1
|
Hansen SN, Holm A, Kauppinen S, Klitgaard H. RNA therapeutics for epilepsy: An emerging modality for drug discovery. Epilepsia 2023; 64:3113-3129. [PMID: 37703096 DOI: 10.1111/epi.17772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Drug discovery in epilepsy began with the finding of potassium bromide by Sir Charles Locock in 1857. The following century witnessed the introduction of phenotypic screening tests for discovering antiseizure medications (ASMs). Despite the high success rate of developing ASMs, they have so far failed in eliminating drug resistance and in delivering disease-modifying treatments. This emphasizes the need for new drug discovery strategies in epilepsy. RNA-based drugs have recently shown promise as a new modality with the potential of providing disease modification and counteracting drug resistance in epilepsy. RNA therapeutics can be directed either toward noncoding RNAs, such as microRNAs, long noncoding RNAs (ncRNAs), and circular RNAs, or toward messenger RNAs. The former show promise in sporadic, nongenetic epilepsies, as interference with ncRNAs allows for modulation of entire disease pathways, whereas the latter seem more promising in monogenic childhood epilepsies. Here, we describe therapeutic strategies for modulating disease-associated RNA molecules and highlight the potential of RNA therapeutics for the treatment of different patient populations such as sporadic, drug-resistant epilepsy, and childhood monogenic epilepsies.
Collapse
Affiliation(s)
| | - Anja Holm
- Department of Clinical Medicine, Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | - Sakari Kauppinen
- Department of Clinical Medicine, Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | | |
Collapse
|
2
|
Tang L, Wang Y, Xiang J, Yang D, Zhang Y, Xiang Q, Li J. lncRNA and circRNA expression profiles in the hippocampus of Aβ 25‑35‑induced AD mice treated with Tripterygium glycoside. Exp Ther Med 2023; 26:426. [PMID: 37602300 PMCID: PMC10433443 DOI: 10.3892/etm.2023.12125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/15/2023] [Indexed: 08/22/2023] Open
Abstract
Tripterygium glycosides (TG) have been reported to ameliorate Alzheimer's disease (AD), although the mechanism involved remains to be determined. In the present study, the lncRNA and circRNA expression profiles of an AD mouse model treated with TG were assessed using microarrays. lncRNAs, mRNAs, and circRNAs in the hippocampi of 3 AD+normal saline (NS) mice and 3 AD+TG mice were detected using microarrays. The most differentially expressed lncRNAs, mRNAs, and circRNAs were screened between the AD+NS and AD+TG groups. The differentially expressed lncRNAs and circRNAs were analyzed using GO enrichment and KEGG analyses. Co-expression analysis of lncRNAs, circRNAs, and mRNAs was performed by calculating the correlation coefficients. Protein-protein interaction (PPI) network analysis was performed on mRNAs using STRING. The lncRNA-target-transcription factor (TF) network was analyzed using the Network software. In total, 661 lncRNAs, 64 circRNAs, and 503 mRNAs were found to be differentially expressed in AD mice treated with TG. Pou4f1, Egr2, Mag, and Nr4a1 were the hub genes in the PPI network. The KEGG results showed that the mRNAs that were co-expressed with lncRNAs were enriched in the TNF, PI3K-Akt, and Wnt signaling pathways. LncRNA-target-TF network analysis indicated that TFs, including Cebpa, Zic2, and Rxra, were the most likely to regulate the detected lncRNAs. The circRNA-miRNA interaction network indicated that 275 miRNAs may bind to the 64 circRNAs. In conclusion, these findings provide a novel perspective on AD pathogenesis, and the detected lncRNAs, mRNAs, and circRNAs may serve as novel therapeutic targets for the management of AD.
Collapse
Affiliation(s)
- Liang Tang
- Department of Basic Biology, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- Department of Basic Biology, Wuzhou Medical College, Wuzhou, Guangxi Zhuang 543000, P.R. China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- The Hunan Provincial University Key Laboratory of The Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, Hunan 410219, P.R. China
| | - Yan Wang
- Department of Basic Biology, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- Department of Basic Biology, Wuzhou Medical College, Wuzhou, Guangxi Zhuang 543000, P.R. China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, Hunan 410219, P.R. China
| | - Ju Xiang
- Department of Basic Biology, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- The Hunan Provincial University Key Laboratory of The Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, Hunan 410219, P.R. China
| | - Dawei Yang
- Department of Basic Biology, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- The Hunan Provincial University Key Laboratory of The Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, Hunan 410219, P.R. China
| | - Yan Zhang
- Department of Basic Biology, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- The Hunan Provincial University Key Laboratory of The Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, P.R. China
| | - Qin Xiang
- Department of Basic Biology, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- The Hunan Provincial University Key Laboratory of The Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, Hunan 410219, P.R. China
| | - Jianming Li
- Department of Basic Biology, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- The Hunan Provincial University Key Laboratory of The Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, Hunan 410219, P.R. China
| |
Collapse
|
3
|
Wen F, Tan Z, Huang D, Jiang Y, Xiang J. LncRNA PVT1 Promotes Neuronal Cell Apoptosis and Neuroinflammation by Regulating miR-488-3p/FOXD3/SCN2A Axis in Epilepsy. Neurochem Res 2023; 48:895-908. [PMID: 36378391 DOI: 10.1007/s11064-022-03801-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/08/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
It is vital to understand the mechanism of epilepsy onset and development. Dysregulated lncRNAs are closely associated with epilepsy. Our work probed the role of lncRNA PVT1/miR-488-3p/FOXD3/SCN2A axis in epilepsy. The mRNA and protein expressions were assessed using qRT-PCR and western blot. MTT assay and TUNEL staining were conducted to assess cell viability and apoptosis, respectively. TNFα, IL-1β and IL-6 levels were analyzed using ELISA. LDH level was tested by Assay Kit. The binding relationship between PVT1, miR-488-3p and FOXD3 were verified using dual luciferase reporter gene assay. The epilepsy model of rats was established by lithium-pilocarpine injection. Nissl staining was performed to evaluate neuronal damage. PVT1 was markedly upregulated in epilepsy model cells. Knockdown of PVT1 increased the viability, while repressed the apoptosis and inflammatory cytokines secretion as well as LDH level in epilepsy cell model. MiR-488-3p alleviated neuronal injury and neuroinflammation in model cells. MiR-488-3p functioned as the direct target of PVT1, and its inhibition neutralized the effects of PVT1 silencing on neuronal cell injury and neuroinflammation in model cells. Furthermore, miR-488-3p inhibited neuronal cell injury and neuroinflammation in model cells by regulating FOXD3/SCN2A pathway. Finally, animal experiments proved that PVT1 promoted epilepsy-induced neuronal cell injury and neuroinflammation by regulating miR-488-3p-mediated FOXD3/SCN2A pathway. PVT1 promoted neuronal cell injury and inflammatory response in epilepsy via inhibiting miR-488-3p and further regulating FOXD3/SCN2A pathway.
Collapse
Affiliation(s)
- Fang Wen
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Zhigang Tan
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139, Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Dezhi Huang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139, Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139, Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Jun Xiang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139, Renmin Road, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
4
|
The regulatory function of lncRNA and constructed network in epilepsy. Neurol Sci 2023; 44:1543-1554. [PMID: 36781564 DOI: 10.1007/s10072-023-06648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Epilepsy is a neurological disease characterized by neural network dysfunction. Although most reports indicate that the pathological process of epilepsy is related to inflammation, synaptic plasticity, cell apoptosis, and ion channel dysfunction, the underlying molecular mechanisms of epilepsy are not fully understood. METHODS This review summarizes the latest literature on the roles and characteristics of long noncoding RNAs (lncRNAs) in the pathogenesis of epilepsy. RESULTS lncRNAs are a class of long transcripts without protein-coding functions that perform important regulatory functions in various biological processes. lncRNAs are involved in the regulation of the pathological process of epilepsy and are abnormally expressed in both patients and animal models. This review provides an overview of research progress in epilepsy, the multifunctional features of lncRNAs, the lncRNA expression pattern related to epileptogenesis and status epilepticus, and the potential mechanisms for the two interactions contributing to epileptogenesis and progression. CONCLUSION lncRNAs can serve as new diagnostic markers and therapeutic targets for epilepsy in the future.
Collapse
|
5
|
Liu S, Fan M, Ma MD, Ge JF, Chen FH. Long non-coding RNAs: Potential therapeutic targets for epilepsy. Front Neurosci 2022; 16:986874. [PMID: 36278003 PMCID: PMC9582525 DOI: 10.3389/fnins.2022.986874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a common and disastrous neurological disorder characterized by abnormal firing of neurons in the brain, affecting about 70 million people worldwide. Long non-coding RNAs (LncRNAs) are a class of RNAs longer than 200 nucleotides without the capacity of protein coding, but they participate in a wide variety of pathophysiological processes. Alternated abundance and diversity of LncRNAs have been found in epilepsy patients and animal or cell models, suggesting a potential role of LncRNAs in epileptogenesis. This review will introduce the structure and function of LncRNAs, summarize the role of LncRNAs in the pathogenesis of epilepsy, especially its linkage with neuroinflammation, apoptosis, and transmitter balance, which will throw light on the molecular mechanism of epileptogenesis, and accelerate the clinical implementation of LncRNAs as a potential therapeutic target for treatment of epilepsy.
Collapse
Affiliation(s)
- Sen Liu
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
| | - Min Fan
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
| | - Meng-Die Ma
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
- *Correspondence: Jin-Fang Ge,
| | - Fei-Hu Chen
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
- Fei-Hu Chen,
| |
Collapse
|
6
|
Ju H, Yang Z. H19 silencing decreases kainic acid-induced hippocampus neuron injury via activating the PI3K/AKT pathway via the H19/miR-206 axis. Exp Brain Res 2022; 240:2109-2120. [PMID: 35781830 DOI: 10.1007/s00221-022-06392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
Abstract
Temporal lobe epilepsy (TLE) is the most common type of intractable epilepsy and is refractory to medications. However, the role and mechanism of H19 in regulating TLE remains largely undefined. Expression of H19 and miR-206 was detected using real-time quantitative PCR (RT-qPCR). Cell apoptosis, autophagy and inflammatory response were determined by flow cytometry, western blotting and enzyme-linked immunosorbent assay (ELISA). The interaction between H19 and miR-206 was predicted on the miRcode database and confirmed by luciferase reporter assay, RNA immunoprecipitation (RIP) and RNA pull-down. H19 was upregulated and miR-206 was downregulated in the rat hippocampus neurons after kainic acid (KA) treatment. Functionally, both H19 knockdown and miR-206 overexpression weakened KA-induced apoptosis, autophagy, inflammatory response, and oxidative stress in hippocampus neurons. Mechanically, the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway was activated by H19 knockdown and miR-206 was confirmed to be targeted and negatively regulated by H19. Moreover, downregulation of miR-206 could counteract the effects of H19 knockdown in KA-induced hippocampus neurons. Knockdown of H19 suppressed hippocampus neuronal apoptosis, autophagy and inflammatory response presumably through directly upregulating miR-206 and activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Haichao Ju
- Department of Pediatrics, Weihai Central Hospital, No. 3, West Mishandong Road, Wendeng District, Weihai, 264400, Shandong, China
| | - Zhimin Yang
- Department of Pediatrics, Weihai Central Hospital, No. 3, West Mishandong Road, Wendeng District, Weihai, 264400, Shandong, China.
| |
Collapse
|
7
|
Yu S, Gu Y, Wang T, Mu L, Wang H, Yan S, Wang A, Wang J, Liu L, Shen H, Na M, Lin Z. Study of Neuronal Apoptosis ceRNA Network in Hippocampal Sclerosis of Human Temporal Lobe Epilepsy by RNA-Seq. Front Neurosci 2021; 15:770627. [PMID: 34867172 PMCID: PMC8633546 DOI: 10.3389/fnins.2021.770627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022] Open
Abstract
Hippocampal sclerosis (HS) is one of the most common pathological type of intractable temporal lobe epilepsy (TLE), often characterized by hippocampal atrophy, neuronal apoptosis, and gliogenesis. However, the molecular mechanisms of neuronal apoptosis in patients with HS are still not fully understood. We therefore conducted a pilot study focusing on the neuronal apoptosis ceRNA network in the sclerotic hippocampus of intractable TLE patients. In this research, RNA sequencing (RNA-seq) was utilized to quantify the expression levels of lncRNAs, miRNAs, and mRNAs in TLE patients with HS (HS-TLE) and without HS (non-HS-TLE), and reverse transcription-quantitative PCR (qRT-PCR). The interactions of differential expression (DE) lncRNAs-miRNAs or DEmiRNAs-mRNAs were integrated by StarBase v3.0, and visualized using Cytoscape. Subsequently, we annotate the functions of lncRNA-associated competitive endogenous RNA (ceRNA) network through analysis of their interactions with mRNAs. RNA-seq analyses showed 381 lncRNAs, 42 miRNAs, and 457 mRNAs were dysregulated expression in HS-TLE compared to non-HS-TLE. According to the ceRNA hypothesis, 5 HS-specific ceRNA network were constructed. Among them, the core ceRNA regulatory network involved in neuronal apoptosis was constituted by 10 DElncRNAs (CDKN2B-AS1, MEG3, UBA6-AS1, etc.), 7 DEmiRNAs (hsa-miR-155-5p, hsa-miR-195-5p, hsa-miR-200c-3p, etc.), and 3 DEmRNAs (SCN2A, DYRK2, and MAPK8), which belonging to apoptotic and epileptic terms. Our findings established the first ceRNA network of lncRNA-mediated neuronal apoptosis in HS-TLE based on transcriptome sequencing, which provide a new perspective on the disease pathogenesis and precise treatments of HS.
Collapse
Affiliation(s)
- Shengkun Yu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yifei Gu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Tianyu Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Long Mu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Haiyang Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shi Yan
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Aoweng Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jiabin Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Li Liu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hong Shen
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Meng Na
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Cao J, Gan H, Xiao H, Chen H, Jian D, Jian D, Zhai X. Key protein-coding genes related to microglia in immune regulation and inflammatory response induced by epilepsy. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:9563-9578. [PMID: 34814358 DOI: 10.3934/mbe.2021469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Several studies have shown a link between immunity, inflammatory processes, and epilepsy. Active neuroinflammation and marked immune cell infiltration occur in epilepsy of diverse etiologies. Microglia, as the first line of defense in the central nervous system, are the main effectors of neuroinflammatory processes. Discovery of new biomarkers associated with microglia activation after epileptogenesis indicates that targeting specific molecules may help control seizures. In this research, we used a combination of several bioinformatics approaches, including RNA sequencing, to explore differentially expressed genes (DEGs) in epileptic lesions and control samples, and to construct a protein-protein interaction (PPI) network for DEGs, which was examined utilizing plug-ins in Cytoscape software. Finally, we aimed to identify 10 hub genes in immune and inflammation-related sub-networks, which were subsequently validated in real-time quantitative polymerase chain reaction analysis in a mouse model of kainic acid-induced epilepsy. The expression patterns of nine genes were consistent with sequencing outcomes. Meanwhile, several genes, including CX3CR1, CX3CL1, GPR183, FPR1, P2RY13, P2RY12 and LPAR5, were associated with microglial activation and migration, providing novel candidate targets for immunotherapy in epilepsy and laying the foundation for further research.
Collapse
Affiliation(s)
- Jing Cao
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400010, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400010, China
| | - Hui Gan
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400010, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400010, China
| | - Han Xiao
- Ministry of Education Key Laboratory of Child Development and Disorders, Childrenӳ Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing 400010, China
| | - Hui Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, Childrenӳ Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing 400010, China
| | - Dan Jian
- Ministry of Education Key Laboratory of Child Development and Disorders, Childrenӳ Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing 400010, China
| | - Dan Jian
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400010, China
- Department of Pathology, Chongqing Medical University, Chongqing 400010, China
| | - Xuan Zhai
- Ministry of Education Key Laboratory of Child Development and Disorders, Childrenӳ Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing 400010, China
| |
Collapse
|
9
|
Multi-omics in mesial temporal lobe epilepsy with hippocampal sclerosis: Clues into the underlying mechanisms leading to disease. Seizure 2021; 90:34-50. [DOI: 10.1016/j.seizure.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
|
10
|
Pang B, Hao Y. Integrated Analysis of the Transcriptome Profile Reveals the Potential Roles Played by Long Noncoding RNAs in Immunotherapy for Sarcoma. Front Oncol 2021; 11:690486. [PMID: 34178688 PMCID: PMC8226247 DOI: 10.3389/fonc.2021.690486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
Background Long-term survival is still low for high-risk patients with soft tissue sarcoma treated with standard management options, including surgery, radiation, and chemotherapy. Immunotherapy is a promising new potential treatment paradigm. However, the application of immune checkpoint inhibitors for the treatment of patients with sarcoma did not yield promising results in a clinical trial. Therefore, there is a considerable need to identify factors that may lead to immune checkpoint inhibitor resistance. Methods In this study, we performed a bioinformatic analysis of The Cancer Genome Atlas (TCGA) to detect key long noncoding RNAs (lncRNAs) that were correlated with immune checkpoint inhibitory molecules in sarcoma. The expression levels of these lncRNAs and their correlation with patient prognosis were explored. The upstream long noncoding RNAs were also examined via 450K array data from the TCGA. The potential roles of these lncRNAs were further examined via KEGG and GO analysis using DAVID online software. Finally, the relationship between these lncRNAs and immune cell infiltration in tumors and their effect on immune checkpoint inhibitors were further explored. Results We identified lncRNAs correlated with tumor cell immune evasion in sarcoma. The expression of these lncRNAs was upregulated and correlated with worse prognosis in sarcoma and other human cancer types. Moreover, low DNA methylation occupation of these lncRNA loci was detected. Negative correlations between DNA methylation and lncRNA expression were also found in sarcoma and other human cancer types. KEGG and GO analyses indicated that these lncRNAs correlated with immune evasion and negative regulation of the immune response in sarcoma. Finally, high expression of these lncRNAs correlated with more suppressive immune cell infiltration and reduced sensitivity to immune checkpoint inhibitors in sarcoma and other human cancer types. Conclusion Our results suggest that long noncoding RNAs confer immune checkpoint inhibitor resistance in human cancer. Further characterization of these lncRNAs may help to elucidate the mechanisms underlying immune checkpoint inhibitor resistance and uncover a novel therapeutic intervention point for immunotherapy.
Collapse
Affiliation(s)
- Boran Pang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Zhang M, Yang H, Chen Z, Hu X, Wu T, Liu W. Long Noncoding RNA X-Inactive-Specific Transcript Promotes the Secretion of Inflammatory Cytokines in LPS Stimulated Astrocyte Cell Via Sponging miR-29c-3p and Regulating Nuclear Factor of Activated T cell 5 Expression. Front Endocrinol (Lausanne) 2021; 12:573143. [PMID: 33776905 PMCID: PMC7995889 DOI: 10.3389/fendo.2021.573143] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Astrocyte activation promotes glutamate accumulation and secretion of inflammatory factors, mainly responsible for epilepsy. Long noncoding RNA (lncRNA) X-inactive-specific transcript (XIST) regulates inflammation; however, the biological role and regulatory mechanism of XIST during astrocyte activation remain unclear. METHODS In the present study, rat epilepsy model and lipopolysaccharide (LPS)-treated CTX-TNA2 were established. XIST and miR-29c-3p expression were evaluated using quantitative real-time polymerase chain reaction. Nuclear factor of activated T cells 5 (NFAT5) was measured using western blot analysis. Interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and L-glutamate levels in the culture supernatants were assessed using enzyme-linked immunosorbent assay. The binding between XIST and miR-29c-3p and between miR-29c-3p and the 3'-UTR of NFAT5 was analyzed using dual-luciferase reporter, RNA-binding protein immunoprecipitation (RIP), and Biotin pull-down assay. The proliferation and apoptosis were evaluated using CCK8 and flow cytometry, respectively. RESULTS XIST expression and NFAT5 protein level was increased, whereas miR-29c-3p expression was decreased in the epilepsy rat model and LPS-treated CTX-TNA2 cells. Silenced XIST expression, miR-29c-3p overexpression, or silenced NFAT5 expression inhibited the secretion of IL-1β, IL-6, and TNF-α and promoted glutamate transport in LPS-treated CTX-TNA2 cells. miR-29c-3p was the potential miRNA sponged by XIST. NFAT5 acted as a direct binding target of miR-29c-3p. Silenced miR-29c-3p expression or NFAT5 overexpression reversed the effect of silenced XIST expression on LPS-treated CTX-TNA2.XIST and miR-29c-3p treatment does not affect NFAT5 mRNA expression, but affects NFAT5 protein level. Furthermore, underexpressed XIST or overexpressed miR-29c-3p in LPS-stimulated CTX-TNA2 can attenuate neuronal apoptosis induced by LPS-stimulated CTX-TNA2. CONCLUSION LncRNA XIST promotes the secretion of inflammatory cytokines in LPS- treated CTX-TNA2 via sponging miR-29c-3p and regulating NFAT5 expression.
Collapse
|
12
|
Fu Y, Liu D, Guo J, Long H, Xiao W, Xiao W, Feng L, Luo Z, Xiao B. Dynamic Change of Shanks Gene mRNA Expression and DNA Methylation in Epileptic Rat Model and Human Patients. Mol Neurobiol 2020; 57:3712-3726. [PMID: 32564287 DOI: 10.1007/s12035-020-01968-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
Synaptic protein shanks (SH3 and multiple ankyrin repeat domains protein, Shank) have emerged as an important mediator of synaptic remodeling. Synaptic remodeling is a common pathogenic process in various neurological disorders including epilepsy. However, the expression and function of shanks gene in epileptogenesis has not been investigated to date. Herein, we investigated the expression of shanks (shank1/2/3) mRNA expression in both epileptic rats and epilepsy patients. Furthermore, methyl target sequencing was applied to explore the relationship between shank mRNA expression and DNA methylation in both rats and human patients. In general rat model, shank1/2/3 mRNA was downregulated at acute stage, upregulated at latent stage, and returned to the basal level at chronic stage. Ten CpG sites of shank1 was found differentially methylated, out of which 6 were hypermethylated. Seventeen CpG sites of shank3 were differentially methylated, out of which 8 were hypermethylated. In human epilepsy patients, decreased shank2 mRNA was detected from the brain tissue, with DNA hypermethylation dominant from both brain (18 out of 30) and blood tissue (58 out of 80), indicating the regulation role of DNA methylation on shank2 expression. In conclusion, our finding suggests the participation of the shanks gene in the pathophysiology of seizure, out of which 2 shank3 CpG sites (Chr7: 130473419, and Chr7: 130473405) may play an important role in shank3 expression at both the acute and latent stages in the SE rat model.
Collapse
Affiliation(s)
- Yujiao Fu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Du Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Department of Neurology, Taikang Tongji (Wuhan) Hospital, Wuhan, 430050, Hubei, China
| | - Jialing Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Wenbiao Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Wei Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China. .,Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China. .,Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
13
|
Sun D, Liu H, Wang T. Long Noncoding RNA RP11-334E6.12 Promotes the Proliferation, Migration and Invasion of Breast Cancer Cells Through the EMT Pathway by Activating the STAT3 Cascade. Cancer Manag Res 2020; 12:1113-1120. [PMID: 32104091 PMCID: PMC7025680 DOI: 10.2147/cmar.s237981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/16/2020] [Indexed: 12/24/2022] Open
Abstract
Background RP11-334E6.12 is a dysregulated long noncoding RNA (lncRNA) that has never been studied in breast cancer. The biological function and potential mechanism of RNA RP11-334E6.12 in tumorigenesis are still unknown. Methods We scanned the Cancer Genome Atlas (TCGA) database and identified RP11-334E6.12 as one of the most dysregulated lncRNAs. The level of RP11-334E6.12 was assessed in breast cancer (BC) tissue samples and BC cell lines. The survival and RP11-334E6.12 expression of patients were analysed. The biological influence of RP11-334E6.12 on BC cell lines was studied using proliferation, Transwell migration, and invasion assays. Results RP11-334E6.12 was upregulated in both the TCGA database and our own database. Moreover, survival analyses indicated that RP11-334E6.12 was related to poor overall survival. Moreover, RP11-334E6.12 promoted the proliferation, migration and invasion of BC cells. RP11-334E6.12 promotes the epithelial mesenchymal transition of BC by activating the STAT3 pathway. Conclusion Taken together, our results demonstrate that RP11-334E6.12 is associated with the progression of breast cancer. Our findings indicate that long noncoding RNA RP11-334E6.12 promotes the proliferation, migration and invasion of breast cancer cells by activating the STAT3 pathway.
Collapse
Affiliation(s)
- Dongjun Sun
- Department of General Surgery, Chiping District People's Hospital, Liaocheng, Shandong, People's Republic of China
| | - Hengming Liu
- Department of Anesthesiology, Chiping District People's Hospital, Liaocheng, Shandong, People's Republic of China
| | - Tiantian Wang
- Department of Thyroid and Breast Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
14
|
Yu Q, Zhao MW, Yang P. LncRNA UCA1 Suppresses the Inflammation Via Modulating miR-203-Mediated Regulation of MEF2C/NF-κB Signaling Pathway in Epilepsy. Neurochem Res 2020; 45:783-795. [DOI: 10.1007/s11064-019-02952-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/01/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022]
|
15
|
Zhang L, Li Y, Sona L. Long non-coding RNA RP11-480I12.5 promotes cervical carcinoma progression by regulating the Wnt/β-catenin signaling pathway. Oncol Lett 2019; 19:469-475. [PMID: 31897160 DOI: 10.3892/ol.2019.11120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
The long non-coding RNA (lncRNA), RP11-480I12.5 is one of the most dysregulated lncRNAs, which is believed to contribute to the progression of cervical carcinoma (CC); however, the exact function of RP11-480I12.5 in human CC remains unknown. The present study aimed to investigate the function and underlying molecular mechanism of RP11-480I12.5 in CC. First, reverse transcription-quantitative PCR was implemented in order to detect differences in the expression of RP11-480I12.5 between normal and CC tissues. The present study used in vitro analysis to establish RP11-480I12.5 stable knockdown and overexpressing cell lines, in order to investigate the function and potential molecular mechanism of RP11-480I12.5 in the progression of CC. RP11-480I12.5 was upregulated in CC tissue compared with normal tissue. Furthermore, RP11-480I12.5 was associated with clinical stage, tumor size and lymph node metastasis. RP11-480I12.5 promoted the proliferation, migration and invasion of CC cell lines. Subsequently, the present study investigated the association between RP11-480I12.5 and the epithelial-to-mesenchymal transition (EMT) and Wnt/β-catenin pathways. RP11-480I12.5 promoted EMT through the Wnt/β-catenin pathway. Overall, the results of the present study demonstrate that RP11-480I12.5 promotes cercical cancer cell migration, invasion and EMT through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gynaecology and Obstetrics, Jinan Women and Children Health Hospital, Jinan, Shandong 250001, P.R. China
| | - Yaqin Li
- Medical Reproductive Center, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu 215006, P.R. China
| | - Lina Sona
- Department of Gynaecology and Obstetrics, Jinan Women and Children Health Hospital, Jinan, Shandong 250001, P.R. China
| |
Collapse
|