the major types of 5′end tiRNAs in circulation, comprising about 65 % of the total counts. Their expression was not affected by fracture. After a fracture, the levels of two 5′end tiRNAs Lys-TTT 5′ and Lys-CTT 5′ were decreased and His-GTG 5′ was increased through D1-D14. The level of miR-451a was decreased on the first post-fracture day (D1), whereas miR-328-3p, miR-133a-3p, miR-375-3p, miR-423-5p, and miR-150-5p were increased post-fracture. These data provide evidence on how fracture healing could provoke systemic metabolic effects and further pinpoint the potential of small non-coding RNAs as biomarkers for tissue regeneration.
Collapse
Affiliation(s)
- Matthieu Bourgery
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland
| | - Erika Ekholm
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland
| | | | - Terhi J. Heino
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland
| | - Juha-Pekka Pursiheimo
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland,Genomill Health, Turku, Finland
| | - Ameya Bendre
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland,Division of Pediatric Endocrinology and Center for Molecular Medicine, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Emrah Yatkin
- Central Animal Laboratory, University of Turku, Turku, Finland
| | - Tiina Laitala
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland
| | - Jorma Määttä
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland,Turku Center for Disease Modeling (TCDM), Turku, Finland
| | - Anna-Marja Säämänen
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland,Corresponding author at: Institute of Biomedicine, University of Turku, Finland.
| |
Collapse
|
8
|
Roth DM, Souter K, Graf D. Craniofacial sutures: Signaling centres integrating mechanosensation, cell signaling, and cell differentiation. Eur J Cell Biol 2022; 101:151258. [PMID: 35908436 DOI: 10.1016/j.ejcb.2022.151258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022] Open
Abstract
Cranial sutures are dynamic structures in which stem cell biology, bone formation, and mechanical forces interface, influencing the shape of the skull throughout development and beyond. Over the past decade, there has been significant progress in understanding mesenchymal stromal cell (MSC) differentiation in the context of suture development and genetic control of suture pathologies, such as craniosynostosis. More recently, the mechanosensory function of sutures and the influence of mechanical signals on craniofacial development have come to the forefront. There is currently a gap in understanding of how mechanical signals integrate with MSC differentiation and ossification to ensure appropriate bone development and mediate postnatal growth surrounding sutures. In this review, we discuss the role of mechanosensation in the context of cranial sutures, and how mechanical stimuli are converted to biochemical signals influencing bone growth, suture patency, and fusion through mediation of cell differentiation. We integrate key knowledge from other paradigms where mechanosensation forms a critical component, such as bone remodeling and orthodontic tooth movement. The current state of the field regarding genetic, cellular, and physiological mechanisms of mechanotransduction will be contextualized within suture biology.
Collapse
Affiliation(s)
- Daniela Marta Roth
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| | - Katherine Souter
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| | - Daniel Graf
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
9
|
Juran CM, Zvirblyte J, Almeida E. Differential Single Cell Responses of Embryonic Stem Cells Versus Embryoid Bodies to Gravity Mechanostimulation. Stem Cells Dev 2022; 31:346-356. [PMID: 35570697 PMCID: PMC9293686 DOI: 10.1089/scd.2022.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The forces generated by gravity have shaped life on Earth and impact gene expression and morphogenesis during early development. Conversely, disuse on Earth or during spaceflight, reduces normal mechanical loading of organisms, resulting in altered cell and tissue function. Although gravity mechanical loading in adult mammals is known to promote increased cell proliferation and differentiation, little is known about how distinct cell types respond to gravity mechanostimulation during early development. In this study we sought to understand, with single cell RNA-sequencing resolution, how a 60-min pulse of 50 g hypergravity (HG)/5 kPa hydrostatic pressure, influences transcriptomic regulation of developmental processes in the embryoid body (EB) model. Our study included both day-9 EBs and progenitor mouse embryonic stem cells (ESCs) with or without the HG pulse. Single cell t-distributed stochastic neighbor mapping shows limited transcriptome shifts in response to the HG pulse in either ESCs or EBs; this pulse however, induces greater positional shifts in EB mapping compared to ESCs, indicating the influence of mechanotransduction is more pronounced in later states of cell commitment within the developmental program. More specifically, HG resulted in upregulation of self-renewal and angiogenesis genes in ESCs, while in EBs, HG loading was associated with upregulation of Gene Ontology-pathways for multicellular development, mechanical signal transduction, and DNA damage repair. Cluster transcriptome analysis of the EBs show HG promotes maintenance of transitory cell phenotypes in early development; including EB cluster co-expression of markers for progenitor, post-implant epiblast, and primitive endoderm phenotypes with HG pulse but expression exclusivity in the non-pulsed clusters. Pseudotime analysis identified three branching cell types susceptible to HG induction of cell fate decisions. In totality, this study provides novel evidence that ESC maintenance and EB development can be regulated by gravity mechanostimulation and that stem cells committed to a differentiation program are more sensitive to gravity-induced changes to their transcriptome.
Collapse
Affiliation(s)
| | - Justina Zvirblyte
- Vilnius University, 54694, Sector of Microtechnologies, Institute of Biotechnology, Life Sciences Center,, Vilnius, Vilnius, Lithuania
| | - Eduardo Almeida
- NASA AMES Research Center, Space Biosciences Division, Bldg 236 rm 217, Moffett Field , California, United States, 94035-1000, ,
| |
Collapse
|
10
|
Li F, Ye Y, Lei X, Zhang W. Effects of Microgravity on Early Embryonic Development and Embryonic Stem Cell Differentiation: Phenotypic Characterization and Potential Mechanisms. Front Cell Dev Biol 2021; 9:797167. [PMID: 34926474 PMCID: PMC8675004 DOI: 10.3389/fcell.2021.797167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
With the development of science and technology, mankind’s exploration of outer space has increased tremendously. Settling in outer space or on other planets could help solve the Earth’s resource crisis, but such settlement will first face the problem of reproduction. There are considerable differences between outer space and the Earth’s environment, with the effects of gravity being one of the most significant. Studying the possible effects and underlying mechanisms of microgravity on embryonic stem cell (ESC) differentiation and embryonic development could help provide solutions to healthy living and reproduction in deep space. This article summarizes recent research progress on the effects of microgravity on ESCs and early embryonic development and proposes hypotheses regarding the potential mechanisms. In addition, we discuss the controversies and key questions in the field and indicate directions for future research.
Collapse
Affiliation(s)
- Feng Li
- Department of Urinary Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Ye
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Xiaohua Lei
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China.,Department of Physiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|