1
|
Goel K, Pek V, Shlobin NA, Chen JS, Wang A, Ibrahim GM, Hadjinicolaou A, Roessler K, Dudley RW, Nguyen DK, El-Tahry R, Fallah A, Weil AG. Clinical utility of intraoperative electrocorticography for epilepsy surgery: A systematic review and meta-analysis. Epilepsia 2023; 64:253-265. [PMID: 36404579 DOI: 10.1111/epi.17472] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
Despite the widespread use of intraoperative electrocorticography (iECoG) during resective epilepsy surgery, there are conflicting data on its overall efficacy and inability to predict benefit per pathology. Given the heterogeneity of iECoG use in resective epilepsy surgery, it is important to assess the utility of interictal-based iECoG. This individual patient data (IPD) meta-analysis seeks to identify the benefit of iECoG during resective epilepsy surgery in achieving seizure freedom for various pathologies. Embase, Scopus, and PubMed were searched from inception to January 31, 2021 using the following terms: "ecog", "electrocorticography", and "epilepsy". Articles were included if they reported seizure freedom at ≥12-month follow-up in cohorts with and without iECoG for epilepsy surgery. Non-English articles, noncomparative iECoG cohorts, and studies with <10% iECoG use were excluded. This meta-analysis followed the PRISMA 2020 guidelines. The primary outcome was seizure freedom at last follow-up and time to seizure recurrence, if applicable. Forest plots with random effects modeling assessed the relationship between iECoG use and seizure freedom. Cox regression of IPD was performed to identify predictors of longer duration of seizure freedom. Kaplan-Meier curves with log-rank test were created to visualize differences in time to seizure recurrence. Of 7504 articles identified, 18 were included for study-level analysis. iECoG was not associated with higher seizure freedom at the study level (relative risk = 1.09, 95% confidence interval [CI] = 0.96-1.23, p = .19, I2 = 64%), but on IPD (n = 7 studies, 231 patients) iECoG use was independently associated with more favorable seizure outcomes (hazard ratio = 0.47, 95% CI = .23-.95, p = .037). In Kaplan-Meier analysis of specific pathologies, iECoG use was significantly associated with longer seizure freedom only for focal cortical dysplasia (FCD; p < .001) etiology. Number needed to treat for iECoG was 8.8, and for iECoG in FCD it was 4.7. We show iECoG seizure freedom is not achieved uniformly across centers. iECoG is particularly beneficial for FCD etiology in improving seizure freedom.
Collapse
Affiliation(s)
- Keshav Goel
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Valérie Pek
- Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Nathan A Shlobin
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jia-Shu Chen
- Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Andrew Wang
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
- College of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, Los Angeles, California, USA
| | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Aristides Hadjinicolaou
- Division of Neurology, Department of Pediatrics, Sainte-Justine University Hospital Centre, Montreal, Quebec, Canada
- Brain and Development Research Axis, Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - Karl Roessler
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Roy W Dudley
- Division of Pediatric Neurosurgery, Department of Pediatric Surgery, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada
| | - Dang K Nguyen
- Department of Neurology, University of Montreal Hospital Centre, Montreal, Quebec, Canada
| | - Riëm El-Tahry
- Saint Luc University Hospital, Brussels, Belgium
- Institute of Neuroscience, Neurology pole, Catholic University of Louvain, Brussels, Belgium
| | - Aria Fallah
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
- Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Alexander G Weil
- Brain and Development Research Axis, Sainte-Justine Research Centre, Montreal, Quebec, Canada
- Division of Neurosurgery, Department of Surgery, Sainte-Justine University Hospital Centre, Montreal, Quebec, Canada
- Division of Neurosurgery, Department of Surgery, University of Montreal Hospital Centre, Montreal, Quebec, Canada
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Chacón LMM, García LG, García-Ramón KB, Báez Martin MM, Bayard JB, Alfonso MA, Batista SB, Bermudez TDLP, González JG, Coroneaux AS, Ruiz ÁÁ, Roque MP, Matamoro LM. Common ictal and interictal perfusion patterns. A window into the epileptogenic network and SUDEP mechanism in Drug Resistant Focal Epilepsy? Curr Pharm Des 2022; 28:1198-1209. [PMID: 35658889 DOI: 10.2174/1381612828666220603125328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Focal epilepsies have been described as network disease. Noninvasive investigative techniques have been used to characterize epileptogenic networks. OBJETIVE To describe ictal and interictal cortical and subcortical perfusion patterns using single photon emission computed tomography (SPECT), in patients with drug-resistant epilepsy (DRE). METHODS Thirty-five interictal- ictal SPECT scans were obtained from 15 patients with DRE. A methodology was developed to get a relative perfusion index (PI) of 74 cortical and sub-cortical brain structures. K-means algorithm together with a modified v-fold cross-validation were used to identify the two regions of interest (ROI's) that represent hypoperfused and hyperperfused areas. RESULTS In common with the individual analysis, the statistical analysis evidenced that the hyperperfusion ROIs resulting from group analysis during interictal, and ictal involved mainly the cingulate gyrus, cuneus, the lingual gyrus, gyrus rectus as well as the putamen. ROIs hypoperfused included the red nucleus, the substantia nigra, and the medulla. The medians of the group analysis of the hypoperfusion and hyperperfusion ROIs were 0.601-0.565 and 1,133 - 1,119 for the ictal and interictal states, correspondingly. A group of mostly cortical structures involved in the hyperperfused ROIs in both interictal and ictal states showed no change or negative change in the transition from interictal to ictal state (mean change of -0.002). On the other hand, the brain stem, basal ganglia, red nucleus, and thalamus revealed a mean global change of 0.19, indicating a mild increase in the PI. However, some of these structures (red nucleus, substantia nigra, and medulla oblongata) remained hypoperfused during the interictal to ictal transition. CONCLUSION The methodology employed made it possible to identify common cortical and subcortical perfusion patterns not directly linked to epileptogenicity, but open a window for the epileptogenic network and sudden unexpected death (SUDEP) mechanism in DRE .
Collapse
Affiliation(s)
| | - Lidice Galan García
- Clinical Neurophysiology International Center of Neurologic Restoration Cuba
| | | | | | - Jorge Bosch Bayard
- Clinical Neurophysiology International Center of Neurologic Restoration Cuba
| | | | | | | | | | | | - Ángel Águila Ruiz
- Clinical Neurophysiology International Center of Neurologic Restoration Cuba
| | | | | |
Collapse
|
3
|
Nowak A, Bala A. Occult focal cortical dysplasia may predict poor outcome of surgery for drug-resistant mesial temporal lobe epilepsy. PLoS One 2021; 16:e0257678. [PMID: 34591859 PMCID: PMC8483375 DOI: 10.1371/journal.pone.0257678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The results of surgery in patients with mesial temporal lobe epilepsy (MTLE) associated with hippocampal sclerosis (HS) are favorable, with a success rate over 70% following resection. An association of HS with focal cortical dysplasia (FCD) in the temporal lobe is one of the potential causes for poor surgical outcome in MTLE. We aimed to analyzed seizure outcome in a population of MTLE patients and recognize the role of occult FCD in achieving postoperative seizure control. METHODS We retrospectively analyzed postoperative outcomes for 82 consecutive adult patients with the syndrome of MTLE due to HS, who had no concomitant lesions within temporal lobe in MRI and who underwent surgical treatment in the years 2005-2016, and correlated factors associated with seizure relapse. RESULTS At the latest follow-up evaluation after surgery, 59 (72%) were free of disabling seizures (Engel Class I) and 48 (58,5%) had an Engel Class Ia. HS associated with FCD in neocortical structures were noted in 33 patients (40%). Analyzes have shown that dual pathology was the most significant negative predictive factor for Engel class I and Engel class Ia outcome. CONCLUSIONS The incidence of dual pathology in patients with temporal lobe epilepsy seems to be underestimated. An incomplete epileptogenic zone resection of occult focal temporal dysplasia within temporal lobe is supposed to be the most important negative prognostic factor for seizure freedom after epilepsy surgery in MTLE-HS patients. The study indicates the need to improve diagnostics for other temporal lobe pathologies, despite the typical clinical and radiological picture of MTLE-HS.
Collapse
Affiliation(s)
- Arkadiusz Nowak
- Department of Neurosurgery, Medical University of Warsaw, Warsaw, Poland
- * E-mail:
| | | |
Collapse
|
4
|
Castro-Torres RD, Ureña-Guerrero ME, Morales-Chacón LM, Lorigados-Pedre L, Estupiñan-Díaz B, Rocha L, Orozco-Suárez S, Rivera-Cervantes MC, Alonso-Vanegas M, Beas-Zárate C. New Aspects of VEGF, GABA, and Glutamate Signaling in the Neocortex of Human Temporal Lobe Pharmacoresistant Epilepsy Revealed by RT-qPCR Arrays. J Mol Neurosci 2020; 70:916-929. [DOI: 10.1007/s12031-020-01519-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
|
5
|
Tatum WO, Feyissa AM, ReFaey K, Grewal SS, Alvi MA, Castro-Apolo R, Roth G, Segura-Duran I, Mahato D, Ruiz-Garcia H, Pamias-Portalatin E, Yelvington K, Chaichana K, Bechtle P, Quinones-Hinojosa A. Periodic focal epileptiform discharges. Clin Neurophysiol 2019; 130:1320-1328. [DOI: 10.1016/j.clinph.2019.04.718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/30/2019] [Accepted: 04/22/2019] [Indexed: 11/16/2022]
|
6
|
Roessler K, Heynold E, Buchfelder M, Stefan H, Hamer HM. Current value of intraoperative electrocorticography (iopECoG). Epilepsy Behav 2019; 91:20-24. [PMID: 30420228 DOI: 10.1016/j.yebeh.2018.06.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Intraoperative electrocorticography (iopECoG) can contribute to delineate the resection borders of the anticipated epileptogenic zone in epilepsy surgery. However, it has several caveats that should be considered to avoid incorrect interpretation during intraoperative monitoring. METHODS The literature on iopECoG application was reviewed, and pros and cons as well as obstacles to this technique were analyzed. RESULTS The literature of the first half of the nineties was very enthusiastic in using iopECoG for tailoring the resection in temporal as well as extratemporal epilepsy surgery. Mostly, this resulted in a good correlation of postresection ECoG and excellent seizure outcome. In the second half of the nineties, many authors demonstrated lack of correlation between iopECoG and postoperative seizure outcome, especially in surgery for temporal lobe epilepsy with hippocampal sclerosis. In the noughties, investigators found that ECoG was significantly useful in neocortical lesional temporal lobe epilepsy as well as in extratemporal lesional epilepsies. Extratemporal epilepsy without lesions proved to be more a domain of chronic extraoperative ECoG, especially using depth electrode recordings. In recent years, iopECoG detecting high-frequency oscillations (ripples, 80-250 Hz, fast ripples, 250-500 Hz) for tailored resection was found to allow intraoperative prediction of postoperative seizure outcome. CONCLUSION After a period of scepticism, iopECoG seems back in the focus of interest for intraoperative guidance of resecting epileptogenic tissue to raise postoperative favorable seizure outcome. In temporal and extratemporal lesional epilepsies, especially in cases of focal cortical dysplasia, tuberous sclerosis, or cavernous malformations, an excellent correlation between iopECoG-guided resection and postoperative seizure relief was found.
Collapse
Affiliation(s)
- Karl Roessler
- Neurosurgical Clinic, University Hospital Erlangen, Germany.
| | | | | | - Hermann Stefan
- Epilepsy Center, Neurological Clinic, University Hospital Erlangen, Germany
| | - Hajo M Hamer
- Epilepsy Center, Neurological Clinic, University Hospital Erlangen, Germany
| |
Collapse
|
7
|
Electrocorticographic Patterns in Epilepsy Surgery and Long-Term Outcome. J Clin Neurophysiol 2017; 34:520-526. [DOI: 10.1097/wnp.0000000000000407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
8
|
Zijlmans M, Worrell GA, Dümpelmann M, Stieglitz T, Barborica A, Heers M, Ikeda A, Usui N, Le Van Quyen M. How to record high-frequency oscillations in epilepsy: A practical guideline. Epilepsia 2017. [PMID: 28622421 DOI: 10.1111/epi.13814] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Technology for localizing epileptogenic brain regions plays a central role in surgical planning. Recent improvements in acquisition and electrode technology have revealed that high-frequency oscillations (HFOs) within the 80-500 Hz frequency range provide the neurophysiologist with new information about the extent of the epileptogenic tissue in addition to ictal and interictal lower frequency events. Nevertheless, two decades after their discovery there remain questions about HFOs as biomarkers of epileptogenic brain and there use in clinical practice. METHODS In this review, we provide practical, technical guidance for epileptologists and clinical researchers on recording, evaluation, and interpretation of ripples, fast ripples, and very high-frequency oscillations. RESULTS We emphasize the importance of low noise recording to minimize artifacts. HFO analysis, either visual or with automatic detection methods, of high fidelity recordings can still be challenging because of various artifacts including muscle, movement, and filtering. Magnetoencephalography and intracranial electroencephalography (iEEG) recordings are subject to the same artifacts. SIGNIFICANCE High-frequency oscillations are promising new biomarkers in epilepsy. This review provides interested researchers and clinicians with a review of current state of the art of recording and identification and potential challenges to clinical translation.
Collapse
Affiliation(s)
- Maeike Zijlmans
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Gregory A Worrell
- Mayo Systems Electrophysiology Laboratory, Departments of Neurology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Matthias Dümpelmann
- Epilepsy Center, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK and BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | | | - Marcel Heers
- Epilepsy Center, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Brainlinks-Braintools, Cluster of Excellence, University of Freiburg, Freiburg, Germany.,Ruhr-Epileptology/Department of Neurology, University Hospital Bochum, Bochum, Germany
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naotaka Usui
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Michel Le Van Quyen
- Institute for Brain and Spinal Cord, Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|
9
|
Korsakova MB, Kozlova AB, Arkhipova NA, Shishkina LV, Vorob'ev AN, Sorokin VS, Masherov EL, Melikyan AG. [Comparison of electrocorticographic patterns with focal cortical dysplasia types in children with epilepsy]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2015; 79:19-27. [PMID: 26528609 DOI: 10.17116/neiro201579519-27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE the objective of the study was to determine significant differences in electrocorticographic patterns for various types of focal cortical dysplasias. MATERIAL AND METHODS 42 patients diagnosed with drug-resistant focal epilepsy were operated on at the Burdenko Neurosurgical Institute in the period from 2006 to 2013. Patients who were histologically diagnosed with focal cortical dysplasia (FCD) and underwent video-electroencephalography and electrocorticography were analyzed. RESULTS The classification of epileptiform patterns proposed by Palmini in 1995 was used. The sporadic epileptiform activity pattern was predominant in electrocorticographic studies. The continued pattern was more frequent in the case of type II focal cortical dysplasias (FCDs), both combined and isolated; burst and sporadic activity patterns prevailed in combinations in the case of type III FCDs. A uniform distribution of all pattern types of the epileptiform activity was observed in type I FCDs. The data are statistically significant for groups with sporadic and continued patterns. CONCLUSION The continued epileptiform activity pattern is predominant in type II focal cortical dysplasia that corresponds to the most pronounced epileptogenesis processes of brain tissue with the presence of pathological forms of neurons. A uniform pattern distribution is observed for type I FCD. Patterns of the epileptiform activity and sporadic spike bursts are predominant in the case of type III FCDs. The sporadic activity is likely to be non-specific and almost uniformly distributed in all types of cortical dysplasias.
Collapse
Affiliation(s)
| | - A B Kozlova
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | | | - A N Vorob'ev
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - V S Sorokin
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - E L Masherov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A G Melikyan
- Burdenko Neurosurgical Institute, Moscow, Russia
| |
Collapse
|
10
|
Surgery for focal cortical dysplasia in children using intraoperative mapping. Childs Nerv Syst 2014; 30:1839-51. [PMID: 25296545 DOI: 10.1007/s00381-014-2459-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Children with malformation of cortical development represent a significant proportion of pediatric epilepsy surgery candidates. Here, we describe a single-center experience with pediatric patients who underwent surgery for intractable epilepsy due to focal cortical dysplasia (FCD). METHODS Clinical data of 78 patients under 18 years of age with diagnosis of intractable epilepsy due to FCD who underwent surgery from January 1996 to January 2012 were reviewed comparing data of patients submitted to electrocorticography (ECoG) with those without ECoG. RESULTS Patients' mean age at surgery was 8.52 ± 4.99 years; mean age at epilepsy onset was 2.55 ± 3.01 years. Almost 80 % of the patients underwent ECoG register that was essential for delimitation of surgical resection in 66 out of 78 patients. ECoG was performed in all patients with extratemporal lesions, and the most common FCD found was type II. Seizure outcome was similar in groups with or without ECoG. CONCLUSIONS Tailored resection of FCD lesions for intractable epilepsy can be safely performed in children with a good seizure outcome and low complication rate. Epilepsy surgery should be considered for all patients with FCD and refractory epilepsy.
Collapse
|
11
|
Hemb M, Palmini A, Paglioli E, Paglioli EB, Costa da Costa J, Azambuja N, Portuguez M, Viuniski V, Booij L, Nunes ML. An 18-year follow-up of seizure outcome after surgery for temporal lobe epilepsy and hippocampal sclerosis. J Neurol Neurosurg Psychiatry 2013; 84:800-5. [PMID: 23408065 DOI: 10.1136/jnnp-2012-304038] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To evaluate the very long-term clinical outcome of surgery for mesial temporal lobe epilepsy and unilateral hippocampal sclerosis (MTLE/HS) without atypical features. The impact of surgical technique and postoperative reduction of medication on this outcome was investigated. DESIGN Prospective longitudinal cohort follow-up study for up to18 years. SETTING Epilepsy surgery centre in a university hospital. PATIENTS 108 patients who underwent unilateral MTLE/HS. INTERVENTION Surgery for MTLE/HS. MAIN OUTCOME MEASURE Engel classification (I). Clinical evaluations were based on systematic interviews in person or by phone. Kaplan-Maier survival curves estimated the probability of remaining seizure free. The impact of medication management in the postoperative outcome was analysed using Cox regression. RESULTS The probability of remaining completely seizure-free at 12 and 18 years after MTLE/HS surgery was 65% and 62%, respectively. The risk of having any recurrence was 22% during the first 24 months and increased 1.4% per year afterwards. Type of surgical technique (selective amygdalohippocampectomy vs anterior temporal lobectomy) did not impact on outcome. Remaining on antiepileptic drugs and history of generalised clonic seizure diminished the probability of remaining seizure free. CONCLUSIONS MTLE/HS surgery is able to keep patients seizure free for almost up to two decades. Removal of the neocortex besides the mesial portion of the temporal lobe does not lead to better chances of seizure control. These findings are applicable to the typical unilateral MTLE/HS syndrome and cannot be generalised for all types of TLE. Future longitudinal randomised controlled studies are needed to replicate these findings.
Collapse
Affiliation(s)
- Marta Hemb
- Serviço de Neurologia, Hospital São Lucas da PUCRS. Av. Ipiranga, 6690 #220 90610-000, Porto Alegre, RS, Brazil;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wray CD, McDaniel SS, Saneto RP, Novotny EJ, Ojemann JG. Is postresective intraoperative electrocorticography predictive of seizure outcomes in children? J Neurosurg Pediatr 2012; 9:546-51. [PMID: 22546034 DOI: 10.3171/2012.1.peds11441] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Intraoperative electrocorticography (ECoG) is commonly used to guide the extent of resection, especially in lesion-associated intractable epilepsy. Interictal epileptiform discharges on postresective ECoG (post-ECoG) have been predictive of seizure recurrence in some studies, particularly in adults undergoing medial temporal lobectomy, frontal lesionectomy, or low-grade glioma resection. The predictive value of postresective discharges in pediatric epilepsy surgery has not been extensively studied. METHODS The authors retrospectively examined the charts of all 52 pediatric patients who had undergone surgery with post-ECoG and had more than 1 year of follow-up between October 1, 2003, and October 1, 2009. RESULTS Of the 52 pediatric patients, 37 patients showed residual discharges at the end of their resection and 73% of these patients were seizure free, whereas 15 patients had no residual discharges and 60% of them were seizure-free, which was not significantly different (p = 0.36, chi-square). CONCLUSIONS Electrocorticography-guided surgery was associated with excellent postsurgical outcome. Although this sample size was too small to detect a subtle difference, absence of epileptiform discharges on post-ECoG does not appear to predict seizure freedom in all pediatric patients referred for epilepsy surgery. Future studies with larger study samples would be necessary to confirm this finding and determine whether post-ECoG may be useful in some subsets of pediatric epilepsy surgery candidates.
Collapse
Affiliation(s)
- Carter D Wray
- Department of Neurology, University of Washington, Seattle, WA, USA.
| | | | | | | | | |
Collapse
|
13
|
Pail M, Mareček R, Hermanová M, Slaná B, Tyrlíková I, Kuba R, Brázdil M. The role of voxel-based morphometry in the detection of cortical dysplasia within the temporal pole in patients with intractable mesial temporal lobe epilepsy. Epilepsia 2012; 53:1004-12. [DOI: 10.1111/j.1528-1167.2012.03456.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|