1
|
Şah O, Türkdoğan D, Küçük S, Takış G, Asadov R, Öztürk G, Ünver O, Ekinci G. Neurodevelopmental Findings and Epilepsy in Malformations of Cortical Development. Turk Arch Pediatr 2022; 56:356-365. [PMID: 35005731 PMCID: PMC8655965 DOI: 10.5152/turkarchpediatr.2021.20148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022]
Abstract
Aim: The purpose of this study is to classify the malformations of cortical development in children according to the embryological formation, localization, and neurodevelopmental findings. Seizure/epilepsy and electrophysiological findings have also been compared. Material and Methods: Seventy-five children (age: 1 month-16.5 years; 56% male) followed with the diagnosis of malformation of cortical development, in Marmara University Pendik Research and Educational Hospital Department of Pediatric Neurology, were included in the study. Their epilepsy characteristics, electroencephalogram (EEG) findings, and prognosis were reported. Neurodevelopmental characteristics were evaluated by the Bayley Scales of Infant and Toddler Development (Bayley-III) for the ages of 0-42 months (n = 30); the Denver Developmental Screening Test-II (DDST-II) for ages 42 months-6 years (n = 11); and the Wechsler Intelligence Scales for Children (WISC-R), used for children 6 years and older (n = 34). Results: The patients were classified as 44% premigrational (14.6% microcephaly, 24% tuberous sclerosis, 2.7% focal cortical dysplasia, 1.3% hemimegalencephaly, and 1.3% diffuse cortical dysgenesis); 17.3% migrational (14.6% lissencephaly, 2.7% heterotopia); and 38.6% postmigrational (14.6% schizencephaly, 24% polymicrogyria) developmentally. According to involved area, the classification was 34.7% hemispheric/multilobar, 33.3% diffuse, and 32% focal. Seventy-five percent of the patients had a history of epilepsy, and 92% were resistant to treatment. The seizures started before the age of 12 months in diffuse malformations, and epileptic encephalopathy was more common in microcephaly with a rate of 80% and lissencephaly with a rate of 54.5% in the first EEGs. Ninety-five percent of patients had at least one level of neurodevelopmental delay detected by DDST/Bayley-III; this was more common in patients with accompanying epilepsy (P < .05). As seen more commonly in patients with diffuse pathologies and intractable frequent seizures, mental retardation was detected by WISC-R in 64.5% of patients (P < .05). Conclusion: In cases with cortical developmental malformation, epilepsy/EEG features and neurodevelopmental prognosis can be predicted depending on the developmental process and type and extent of involvement. Patients should be followed up closely with EEG.
Collapse
Affiliation(s)
- Olcay Şah
- Department of Pediatrics, Marmara University School of Medicine, İstanbul, Turkey
| | - Dilşad Türkdoğan
- Department of Pediatrics, Division of Pediatric Neurology, Marmara University School of Medicine, İstanbul, Turkey
| | - Selda Küçük
- Department of Pediatrics, Marmara University School of Medicine, İstanbul, Turkey
| | - Gülnur Takış
- Department of Child and Adolescent Psychiatry, Marmara University School of Medicine, İstanbul, Turkey
| | - Ruslan Asadov
- Department of Radiology, Marmara University School of Medicine, İstanbul, Turkey
| | - Gülten Öztürk
- Department of Pediatrics, Division of Pediatric Neurology, Marmara University School of Medicine, İstanbul, Turkey
| | - Olcay Ünver
- Department of Pediatrics, Division of Pediatric Neurology, Marmara University School of Medicine, İstanbul, Turkey
| | - Gazanfer Ekinci
- Department of Radiology, Marmara University School of Medicine, İstanbul, Turkey
| |
Collapse
|
2
|
Tao H, Zhou X, Chen J, Zhou H, Huang L, Cai Y, Fu J, Liu Z, Chen Y, Sun C, Zhao B, Zhong W, Li K. Genetic Effects of the Schizophrenia-Related Gene DTNBP1 in Temporal Lobe Epilepsy. Front Genet 2021; 12:553974. [PMID: 33679873 PMCID: PMC7933566 DOI: 10.3389/fgene.2021.553974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 01/15/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies have reported patients who concurrently exhibit conditions of epilepsy and schizophrenia, indicating certain shared pathologies between them. This study aimed to investigate the genetic effects of the schizophrenia-related gene DTNBP1 in temporal lobe epilepsy (TLE). A total of 496 TLE patients and 528 healthy individuals were successfully genotyped for six DTNBP1 polymorphisms (rs760665, rs1011313, rs2619528, rs2619522, rs909706, and rs2619538), including 335 TLE patients and 325 healthy controls in cohort 1, and 161 TLE patients and 203 healthy controls in cohort 2. The frequency of the TT genotype at rs909706 T > C was lower in TLE patients than in normal controls in the initial cohort (cohort 1), which was confirmed in an independent cohort (cohort 2). However, the intronic T allele failed to be in linkage disequilibrium (LD) with any functional variations nearby; thus, together with the CCAC and TCAT haplotypes (rs1011313-rs2619528-rs2619522-rs909706) observed in the study, this allele acts only as a protective factor against susceptibility to TLE. Meanwhile, a novo mutant allele rs2619538 T > A was exclusively observed in TLE patients, and a dual-luciferase assay revealed that the mutant allele was increased by approximately 22% in the DTNBP2 promoter compared with the wild-type allele. Together with the trend of increasing DTNBP1 expression in epilepsy patients and animal models in this study, these are the first findings to demonstrate the genetic association of DTNBP1 with TLE. Homozygous mutation of rs2619538 T > A likely promotes DTNBP1 expression and facilitates subsequent processes in epilepsy pathologies. Thus, the role of DTNBP1 in TLE deserves further exploration in the future.
Collapse
Affiliation(s)
- Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Xu Zhou
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Jun Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haihong Zhou
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lidan Huang
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Jiawu Fu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhou Liu
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Yanyan Chen
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Chaowen Sun
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Wangtao Zhong
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Keshen Li
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China.,Neurology and Neurosurgery Division, Stroke Center, The First Affiliated Hospital, Clinical Medicine Research Institute, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Jayalakshmi S, Dhondji M, Vooturi S, Patil A, Vadapalli R. Inter-ictal EEG patterns in malformations of cortical development and epilepsy. Clin Neurol Neurosurg 2020; 196:106022. [PMID: 32599425 DOI: 10.1016/j.clineuro.2020.106022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Malformations of cortical Development (MCDs) are associated with refractory epilepsy. We evaluated scalp inter-ictal EEG patterns in various types of MCD, and its association with clinical features and seizure control. PATIENTS AND METHODS Retrospective analysis of demographic, clinical, inter-ictal EEG and seizure outcome data of 665 patients with epilepsy and MCD with at least two years follow up was performed. RESULTS Average age of study population was 15.95 ± 10.79 years with 291(43.8 %) women. Multiregional spikes were more common in children (22.7 % vs 8.5; p < 0.001), if age of onset of epilepsy was <2 years (21.8 % vs 11.4 %; p = 0.001) and polymicrogyria (12.1 % vs 37.3 %; p < 0.001). Generalized epileptiform discharges were more frequent in patients with developmental delay (24.7 % vs 12.6 %; p < 0.001); and were associated with lissencephaly(14.0 % vs 59.3 %; p < 0.001) and heterotopias(14.5 % vs 34.9 %;p = 0.002). Regional spikes were more common if age of onset of epilepsy is >2 years (26.2 % vs 38.4 %; p = 0.003), and also in FCD (17.1 % vs 42.6 %; p < 0.001). At latest follow-up, 151(22.7 %) patients were seizure free; 401(60.7 %) had refractory epilepsy and the rest had remissions with relapse. No association was found between inter-ictal EEG patterns and seizure control. CONCLUSION In patients with MCD, generalized epileptiform discharges were associated with developmental delay, lissencephaly and heterotopias. Regional spikes were frequent in FCD while multiregional spikes in children and polymicrogyria. Inter-ictal EEG patterns did not influence seizure outcome.
Collapse
Affiliation(s)
- Sita Jayalakshmi
- Department of Neurology, Krishna Institute of Medical Sciences, Secunderabad, India.
| | - Madhukar Dhondji
- Department of Neurology, Krishna Institute of Medical Sciences, Secunderabad, India
| | - Sudhindra Vooturi
- Department of Neurology, Krishna Institute of Medical Sciences, Secunderabad, India
| | - Anuja Patil
- Department of Neurology, Krishna Institute of Medical Sciences, Secunderabad, India
| | - Rammohan Vadapalli
- Department of Radiology, Krishna Institute of Medical Sciences, Secunderabad, India
| |
Collapse
|
4
|
Milovanović JR, Janković SM, Milovanović D, Ružić Zečević D, Folić M, Kostić M, Ranković G, Stefanović S. Contemporary surgical management of drug-resistant focal epilepsy. Expert Rev Neurother 2019; 20:23-40. [DOI: 10.1080/14737175.2020.1676733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | - Dragan Milovanović
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | - Marko Folić
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina Kostić
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Goran Ranković
- Medical Faculty, University of Pristina, Kosovska Mitrovica, Serbia
| | - Srđan Stefanović
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
5
|
Zhou X, Tao H, Cai Y, Cui L, Zhao B, Li K. Stage-dependent involvement of ADAM10 and its significance in epileptic seizures. J Cell Mol Med 2019; 23:4494-4504. [PMID: 31087543 PMCID: PMC6584734 DOI: 10.1111/jcmm.14307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/05/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
The prevalence of epileptic seizures in Alzheimer's disease (AD) has attracted an increasing amount of attention in recent years, and many cohort studies have found several risk factors associated with the genesis of seizures in AD. Among these factors, young age and severe dementia are seemingly contradictory and independent risk factors, indicating that the pathogenesis of epileptic seizures is, to a certain extent, stage‐dependent. A disintegrin and metalloproteinase domain‐containing protein 10 (ADAM10) is a crucial α‐secretase responsible for ectodomain shedding of its substrates; thus, the function of this protein depends on the biological effects of its substrates. Intriguingly, transgenic models have demonstrated ADAM10 to be associated with epilepsy. Based on the biological effects of its substrates, the potential pathogenic roles of ADAM10 in epileptic seizures can be classified into amyloidogenic processes in the ageing stage and cortical dysplasia in the developmental stage. Therefore, ADAM10 is reviewed here as a stage‐dependent modulator in the pathogenesis of epilepsy. Current data regarding ADAM10 in epileptic seizures were collected and reviewed for potential pathogenic roles (ie amyloidogenic processes and cortical dysplasia) and regulatory mechanisms (ie transcriptional and posttranscriptional regulation). These findings are then discussed in terms of the significance of the stage‐dependent functions of ADAM10 in epilepsy. Several potential targets for seizure control, such as candidate transcription factors and microRNAs that regulate ADAM10, as well as potential genetic screening tools for the early recognition of cortical dysplasia, have been suggested but must be studied in more detail.
Collapse
Affiliation(s)
- Xu Zhou
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yujie Cai
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Keshen Li
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Stroke Center, Neurology & Neurosurgery Division, Clinical Medicine Research Institute & the First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Prevalence of neuropsychiatric symptoms associated with malformations of cortical development. Epilepsy Behav 2019; 92:306-310. [PMID: 30731297 DOI: 10.1016/j.yebeh.2019.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 11/24/2022]
Abstract
PURPOSE Malformations of cortical development (MCD) are structural abnormality of the cortex or brain parenchyma with diverse clinical manifestations. Little is known about the association of psychiatric and behavioral problems in MCD. We aimed to determine prevalence and risk factors of neuropsychiatric symptoms in a cohort of adult patients with MCD. METHODS We conducted a retrospective medical records review of 86 adult patients followed at the epilepsy clinic of the Montreal Neurological Hospital. Information on diagnosis of medical and psychiatric disorders, family history, intellectual disability, and psychiatric symptoms was obtained from their medical records. RESULTS The cohort (n = 86) had a mean age of 39 ± 14.07 (range: 18-74) years. The three most common MCD subtypes were focal cortical dysplasia (47.7%), periventricular nodular heterotopia (29.1%), and polymicrogyria (16.3%). Overall, prevalence of formally diagnosed psychiatric disorders and psychiatric symptoms were respectively 15.1% and 31.4%. The most frequently described symptoms were anxiety-related (59.3%), followed by irritability (40.7%) and agitation (37.0%). Patients with family psychiatric history (OR: 8.168, 95% CI: 1.44-46.48) and intellectual disability (OR: 5.824, 95% CI: 1.30-26.10) were significantly more likely to have psychiatric symptoms than those without. The prevalence of psychiatric symptoms did not defer between major groups of MCD. CONCLUSIONS Neuropsychiatric symptoms are commonly associated with MCD, but psychiatric disorders may be underrecognized given that only half of the patients with psychiatric symptoms were referred for a specialized consultation. The presence of intellectual disability and family psychiatric history may help identify and predict risk of psychiatric manifestations in MCD.
Collapse
|
7
|
Hadzagic-Catibusic F, Avdagic E, Zubcevic S, Uzicanin S. Brain Lesions in Children with Unilateral Spastic Cerebral Palsy. MEDICAL ARCHIVES (SARAJEVO, BOSNIA AND HERZEGOVINA) 2017; 71:7-11. [PMID: 28428665 PMCID: PMC5364798 DOI: 10.5455/medarh.2017.71.7-11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Introduction: Unilateral spastic cerebral palsy (US CP) is the second most common subtype of cerebral palsy. Aim: The aim of the study was to analyze neuroimaging findings in children with unilateral spastic cerebral palsy. Material and methods: The study was hospital based, which has included 106 patients with US CP (boys 72/girls 34, term 82/preterm 24). Neuroimaging findings were classified into 5 groups: Brain maldevelopment, predominant white matter injury, predominant gray matter injury, non specific findings and normal neuroimaging findings. Results: Predominant white matter lesions where the most frequent (48/106,45.28%; term 35/preterm 13), without statistically significant difference between term and preterm born children (x2=0.4357; p=0.490517). Predominant gray matter lesions had 32/106 children, 30.19%; (term 25/preterm 7, without statistically significant difference between term and preterm born children (x2=0.902; p=0.9862). Brain malformations had 10/106 children, 9.43%, and all of them were term born. Other finding had 2/106 children, 1.89%, both of them were term born. Normal neuroimaging findings were present in14/106 patients (13.21%). Conclusion: Neuroimaging may help to understand morphological background of motor impairment in children with US CP. Periventricular white matter lesions were the most frequent, then gray matter lesions.
Collapse
Affiliation(s)
| | - Edin Avdagic
- Radiology Clinic, Clinical Center University of Sarajevo, Bosnia and Herzegovina
| | - Smail Zubcevic
- Pediatric Clinic, Clinical Center University of Sarajevo, Bosnia and Herzegovina
| | - Sajra Uzicanin
- Pediatric Clinic, Clinical Center University of Sarajevo, Bosnia and Herzegovina
| |
Collapse
|