1
|
Ali AA, Safi IN. Impact of nano-cellulose fiber addition on physico-mechanical properties of room temperature vulcanized maxillofacial silicone material. J Taibah Univ Med Sci 2023; 18:1616-1626. [PMID: 37711757 PMCID: PMC10497998 DOI: 10.1016/j.jtumed.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/17/2023] [Accepted: 07/01/2023] [Indexed: 09/16/2023] Open
Abstract
Objectives Maxillofacial silicone is used to restore abnormalities due to congenital or acquired causes. However, the quality of silicone is far from ideal. This study was aimed at assessing the influence of the addition of cellulose nanofibers (CNFs; several nanometers in diameter and 2-5 μm long) on the physical and mechanical characteristics of maxillofacial silicone elastomers. Methods Two CNF weight percentages (0.5% and 1%) were tested, and 180 specimens were divided into one control and two experimental groups. Each group was subdivided into six subgroups. In each subgroup, ten specimens subjected to each of the following tests: tearing strength, Shore-A hardness, tensile strength, elongation percentage, surface roughness, and color stability. The samples were additionally analyzed with Fourier transform infrared spectroscopy (FTIR) and field emission scanning electronic microscopy (FESEM). Results The 0.5% CNF group, compared with the control group, exhibited highly significantly greater tearing strength, elongation percentage, hardness Shore-A, and surface roughness, and substantially greater tensile strength. However, color stability did not significantly differ between groups.The 1% CNF group showed significantly greater Shore-A hardness, tear strength, color stability, and surface roughness, and insignificantly lower tensile strength and percentage elongating values, than the control group. FESEM imaging revealed good CNF dispersion. The FTIR spectra indicated that CNFs interacted with silicone through surface functional hydroxyl groups. Conclusion Addition of 0.5 wt. % CNF to silicone elastomers increased the material's mechanical tensile strength, tear strength, elongation percentage, and hardness as long as it stayed within the acceptable range for clinical use. Surface roughness increased in direct proportion to the amount of nanofibers added. Moreover, addition of 0.5 wt. % CNF to silicone polymers had insignificant effects on color stability.
Collapse
Affiliation(s)
- Ashraf Abdulrazzaq Ali
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Ihab Nabeel Safi
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
2
|
Gradinaru I, Ciubotaru BI, Butnaru M, Cojocaru FD, Covașă CT, Bibire T, Dascalu M, Bargan A, Cazacu M, Zaltariov MF. The Impact of the Addition of Vitamins on a Silicone Lining Material to the Oral Mucosa Tissue-Evaluation of the Biocompatibility, Hydrolytic Stability and Histopathological Effect. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1936. [PMID: 38003985 PMCID: PMC10673301 DOI: 10.3390/medicina59111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: One's quality of life depends on overall health, and in particular, oral health, which has been and continues to become a public health issue through frequent manifestations in various forms, from simple oral stomatitis (inflammations of the oral cavity) to the complicated oral health pathologies requiring medical interventions and treatments (caries, pulp necrosis and periodontitis). The aim of this study focused on the preparation and evaluation of vitamins (vitamin A, B1 and B6) incorporated into several silicone-based lining materials as a new alternative to therapeutically loaded materials designed as oral cavity lining materials in prosthodontics. Materials and Methods: Silicone-based liners containing vitamins were prepared by mixing them in solution and becoming crosslinked, and then they were characterized using Fourier-transform infrared (FT-IR) spectroscopy to confirm the incorporation of the vitamins into the silicone network; scanning electron microscopy (SEM) to evidence the morphology of the liner materials; dynamic vapor sorption (DVS) to evaluate their internal hydrophobicity, swelling in environments similar to biological fluids and mechanical test to demonstrate tensile strength; MTT to confirm their biocompatibility on normal cell cultures (fibroblast) and mucoadhesivity; and histopathological tests on porcine oral mucosa to highlight their potential utility as soft lining materials with improved efficiency. Results: FT-IR analysis confirmed the structural peculiarities of the prepared lining materials and the successful incorporation of vitamins into the silicone matrix. The surface roughness of the materials was lower than 0.2 μm, while in cross-section, the lining materials showed a compact morphology. It was found that the presence of vitamins induced a decrease in the main mechanical parameters (strength and elongation at break, Young's modulus) and hydrophobicity, which varied from one vitamin to another. A swelling degree higher than 8% was found in PBS 6.8 (artificial saliva) and water. Hydrolytic stability studies in an artificial saliva medium showed the release of low concentrations of silicone and vitamin fragments in the first 24 h, which increased the swelling behavior of the materials, diffusion and solubility of the vitamins. The microscopic images of fibroblast cells incubated with vitamin liners revealed very good biocompatibility. Also, the silicone liners incorporating the vitamins showed good mucoadhesive properties. The appearance of some pathological disorders with autolysis processes was more pronounced in the case of vitamin A liners. Conclusions: The addition of the vitamins was shown to have a beneficial effect that was mainly manifested as increased biocompatibility, hydrolytic stability and mucoadhesiveness with the mucosa of the oral cavity and less of an effect on the mechanical strength. The obtained lining materials showed good resistance in simulated biological media but caused a pronounced autolysis phenomenon, as revealed by histopathological examination, showing that these materials may have broad implications in the treatment of oral diseases.
Collapse
Affiliation(s)
- Irina Gradinaru
- Department of Implantology, Removable Dentures, Technology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Bianca Iulia Ciubotaru
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41 A, 700487 Iasi, Romania; (B.I.C.); (M.D.); (A.B.); (M.C.)
| | - Maria Butnaru
- Biomedical Sciences Department, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 9-13 Kogalniceanu Street, 700454 Iasi, Romania; (M.B.); (F.D.C.)
| | - Florina Daniela Cojocaru
- Biomedical Sciences Department, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 9-13 Kogalniceanu Street, 700454 Iasi, Romania; (M.B.); (F.D.C.)
| | - Costică Toader Covașă
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences—IULS, Aleea Mihail Sadoveanu nr. 3, 700490 Iasi, Romania;
| | - Teofana Bibire
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Mihaela Dascalu
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41 A, 700487 Iasi, Romania; (B.I.C.); (M.D.); (A.B.); (M.C.)
| | - Alexandra Bargan
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41 A, 700487 Iasi, Romania; (B.I.C.); (M.D.); (A.B.); (M.C.)
| | - Maria Cazacu
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41 A, 700487 Iasi, Romania; (B.I.C.); (M.D.); (A.B.); (M.C.)
| | - Mirela-Fernanda Zaltariov
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41 A, 700487 Iasi, Romania; (B.I.C.); (M.D.); (A.B.); (M.C.)
| |
Collapse
|
3
|
Kiat-amnuay S, Cevik P, Kurtoglu C. Effect of Thixotropic Agent on the Color Stability of Platinum-Based Silicone Maxillofacial Elastomers after Artificial Aging. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5867. [PMID: 37687559 PMCID: PMC10488689 DOI: 10.3390/ma16175867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Maxillofacial prostheses are essential for restoring natural appearance and function in individuals with defects in the head and neck regions. Thixotropic agents, as liquid additives, are known to increase the viscosity of silicone elastomers. However, color deterioration remains a challenge in facial prostheses, leading to the need for refabrication. Despite this, there is limited research on the effect of thixotropic agents on the color stability of silicone maxillofacial elastomers. This study aims to investigate the impact of different thixotropic agent amounts on the color degradation of various maxillofacial silicone elastomers. Three elastomers (A-2000, A-2006, and A-2186) were combined with five pigments (no pigment as control, red, yellow, blue, and a mixture of red, yellow, and blue), and mixed with six thixotropic agent quantities (0, 1, 2, 3, 4, and 5 drops). A total of 450 specimens were fabricated (n = 5) and aged in an artificial aging chamber. L*, a*, b* readings were obtained before and after aging using a digital spectrophotometer. Color difference (ΔE*) means and standard deviations for 150 kj/m2, 300 kj/m2, and 450 kj/m2 were calculated. Statistical analyses, including four-way ANOVA and Fisher's PLSD test, were conducted to determine any significant differences (p < 0.05) among the groups. A comprehensive analysis revealed significant four-way interactions among the groups. In the mixed-pigmentation group, adding 4 drops of thixotropic agent resulted in ΔE* above 3 only in A-2186 silicone at 300 and 450 kj/m2 energy levels. However, the color stability of mixed-pigmented A-2000 and A-2006 remained within the acceptable thresholds of 3 ΔE* at all irradiance levels in this study. At each energy level, A-2006 exhibited the highest color stability with an increasing thixotropic agent quantity among all the silicones. Conversely, A-2186 was more affected by the increased number of thixotropic agent drops in each pigmentation group, including the control group at 450 kj/m2. The quantity of thixotropic agent plays a crucial role in determining the color stability of different silicone elastomers pigmented with various intrinsic pigments. The thixotropic agent amount has a more significant impact on color stability than the type of pigment used in the silicone elastomers. A key overarching insight from this investigation is the identification of a safety threshold for the thixotropic agent quantity of 3 drops for each silicone type, pigmentation, and energy level. These findings highlight the importance of considering the proper combination of thixotropic agents, pigments, and silicone materials to achieve optimal color stability in maxillofacial prosthetic applications.
Collapse
Affiliation(s)
- Sudarat Kiat-amnuay
- Department of General Practice and Dental Public Health, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Houston Center for Biomaterials and Biomimetics, Houston, TX 77054, USA
| | - Pinar Cevik
- Department of General Practice and Dental Public Health, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Houston Center for Biomaterials and Biomimetics, Houston, TX 77054, USA
- Department of Prosthodontics, Faculty of Dentistry, Gazi University, Ankara 06490, Türkiye;
| | - Cem Kurtoglu
- Department of Prosthodontics, Faculty of Dentistry, Cukurova University, Adana 01250, Türkiye
| |
Collapse
|
4
|
Enhancement of Tech-Sil25 Maxillofacial Silicone Mechanical Properties after Artificial Weathering through Addition of Nanoparticles. Int J Dent 2022; 2022:4082168. [PMID: 36624857 PMCID: PMC9825234 DOI: 10.1155/2022/4082168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 01/02/2023] Open
Abstract
Purpose To evaluate the effect of nanosilica and nanoalumina addition in Tech-sil25 maxillofacial silicone before and after exposure to artificial weathering conditions. Materials and Methods A total of 144 samples were divided into four groups, a control group (n = 12) and three test groups, nanosilica (NS) (n = 36), nanoalumina (NA) (n = 36), and a hybrid nanoparticle (HySA) (n = 60) at different weight percentages (1, 2, and 3 wt. %) was added to Tech-sil25. Samples were exposed to artificial weathering for 100 hours, and subjected to characterizations involving tear strength, shore A hardness, roughness, and tensile strength tests. The data were analyzed using descriptive and inferential statistics using a one-way ANOVA test to determine the level of significance between the groups. Results After 100 hours of artificial weathering, the one-way ANOVA result shows a highly significant increase in tensile and tear strengths with a minimal increase in hardness and roughness observed in samples containing 2% nanosilica (NS) followed by hybrid nanoparticle (HySA) of 1% nanoalumina (NA) + 1% nanosilica (NS) compared with a control group and other groups. Conclusions The addition of nanosilica (NS), nanoalumina (NA), and a hybrid nanoparticle (HySA) to the Tech-sil25 maxillofacial silicone improved its mechanical properties. The combination of several filler reinforcements is essential for enhancing silicone's antiaging properties of silicone and maintaining some of its mechanical properties to prolong the service life.
Collapse
|
5
|
Anjos DSC, Revoredo ECV, Galembeck A. Microwave‐assisted processing of silicone/
PMMA
blends for maxillofacial prostheses. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Débora S. C. Anjos
- Departamento de Química Fundamental/CCEN Universidade Federal de Pernambuco Recife Pernambuco Brazil
- Coordenação de Licenciatura em Química Instituto Federal do Sertão Pernambucano, Campus Petrolina Petrolina Pernambuco Brazil
| | - Eliane C. V. Revoredo
- Departamento de Prótese e Cirurgia Buco‐Facial/CCS Universidade Federal de Pernambuco, Programa de Pós‐Graduação em Odontologia Recife Pernambuco Brazil
| | - André Galembeck
- Departamento de Química Fundamental/CCEN Universidade Federal de Pernambuco Recife Pernambuco Brazil
| |
Collapse
|
6
|
Influence of Different Pigmentations and Accelerated Aging on the Hardness and Tear Strength of the A-2186 and MDX4-4210 Silicones. Int J Dent 2020; 2020:8492091. [PMID: 32884572 PMCID: PMC7455814 DOI: 10.1155/2020/8492091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/22/2020] [Accepted: 07/25/2020] [Indexed: 11/17/2022] Open
Abstract
Objective To evaluate the influence of different pigmentations and accelerated aging on the hardness and tear strength of the A-2186 and MDX4-4210 silicones. Materials and Methods The samples A-2186 and MDX4-4210 were manufactured without and with pigmentations (black, bronze, and pink). For the Shore A hardness test, 80 samples of each silicone were fabricated, and for the tear strength test, 320 samples of each silicone were fabricated. Eight groups were created for each test (n = 10). These tests were performed before and after 252, 504, and 1008 hours of aging. Three-way repeated-measures analysis of variance and the Tukey test were performed (α = 0.05). Results The A-2186 silicone showed higher hardness and tear strength when compared with the MDX4-4210 silicone (p < 0.05), except in the hardness of the A-2186 and MDX4-4210 groups without pigmentation after 1008 hours (p > 0.05). All hardness values were between 25 and 35 units, regardless of the silicone type, period, and pigmentation (or no pigmentation). In most situations, the hardness of silicones used increased after 252 hours (p < 0.05). The nonpigmented MDX4-4210 group and all A-2186 groups showed an increase in tear strength after 252 hours (p < 0.05). For the nonpigmented MDX4-4210 group, from 252 to 1008 hours, there was no change in tear strength (p > 0.05). All pigmented MDX4-4210 groups showed no change in tear strength from 0 (initial) to 1008 hours of aging (p > 0.05). In all A-2186 groups, from 252 to 504 hours, there was a reduction in tear strength (p < 0.05), and from 504 to 1008 hours, there was an increase in tear strength (p < 0.05), except in the bronze A-2186 group (p > 0.05). Conclusion In most situations, the A-2186 silicone showed significantly higher values of hardness and tear strength than the MDX4-4210 silicone. All hardness values were considered clinically acceptable. Accelerated aging could increase, decrease, or not significantly change the hardness and tear strength of the silicones used. The results of hardness and tear strength suggest that MDX4-4210 was more influenced by the presence of pigmentation after aging.
Collapse
|
7
|
Abdul-Ameer FM. Impact of a mixture of nanofiller and intrinsic pigment on tear strength and hardness of two types of maxillofacial silicone elastomers. Dent Res J (Isfahan) 2020; 17:251-257. [PMID: 33282150 PMCID: PMC7688038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND The ideal maxillofacial prosthesis should have fine and thin boundaries that bind with the surrounding facial structures and possess high tear strength. This study aims to determine the best percentages of nanofiller (TiO2) and intrinsic pigment (silicone functional intrinsic) that could be mixed in as additives to improve the tear strength of Cosmesil M511 and VST50F silicone elastomers with the least effect on their hardness. MATERIALS AND METHODS In this in vitro experimental study, a total of 80 samples, 40 for each elastomer, were fabricated. Each elastomer sample was split into two equal groups to test for tear strength and Shore A hardness. Each group consisted of 20 samples, including 10 control samples without additives and 10 experimental samples with additives (mixtures of 0.2 wt% nano-TiO2+ 0.25 wt% intrinsic pigment and 0.25 wt% nano-TiO2+ 0.25 wt% intrinsic pigment for the Cosmesil M511 and VST50F silicone elastomers, respectively). Two-way ANOVA and Tukey test were used for comparison; P < 0.05 was considered statistically significant. RESULTS Significant differences in tear strength were found among all tested groups (P < 0.05). The tear strength of the experimental subgroups significantly increased compared with the control subgroups (P < 0.05). Significant differences in Shore A hardness were also observed among all tested groups (P < 0.05) except between the experimental subgroups of both materials, where a nonsignificant difference was obtained (P > 0.05). CONCLUSION Incorporation of select percentages of TiO2 nanofiller and intrinsic pigment into Cosmesil M511 and VST50F silicone elastomers yields improvements in tear strength with a slight increase in hardness.
Collapse
Affiliation(s)
- Faiza M. Abdul-Ameer
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Bab-Almoadham, Baghdad, Iraq,Address for correspondence: Dr. Faiza M. Abdul-Ameer, Department of Prosthodontics, College of Dentistry, University of Baghdad, Bab-Almoadham, P.O. Box 1417, Baghdad, Iraq. E-mail:
| |
Collapse
|
8
|
Singh S, Dhakar GL, Kapgate BP, Maji PK, Verma C, Chhajed M, Rajkumar K, Das C. Synthesis and chemical modification of crystalline nanocellulose to reinforce natural rubber composites. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Shiva Singh
- Department of Chemistry Visvesvaraya National Institute of Technology Nagpur India
| | - Gopal L. Dhakar
- Department of Chemistry Visvesvaraya National Institute of Technology Nagpur India
| | | | - Pradip K. Maji
- Department of Polymer and Process Engineering Indian Institute of Technology Roorkee Saharanpur India
| | - Chhavi Verma
- Department of Polymer and Process Engineering Indian Institute of Technology Roorkee Saharanpur India
| | - Monika Chhajed
- Department of Polymer and Process Engineering Indian Institute of Technology Roorkee Saharanpur India
| | | | - Chayan Das
- Department of Chemistry Visvesvaraya National Institute of Technology Nagpur India
| |
Collapse
|
9
|
Evaluation of Some Mechanical Properties of a Maxillofacial Silicon Elastomer Reinforced with Polyester Powder. Int J Dent 2019. [DOI: 10.1155/2019/2948457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Maxillofacial silicone elastomers are used to replace and reconstruct missing facial parts for patients with trauma or a certain disease. Although commonly favorable silicone elastomers are not ideal in properties, many studies have been carried out to improve their mechanical properties and to come out with ideal maxillofacial prosthetic materials, so as to render patients with the best maxillofacial prostheses. The aim of the current study is to evaluate the effect of addition of different concentrations of polyester powder on hardness, tear strength, surface roughness, and tensile strength of maxillofacial A-2186 RTV silicone elastomers. Polyester powder was added to the silicone elastomer in the concentrations of 1%, 3% and 5% by using an electronic digital balance, compared with the control group of 0% polyester filler. The shore A hardness test was done according to ASTM D 2240 standards. The tear test was done according to ASTM D624 type C standards. The tensile test was done according to ISO specification number 37:2011. The surface roughness test was performed according to ISO 7619-1 2010 specifications. The data collected were then analyzed using one-way analysis of variance (ANOVA) and post hoc and Fisher’s LSD tests. All three groups showed a highly significant increase in tear strength, tensile strength, hardness, and roughness, compared to the control group. Reinforcement of A-2186 Platinum RTV Silicone Elastomer with 5% polyester significantly improved the mechanical properties tested in this study.
Collapse
|
10
|
Mechanical Behaviour of Silicone Membranes Saturated with Short Strand, Loose Polyester Fibres for Prosthetic and Rehabilitative Surrogate Skin Applications. MATERIALS 2019; 12:ma12223647. [PMID: 31698723 PMCID: PMC6887981 DOI: 10.3390/ma12223647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 01/01/2023]
Abstract
Silicone-based elastomers saturated with embedded, short-strand fibres are used for their ability to mimic the aesthetic qualities of skin in clinical and theatrical maxillofacial appliance design. Well-known to prostheses fabricators and technicians, the mechanical impact of fibre addition on elastomeric behaviour endures as tacit, embodied knowledge of the craft, almost unknown in the literature. To examine mechanical changes caused by fibre addition, 100 modified polydimethylsiloxane (PDMS) elastomeric compounds containing incremental amounts of loose polyester fibres were prepared and examined in a variety of mechanical tests. It was found that elasticity and strain percentage at breaking point was reduced by increasing fibre content, but Young’s modulus and ultimate tensile strength (UTS) increased. As fibre content was increased, strain hardening was seen at low strain rates, but exaggerated plastic deformation at high strain rates. PDMS hardness increased by 5 degrees of hardness (Shore-00 scale) for every additional percentage of fibres added and a strong positive linear coefficient (0.993 and 0.995) was identified to reach the hardness values given in the literature for living human skin. The apparent reorienting of loose fibres in the PDMS interrupts and absorbs stress during the loading process similar to the organic response to soft tissue loading, except in extension.
Collapse
|
11
|
Shakir DA, Abdul-Ameer FM. Effect of nano-titanium oxide addition on some mechanical properties of silicone elastomers for maxillofacial prostheses. J Taibah Univ Med Sci 2018; 13:281-290. [PMID: 31435335 PMCID: PMC6694880 DOI: 10.1016/j.jtumed.2018.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE This study evaluated the effects of adding titanium oxide (TiO2) nanofillers on the tear strength, tensile strength, elongation percentage, and hardness of room-temperature-vulcanized (RTV) VST50F and high-temperature-vulcanized (HTV) Cosmesil M511 maxillofacial silicone elastomers. METHODS Two types of maxillofacial elastomers, VST50F RTV and Cosmesil M511 HTV, were used. Nano-TiO2 powder was applied as a nanofiller. A total of 120 specimens were fabricated, 60 each of VST50F and Cosmesil M511. The specimens of each type of elastomer were divided into three equal groups on which tests were conducted for tear strength, tensile strength, and hardness i.e., 20 specimens were used for each test. Each group of 20 specimens was further divided into two equal subgroups: (A) control i.e., silicone without nano-TiO2, and (B) experimental i.e., VST50F and Cosmesil M511 silicone incorporated with 0.25 wt% and 0.2 wt% nano-TiO2, respectively. Each subgroup thus had 10 specimens. The specimens were evaluated, and data were studied using descriptive statistical analysis and two-way analysis of variance (ANOVA). RESULTS The addition of 0.25 wt% and 0.2 wt% TiO2 nanofiller into VST50F and Cosmesil M511 elastomers, respectively, resulted in a statistically significant increase in the mean values (p < 0.01) of tear strength, tensile strength, elongation percentage, and hardness of the materials. CONCLUSION The mechanical properties of the VST50F and Cosmesil M511 maxillofacial silicone materials improved with the addition of select concentrations of nano-TiO2.
Collapse
Affiliation(s)
| | - Faiza M. Abdul-Ameer
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|