1
|
Galvão IC, Lemoine M, Messias LA, Araújo PA, Geraldis JC, Yasuda CL, Alvim MK, Ghizoni E, Tedeschi H, Cendes F, Rogerio F, Lopes-Cendes I, Veiga DF. Multimodal single-cell profiling reveals neuronal vulnerability and pathological cell states in focal cortical dysplasia. iScience 2024; 27:111337. [PMID: 39640563 PMCID: PMC11617397 DOI: 10.1016/j.isci.2024.111337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/25/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Focal cortical dysplasia (FCD) is a neurodevelopmental condition characterized by malformations of the cerebral cortex that often cause drug-resistant epilepsy. In this study, we performed multi-omics single-nuclei profiling to map the chromatin accessibility and transcriptome landscapes of FCD type II, generating a comprehensive multimodal single-nuclei dataset comprising 61,525 cells from 11 clinical samples of lesions and controls. Our findings revealed profound chromatin, transcriptomic, and cellular alterations affecting neuronal and glial cells in FCD lesions, including the selective loss of upper-layer excitatory neurons, significant expansion of oligodendrocytes and immature astrocytic populations, and a distinct neuronal subpopulation harboring dysmorphic neurons. Furthermore, we uncovered activated microglia subsets, particularly in FCD IIb cases. This comprehensive study unveils neuronal and glial cell states driving FCD development and epileptogenicity, enhancing our understanding of FCD and offering directions for targeted therapy development.
Collapse
Affiliation(s)
- Isabella C. Galvão
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Manuela Lemoine
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Lauana A. Messias
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Patrícia A.O.R.A. Araújo
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Jaqueline C. Geraldis
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Clarissa L. Yasuda
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marina K.M. Alvim
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Enrico Ghizoni
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Helder Tedeschi
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernando Cendes
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fabio Rogerio
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Iscia Lopes-Cendes
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Diogo F.T. Veiga
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
Maurer SV, Kong C, Terrando N, Williams CL. Dietary Choline Protects Against Cognitive Decline After Surgery in Mice. Front Cell Neurosci 2022; 15:671506. [PMID: 34970119 PMCID: PMC8712952 DOI: 10.3389/fncel.2021.671506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Perioperative neurocognitive disorders (PNDs) are a common complication following procedures such as orthopedic surgery. Using a mouse model of tibial fracture and repair surgery, we have previously shown an increase in neuroinflammation and hippocampal-dependent cognitive deficits. These changes were ameliorated with the addition of a cholinergic agonist. Here, we sought to examine the effects of a high-choline diet for 3 weeks prior to tibial fracture surgery. We evaluated memory using novel object recognition (NOR) as well as young neurons and glial cell morphology at 1 day and 2 weeks post-surgery. At both time points, tibial fracture impaired NOR performance, and dietary choline rescued these impairments. Astrocytic density and hilar granule cells increased 1 day after tibial fracture, and these increases were partially blunted by dietary choline. An increase in young neurons in the subgranular zone of the dentate gyrus was found 2 weeks after tibial fracture. This increase was partially blunted by choline supplementation. This suggests that shortly after tibial fracture, hippocampal reorganization is a possible mechanism for acute impaired memory. These findings together suggest that non-pharmaceutical approaches, such as pre-surgical dietary intervention with choline, may be able to prevent PNDs.
Collapse
Affiliation(s)
- Sara V Maurer
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States.,Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Cuicui Kong
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Niccolò Terrando
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Christina L Williams
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
3
|
GABAergic Interneuron and Neurotransmission Are mTOR-Dependently Disturbed in Experimental Focal Cortical Dysplasia. Mol Neurobiol 2020; 58:156-169. [PMID: 32909150 DOI: 10.1007/s12035-020-02086-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/21/2020] [Indexed: 01/13/2023]
Abstract
Focal cortical dysplasia (FCD) is a major cause for drug-resistant epilepsies. The molecular and cellular mechanisms of epileptogenesis in FCD are still poorly understood. Some studies have suggested that deficiencies of γ-aminobutyric acid (GABA) system may play an important role in type II FCD, but it remains controversial. In order to examine whether and how GABAergic interneurons and synaptic function are affected, we generated a somatic mTOR hyperactivation-based mouse model of type II FCD by in utero electroporation, quantified densities of interneurons in the malformed cortices, and recorded miniature inhibitory postsynaptic currents in dysmorphic neurons. We detected 20-25% reduction of GABAergic interneurons within malformed cortices, independent of cortical regions and cell subtypes but proportionate to the decrease of global neuron counts. GABAergic synaptic transmission from interneurons to mTOR hyperactivated dysmorphic neurons was dramatically disrupted, outweighing the decrease of interneuron counts. Postnatal mTOR inhibition partially rescued these alterations of GABAergic system. We also quantified the expression of GABAA receptor, GABA transporter, and chloridion transporter encoding genes and found that their expression was relatively intact within the malformed cortices. Taken together, these results confirmed that GABAergic interneuron and synapse transmission are disturbed profoundly in an mTOR-dependent manner in type II FCD. Our study suggests that postsynaptic mechanisms independent of interneuron reduction or altered expression of GABA synapse genes might be accountable for the impaired GABAergic neurotransmission in type II FCD as well as other mTOR-related epilepsies.
Collapse
|
4
|
Iffland PH, Crino PB. Focal Cortical Dysplasia: Gene Mutations, Cell Signaling, and Therapeutic Implications. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 12:547-571. [PMID: 28135561 DOI: 10.1146/annurev-pathol-052016-100138] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Focal cortical dysplasias (FCDs) are malformations of cortical development (MCDs) that are highly associated with medication-resistant epilepsy and are the most common cause of neocortical epilepsy in children. FCDs are a heterogeneous group of developmental disorders caused by germline or somatic mutations that occur in genes regulating the PI3K/Akt/mTOR pathway-a key pathway in neuronal growth and migration. Accordingly, FCDs are characterized by abnormal cortical lamination, cell morphology (e.g., cytomegaly), and cellular polarity. In some FCD subtypes, balloon cells express proteins typically seen in neuroglial progenitor cells. Because recurrent intractable seizures are a common feature of FCDs, epileptogenic electrophysiological properties are also observed in addition to local inflammation. Here, we will summarize the current literature regarding FCDs, addressing the current classification system, histopathology, molecular genetics, electrophysiology, and transcriptome and cell signaling changes.
Collapse
Affiliation(s)
- Philip H Iffland
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140;
| | - Peter B Crino
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland 21201;
| |
Collapse
|
5
|
Hanai S, Sukigara S, Dai H, Owa T, Horike SI, Otsuki T, Saito T, Nakagawa E, Ikegaya N, Kaido T, Sato N, Takahashi A, Sugai K, Saito Y, Sasaki M, Hoshino M, Goto YI, Koizumi S, Itoh M. Pathologic Active mTOR Mutation in Brain Malformation with Intractable Epilepsy Leads to Cell-Autonomous Migration Delay. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1177-1185. [PMID: 28427592 DOI: 10.1016/j.ajpath.2017.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/19/2017] [Indexed: 01/08/2023]
Abstract
The activation of phosphatidylinositol 3-kinase-AKTs-mammalian target of rapamycin cell signaling pathway leads to cell overgrowth and abnormal migration and results in various types of cortical malformations, such as hemimegalencephaly (HME), focal cortical dysplasia, and tuberous sclerosis complex. However, the pathomechanism underlying abnormal cell migration remains unknown. With the use of fetal mouse brain, we performed causative gene analysis of the resected brain tissues from a patient with HME and investigated the pathogenesis. We obtained a novel somatic mutation of the MTOR gene, having approximately 11% and 7% mutation frequency in the resected brain tissues. Moreover, we revealed that the MTOR mutation resulted in hyperphosphorylation of its downstream molecules, S6 and 4E-binding protein 1, and delayed cell migration on the radial glial fiber and did not affect other cells. We suspect cell-autonomous migration arrest on the radial glial foot by the active MTOR mutation and offer potential explanations for why this may lead to cortical malformations such as HME.
Collapse
Affiliation(s)
- Sae Hanai
- Epilepsy Center, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Kodaira, Japan; Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, Kodaira, Japan
| | - Sayuri Sukigara
- Epilepsy Center, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Kodaira, Japan; Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, Kodaira, Japan
| | - Hongmei Dai
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, Kodaira, Japan
| | - Tomoo Owa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, Kodaira, Japan
| | - Shin-Ichi Horike
- Division of Functional Genomics, Advanced Science Research Center Kanazawa University, Kanazawa, Japan
| | - Taisuke Otsuki
- Epilepsy Center, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Kodaira, Japan; Department of Neurosurgery, Hospital of National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Takashi Saito
- Epilepsy Center, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Kodaira, Japan; Department of Child Neurology, Hospital of National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Eiji Nakagawa
- Epilepsy Center, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Kodaira, Japan; Department of Child Neurology, Hospital of National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Naoki Ikegaya
- Epilepsy Center, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Kodaira, Japan; Department of Neurosurgery, Hospital of National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Takanobu Kaido
- Epilepsy Center, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Kodaira, Japan; Department of Neurosurgery, Hospital of National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Noriko Sato
- Epilepsy Center, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Kodaira, Japan; Department of Radiology, Hospital of National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Akio Takahashi
- Epilepsy Center, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Kodaira, Japan; Department of Neurosurgery, Hospital of National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Kenji Sugai
- Epilepsy Center, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Kodaira, Japan; Department of Child Neurology, Hospital of National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yuko Saito
- Epilepsy Center, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Kodaira, Japan; Department of Laboratory Medicine, Hospital of National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Masayuki Sasaki
- Epilepsy Center, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Kodaira, Japan; Department of Child Neurology, Hospital of National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Mikio Hoshino
- Epilepsy Center, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Kodaira, Japan; Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, Kodaira, Japan
| | - Yu-Ichi Goto
- Epilepsy Center, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Kodaira, Japan; Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, Kodaira, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Masayuki Itoh
- Epilepsy Center, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Kodaira, Japan; Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, Kodaira, Japan.
| |
Collapse
|
6
|
Abdijadid S, Mathern GW, Levine MS, Cepeda C. Basic mechanisms of epileptogenesis in pediatric cortical dysplasia. CNS Neurosci Ther 2014; 21:92-103. [PMID: 25404064 DOI: 10.1111/cns.12345] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/29/2014] [Accepted: 10/03/2014] [Indexed: 12/25/2022] Open
Abstract
Cortical dysplasia (CD) is a neurodevelopmental disorder due to aberrant cell proliferation and differentiation. Advances in neuroimaging have proven effective in early identification of the more severe lesions and timely surgical removal to treat epilepsy. However, the exact mechanisms of epileptogenesis are not well understood. This review examines possible mechanisms based on anatomical and electrophysiological studies. CD can be classified as CD type I consisting of architectural abnormalities, CD type II with the presence of dysmorphic cytomegalic neurons and balloon cells, and CD type III which occurs in association with other pathologies. Use of freshly resected brain tissue has allowed a better understanding of basic mechanisms of epileptogenesis and has delineated the role of abnormal cells and synaptic activity. In CD type II, it was demonstrated that balloon cells do not initiate epileptic activity, whereas dysmorphic cytomegalic and immature neurons play an important role in generation and propagation of epileptic discharges. An unexpected finding in pediatric CD was that GABA synaptic activity is not reduced, and in fact, it may facilitate the occurrence of epileptic activity. This could be because neuronal circuits display morphological and functional signs of dysmaturity. In consequence, drugs that increase GABA function may prove ineffective in pediatric CD. In contrast, drugs that counteract depolarizing actions of GABA or drugs that inhibit the mammalian target of rapamycin (mTOR) pathway could be more effective.
Collapse
Affiliation(s)
- Sara Abdijadid
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
7
|
Sakakibara T, Sukigara S, Otsuki T, Takahashi A, Kaneko Y, Kaido T, Saito Y, Sato N, Nakagawa E, Sugai K, Sasaki M, Goto Y, Itoh M. Imbalance of interneuron distribution between neocortex and basal ganglia: Consideration of epileptogenesis of focal cortical dysplasia. J Neurol Sci 2012; 323:128-33. [DOI: 10.1016/j.jns.2012.08.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 08/06/2012] [Accepted: 08/31/2012] [Indexed: 01/17/2023]
|
8
|
Delayed Maturation and Differentiation of Neurons in Focal Cortical Dysplasia With the Transmantle Sign: Analysis of Layer-Specific Marker Expression. J Neuropathol Exp Neurol 2012; 71:741-9. [DOI: 10.1097/nen.0b013e318262e41a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
9
|
Abnormal maturation and differentiation of neocortical neurons in epileptogenic cortical malformation: Unique distribution of layer-specific marker cells of focal cortical dysplasia and hemimegalencephaly. Brain Res 2012; 1470:89-97. [DOI: 10.1016/j.brainres.2012.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 06/07/2012] [Accepted: 06/08/2012] [Indexed: 02/01/2023]
|
10
|
Liu S, Zhang C, Shu H, Wion D, Yang H. Cortical dysplasia: a possible substrate for brain tumors. Future Oncol 2012; 8:251-8. [PMID: 22409462 DOI: 10.2217/fon.12.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The similarities between brain tumor stem cells and neural stem cells suggest a possible stem cell origin of tumorigenesis. Recently, cells with features of stem cells have been observed in lesions of adult and pediatric cortical dysplasia (CD). Given the evidence for a close relationship between CD and certain brain tumors, together with the finding that CD neural stem cells/progenitors are abnormally developed, we propose that CD is a possible substrate for brain tumors. The neural stem cells/progenitors in CD have accumulating abnormalities, and these abnormal stem/progenitor cells may be the initiating, transformed cells of brain tumors, when subsequently exposed to a carcinogen.
Collapse
Affiliation(s)
- Shiyong Liu
- Epilepsy Center of the Neurosurgery Department, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, People's Republic of China
| | | | | | | | | |
Collapse
|