1
|
Zbikowski A, Kowalczyk T, Kasparek P, Prohazka J, Sedlacek R, Ciborowski M, Cysewski D, Łukasiewicz K. Understanding PACS2 syndrome's pathomechanism by studying E209K and E211K mutations. Mamm Genome 2024:10.1007/s00335-024-10098-5. [PMID: 39738582 DOI: 10.1007/s00335-024-10098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Phosphofurin acidic cluster sorting protein 2 (PACS2) plays a vital role in maintaining cellular homeostasis by regulating protein trafficking between cellular membranes. This function impacts crucial processes like apoptosis, mitochondria-endoplasmic reticulum interaction, and subsequently Ca2+ flux, lipid biosynthesis, and autophagy. Missense mutations, particularly E209K and E211K, are linked to developmental and epileptic encephalopathy-66 (DEE66), known as PACS2 syndrome. Individuals with this syndrome exhibit neurodevelopmental delay, seizures, facial dysmorphism, hypotonia, and delayed motor skills.Understanding the impact of these missense mutations on molecular processes is crucial. Studies suggest that E209K mutation decreases phosphorylation, increases the survival time of protein, and modifies protein-protein interaction, consequently leading to disruption of calcium flux and lower resistance to apoptosis induction. Unfortunately, to date, only a limited number of research groups have investigated the effects of mutations in the PACS2 gene. Current research on PACS2 syndrome is hampered by the lack of suitable models. While in vitro models using transfected cell lines offer insights, they cannot fully capture the disease's complexity.To address this, utilizing cells from individuals with PACS2 syndrome, specifically induced pluripotent stem cells (iPSCs), holds promise for understanding phenotypic diversity and developing personalized therapies. However, iPSC models may not fully capture tissue-specific effects of the E209K/E211K mutation. In vivo studies using animal models, particularly mice, could overcome these limitations.This review summarizes current knowledge about PACS2 structure and functions, explores the cellular consequences of E209K and E211K mutations, and highlights the potential of iPSC and mouse models in advancing our understanding of PACS2 syndrome.
Collapse
Affiliation(s)
- Arkadiusz Zbikowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Kowalczyk
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jan Prohazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Michał Ciborowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.
| | - Kacper Łukasiewicz
- Experimental Medicine Centre, Medical University of Bialystok, Bialystok, Poland.
- Department of Psychiatry, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
2
|
Checri R, Dozières-Puyravel B, Elmaleh-Bergès M, Verloes A, Auvin S. PACS2 pathogenic variant associated with malformation of cortical development and epilepsy. Epileptic Disord 2024; 26:215-218. [PMID: 38031819 DOI: 10.1002/epd2.20184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
PACS2 pathogenic variants are associated with an autosomal dominant syndrome (OMIM DEE66), associating developmental and epileptic encephalopathy, facial dysmorphism, and cerebellar dysgenesis. However, no malformation of cortical development has been reported yet. We report here a seven-year-old child with a history of infantile epileptic spasm syndrome and a right insular polymicrogyria and pachygyria due to de novo PACS2 recurrent mutation c.625G>A (p.Glu209Lys). Our observation raises the question of the role of PACS2 in the cortical development. It also reminds the importance of cerebellar anomalies in the recognition of PACS-related DEE.
Collapse
Affiliation(s)
- Rayann Checri
- Pediatric Neurology Department, CRMR épilepsies rares, EpiCARE Member, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Blandine Dozières-Puyravel
- Pediatric Neurology Department, CRMR épilepsies rares, EpiCARE Member, AP-HP, Robert-Debré University Hospital, Paris, France
| | | | - Alain Verloes
- Medical Genetics Department, ITHACA ERN Member, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Stéphane Auvin
- Pediatric Neurology Department, CRMR épilepsies rares, EpiCARE Member, AP-HP, Robert-Debré University Hospital, Paris, France
- INSERM NeuroDiderot, Université Paris Cité, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
3
|
Stoian A, Bajko Z, Bălașa R, Andone S, Stoian M, Ormenișan I, Muntean C, Bănescu C. Characteristics of Developmental and Epileptic Encephalopathy Associated with PACS2 p.Glu209Lys Pathogenic Variant-Our Experience and Systematic Review of the Literature. Biomolecules 2024; 14:270. [PMID: 38540691 PMCID: PMC10968252 DOI: 10.3390/biom14030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Developmental and epileptic encephalopathies (DEE) encompass a group of rare diseases with hereditary and genetic causes as well as acquired causes such as brain injuries or metabolic abnormalities. The phosphofurin acidic cluster sorting protein 2 (PACS2) is a multifunctional protein with nuclear gene expression. The first cases of the recurrent c.625G>A pathogenic variant of PACS2 gene were reported in 2018 by Olson et al. Since then, several case reports and case series have been published. METHODS We performed a systematic review of the PUBMED and SCOPUS databases using Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Our search parameters included DEE66 with a pathogenic PACS2 gene p.Glu209Lys mutation published cases to which we added our own clinical experience regarding this pathology. RESULTS A total of 11 articles and 29 patients were included in this review, to which we added our own experience for a total of 30 patients. There was not a significant difference between sexes regarding the incidence of this pathology (M/F: 16/14). The most common neurological and psychiatric symptoms presented by the patients were: early onset epileptic seizures, delayed global development (including motor and speech delays), behavioral disturbances, limited intellectual capacity, nystagmus, hypotonia, and a wide-based gait. Facial dysmorphism and other organs' involvement were also frequently reported. Brain MRIs evidenced anomalies of the posterior cerebellar fossa, foliar distortion of the cerebellum, vermis hypoplasia, white matter reduction, and lateral ventricles enlargement. Genetic testing is more frequent in children. Only 4 cases have been reported in adults to date. CONCLUSIONS It is important to maintain a high suspicion of new pathogenic gene variants in adult patients presenting with a characteristic clinical picture correlated with radiologic changes. The neurologist must gradually recognize the distinct evolving phenotype of DEE66 in adult patients, and genetic testing must become a scenario with which the neurologist attending adult patients should be familiar. Accurate diagnosis is required for adequate treatment, genetic counseling, and an improved long-term prognosis.
Collapse
Affiliation(s)
- Adina Stoian
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Zoltan Bajko
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania; (R.B.); (S.A.)
| | - Rodica Bălașa
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania; (R.B.); (S.A.)
| | - Sebastian Andone
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania; (R.B.); (S.A.)
| | - Mircea Stoian
- Department of Anesthesia and Intensive Care, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Ioana Ormenișan
- 1st Neurology Clinic, Mures County Emergency Hospital, 540142 Targu Mures, Romania;
| | - Carmen Muntean
- Department of Pediatrics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Claudia Bănescu
- Department of Genetics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
4
|
Zhang H, Gao K, Wang S, Zhang YH, Yang ZX, Wu Y, Jiang YW. PACS gene family-related neurological diseases: limited genotypes and diverse phenotypes. World J Pediatr 2024; 20:82-91. [PMID: 36645641 DOI: 10.1007/s12519-022-00652-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/07/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND The PACS gene family has been demonstrated to be related to intracellular vesicular trafficking. The phenotypic manifestations caused by the pathogenic variants of PACS include epilepsy, intellectual disability/developmental delay, and malformations, such as facial abnormalities. METHODS We identified seven new cases with pathogenic or likely pathogenic PACS variants using next-generation sequencing. Detailed information obtained from these patients was analyzed along with that obtained from previously reported patients. RESULTS With the inclusion of the newly diagnosed cases in this study, 103 cases with PACS gene family-related neurological diseases were reported, of which 43 were PACS2-related cases and the remaining were PACS1-related cases. Most patients had seizures, which have been reported to be effectively controlled by several types of anti-seizure medications (ASMs). The most efficacious and frequently prescribed ASMs included sodium valproate (43.3%, 13/30), oxcarbazepine/carbamazepine (26.7%, 8/30), and levetiracetam (20%, 6/30). Almost all patients had intellectual disability/developmental delay. The most common pathogenic missense variants were PACS1 p. Arg203Trp and PACS2 p.Glu209Lys. In addition, we report a patient carrying a likely pathogenic copy number variation (CNV) (de novo heterozygous deletion of chr14:105821380-106107443, 286 kilobase, destroyed part of the furin-binding region domain and the protein structure after it) with more severe and refractory late-onset epilepsy. CONCLUSIONS The clinical phenotypes of the different PACS heterozygous missense variants were similar. The pathogenic variant sites of PACS1 and PACS2 were quite limited but located in different regions. A CNV destroying part of the PACS2 gene might also be pathogenic. These findings may provide an important clue for further functional studies on the pathogenic mechanism of neurological disorders related to the PACS gene family. Video Abstract (MP4 65767 kb).
Collapse
Affiliation(s)
- Han Zhang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Shuang Wang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yue-Hua Zhang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Zhi-Xian Yang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yu-Wu Jiang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing, 100034, China.
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.
- Children Epilepsy Center, Peking University First Hospital, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China.
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
5
|
Chou IJ, Hou JY, Fan WL, Tsai MH, Lin KL. Long-Term Outcome of Neonatal Seizure with PACS2 Mutation: Case Series and Literature Review. CHILDREN 2023; 10:children10040621. [PMID: 37189870 DOI: 10.3390/children10040621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Phosphofurin Acidic Cluster Sorting Protein 2 (PACS2)-related early infantile developmental and epileptic encephalopathy (EIDEE) is a rare neurodevelopmental disorder. EIDEE is characterized by seizures that begin during the first three months of life and are accompanied by developmental impairment over time. In this article, we present three patients with EIDEE who experienced neonatal-onset seizures that developed into intractable seizures during infancy. Whole exome sequencing revealed a de novo heterozygous missense variant in all three patients in the p.Glu209Lys variant of the PACS2 gene. We conducted a literature review and found 29 cases to characterize the seizure patterns, neuroimaging features, the usage of anticonvulsants, and the clinical neurodevelopmental outcomes of PACS2-related EIDEE. The seizures were characterized by brief, recurring tonic seizures in the upper limbs, sometimes accompanied by autonomic features. Neuroimaging abnormalities were observed in the posterior fossa region, including mega cisterna magna, cerebellar dysplasia, and vermian hypoplasia. The long-term prognosis ranges from low–average intelligence to severe developmental retardation, emphasizing the importance of early recognition and accurate diagnosis by pediatric neurologists to provide personalized patient management.
Collapse
|
6
|
Perulli M, Picilli M, Contaldo I, Amenta S, Gambardella ML, Quintiliani M, Musto E, Turrini I, Veredice C, Zollino M, Battaglia DI. Pyridoxine supplementation in PACS2-related encephalopathy: A case report of possible precision therapy. Seizure 2023; 105:14-16. [PMID: 36645998 DOI: 10.1016/j.seizure.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023] Open
Affiliation(s)
- Marco Perulli
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Child Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Picilli
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Child Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ilaria Contaldo
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Child Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Simona Amenta
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Luigia Gambardella
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Child Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Michela Quintiliani
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Child Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Elisa Musto
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Child Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ida Turrini
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Child Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chiara Veredice
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Child Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marcella Zollino
- Telethon Institute of Genetics and Medicine (TIGEM) Pozzuoli, Naples, Italy; Genomic Medicine, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Domenica Immacolata Battaglia
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Child Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
7
|
Zang RX, Mumby MJ, Dikeakos JD. The Phosphofurin Acidic Cluster Sorting Protein 2 (PACS-2) E209K Mutation Responsible for PACS-2 Syndrome Increases Susceptibility to Apoptosis. ACS OMEGA 2022; 7:34378-34388. [PMID: 36188273 PMCID: PMC9520720 DOI: 10.1021/acsomega.2c04014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Phosphofurin acidic cluster sorting protein 2 (PACS-2) is a multifunctional cytosolic membrane trafficking protein with distinct roles in maintaining cellular homeostasis. Recent clinical reports have described 28 individuals possessing a de novo PACS-2 E209K mutation that present with epileptic seizures and cerebellar dysgenesis. As the PACS-2 E209K missense mutation has become a marker for neurodevelopmental disorders, we sought to characterize its biochemical properties. Accordingly, we observed that the PACS-2 E209K protein exhibited a slower turnover rate relative to PACS-2 wild type (WT) upon cycloheximide treatment in 293T cells. The longer half-life of PACS-2 E209K suggests a disruption in its proteostasis, with the potential for altered protein-protein interactions. Indeed, a regulatory protein in neurodevelopment known as 14-3-3ε was identified as having an increased association with PACS-2 E209K. Subsequently, when comparing the effect of PACS-2 WT and E209K expression on the staurosporine-induced apoptosis response, we found that PACS-2 E209K increased susceptibility to staurosporine-induced apoptosis in HCT 116 cells. Overall, our findings suggest PACS-2 E209K alters PACS-2 proteostasis and favors complex formation with 14-3-3ε, leading to increased cell death in the presence of environmental stressors.
Collapse
|
8
|
Molecular Basis of the Schuurs-Hoeijmakers Syndrome: What We Know about the Gene and the PACS-1 Protein and Novel Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms23179649. [PMID: 36077045 PMCID: PMC9456036 DOI: 10.3390/ijms23179649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The Schuurs−Hoeijmakers syndrome (SHMS) or PACS1 Neurodevelopment Disorder (PACS1-NDD) is a rare autosomal dominant disease caused by mutations in the PACS1 gene. To date, only 87 patients have been reported and, surprisingly, most of them carry the same variant (c.607C>T; p.R203W). The most relevant clinical features of the syndrome include neurodevelopment delay, seizures or a recognizable facial phenotype. Moreover, some of these characteristics overlap with other syndromes, such as the PACS2 or Wdr37 syndromes. The encoded protein phosphofurin acid cluster sorting 1 (PACS-1) is able to bind to different client proteins and direct them to their subcellular final locations. Therefore, although its main function is protein trafficking, it could perform other roles related to its client proteins. In patients with PACS1-NDD, a gain-of-function or a dominant negative mechanism for the mutated protein has been suggested. This, together with the fact that most of the patients carry the same genetic variant, makes it a good candidate for novel therapeutic approaches directed to decreasing the toxic effect of the mutated protein. Some of these strategies include the use of antisense oligonucleotides (ASOs) or targeting of its client proteins.
Collapse
|
9
|
Bedrosian TA, Miller KE, Grischow OE, Schieffer KM, LaHaye S, Yoon H, Miller AR, Navarro J, Westfall J, Leraas K, Choi S, Williamson R, Fitch J, Kelly BJ, White P, Lee K, McGrath S, Cottrell CE, Magrini V, Leonard J, Pindrik J, Shaikhouni A, Boué DR, Thomas DL, Pierson CR, Wilson RK, Ostendorf AP, Mardis ER, Koboldt DC. Detection of brain somatic variation in epilepsy-associated developmental lesions. Epilepsia 2022; 63:1981-1997. [PMID: 35687047 DOI: 10.1111/epi.17323] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Epilepsy-associated developmental lesions, including malformations of cortical development and low-grade developmental tumors, represent a major cause of drug-resistant seizures requiring surgical intervention in children. Brain-restricted somatic mosaicism has been implicated in the genetic etiology of these lesions; however, many contributory genes remain unidentified. METHODS We enrolled 50 children who were undergoing epilepsy surgery into a translational research study. Resected tissue was divided for clinical neuropathologic evaluation and genomic analysis. We performed exome and RNA sequencing to identify somatic variation and we confirmed our findings using high-depth targeted DNA sequencing. RESULTS We uncovered candidate disease-causing somatic variation affecting 28 patients (56%), as well as candidate germline variants affecting 4 patients (8%). In agreement with previous studies, we identified somatic variation affecting solute carrier family 35 member A2 (SLC35A2) and mechanistic target of rapamycin kinase (MTOR) pathway genes in patients with focal cortical dysplasia. Somatic gains of chromosome 1q were detected in 30% (3 of 10) of patients with Type I focal cortical dysplasia (FCD)s. Somatic variation in mitogen-activated protein kinase (MAPK) pathway genes (i.e., fibroblast growth factor receptor 1 [FGFR1], FGFR2, B-raf proto-oncogene, serine/threonine kinase [BRAF], and KRAS proto-oncogene, GTPase [KRAS]) was associated with low-grade epilepsy-associated developmental tumors. RNA sequencing enabled the detection of somatic structural variation that would have otherwise been missed, and which accounted for more than one-half of epilepsy-associated tumor diagnoses. Sampling across multiple anatomic regions revealed that somatic variant allele fractions vary widely within epileptogenic tissue. Finally, we identified putative disease-causing variants in genes not yet associated with focal cortical dysplasia. SIGNIFICANCE These results further elucidate the genetic basis of structural brain abnormalities leading to focal epilepsy in children and point to new candidate disease genes.
Collapse
Affiliation(s)
- Tracy A Bedrosian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Olivia E Grischow
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kathleen M Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Stephanie LaHaye
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Hyojung Yoon
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Anthony R Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jason Navarro
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jesse Westfall
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kristen Leraas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Samantha Choi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Rachel Williamson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - James Fitch
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Benjamin J Kelly
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Kristy Lee
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Sean McGrath
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Vincent Magrini
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jeffrey Leonard
- Department of Neurosurgery, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jonathan Pindrik
- Department of Neurosurgery, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Ammar Shaikhouni
- Department of Neurosurgery, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Daniel R Boué
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Division of Anatomy, Department of Biomedical Education & Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Diana L Thomas
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Christopher R Pierson
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Division of Anatomy, Department of Biomedical Education & Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Adam P Ostendorf
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Division of Pediatric Neurology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Daniel C Koboldt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
10
|
Cesaroni E, Matricardi S, Cappanera S, Marini C. First reported case of an inherited PACS2 pathogenic variant with variable expression. Epileptic Disord 2022; 24:572-576. [PMID: 35770754 DOI: 10.1684/epd.2022.1417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
Abstract
Neonatal epilepsy, cerebellar dysgenesis and facial dysmorphisms may be associated with de novo PACS2 missense pathogenic variants (EIEE 66) (OMIM #618067). Here, we report a toddler boy with neonatal-onset seizures, developmental delay with hypotonia, facial dysmorphisms and prominence of the cisterna magna, mild inferior vermian and cerebellar hypoplasia. A nextgeneration epilepsy gene panel revealed a known pathogenic PACS2 missense variant, p.Glu209Lys, that was inherited from his mildly affected mother. We describe the first PACS2 pathogenic variant to be inherited, expanding the clinical spectrum, associated with a mild phenotype in the mother and a more severe phenotype in her son, in keeping with previously reported descriptions.
Collapse
|
11
|
Valenzuela I, Guillén Benítez E, Sanchez-Montanez A, Limeres J, López-Grondona F, Cuscó I, Tizzano EF. Vein of Galen aneurysm, dilated cardiomyopathy, and slender habitus in a patient with a recurrent pathogenic variant in PACS2. Am J Med Genet A 2021; 188:991-995. [PMID: 34894068 DOI: 10.1002/ajmg.a.62596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/25/2021] [Accepted: 11/06/2021] [Indexed: 12/29/2022]
Abstract
The PACS2 gene encodes a multifunctional sorting protein involved in nuclear gene expression and pathway traffic regulation that has been shown to be highly expressed during human prenatal brain development. Pathogenic variants in PACS2 have been recently shown to be implicated in a phenotype with global developmental delay/intellectual disability, seizures, autistic traits, facial dysmorphic features, and cerebellar dysgenesis. Here, we report a 25-year-old male with intellectual disability, epileptic encephalopathy, cerebellar dysgenesis, facial dysmorphism, and a previously reported pathogenic variant in PACS2. To our knowledge, this is the oldest patient reported who, in addition to the known phenotype described in PACS2 patients, presented with a vein of Galen malformation and dilated cardiomyopathy as previously unreported findings.
Collapse
Affiliation(s)
- Irene Valenzuela
- Department of Clinical and Molecular Genetics and Rare Disease Unit, Valle Hebron Research Institute, Barcelona, Spain.,Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain.,European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA, University Hospital Vall d'Hebrón, Barcelona, Spain
| | - Elena Guillén Benítez
- Clinical Pharmacology Department, University Hospital Vall d'Hebrón, Barcelona, Spain
| | | | - Javier Limeres
- Inherited Cardiovascular Disease Unit, Cardiology Department, University Hospital Vall d'Hebrón, Barcelona, Spain
| | - Fermina López-Grondona
- Department of Clinical and Molecular Genetics and Rare Disease Unit, Valle Hebron Research Institute, Barcelona, Spain.,Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain
| | - Ivon Cuscó
- Department of Clinical and Molecular Genetics and Rare Disease Unit, Valle Hebron Research Institute, Barcelona, Spain.,Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain.,European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA, University Hospital Vall d'Hebrón, Barcelona, Spain
| | - Eduardo F Tizzano
- Department of Clinical and Molecular Genetics and Rare Disease Unit, Valle Hebron Research Institute, Barcelona, Spain.,Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain.,European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA, University Hospital Vall d'Hebrón, Barcelona, Spain
| |
Collapse
|
12
|
New case with the recurrent c.625G>A pathogenic variant in the PACS2 gene: expanding the phenotype. NEUROLOGÍA (ENGLISH EDITION) 2021; 36:716-719. [PMID: 34253499 DOI: 10.1016/j.nrleng.2020.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/30/2020] [Indexed: 11/24/2022] Open
|
13
|
Sánchez-Soler MJ, Serrano-Antón AT, López-González V, Guillén-Navarro E. New case with the recurrent c.635G>A pathogenic variant in the PACS2 gene: Expanding the phenotype. Neurologia 2021; 36:S0213-4853(20)30436-9. [PMID: 33461828 DOI: 10.1016/j.nrl.2020.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022] Open
Affiliation(s)
- M J Sánchez-Soler
- Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca. IMIB-Arrixaca, Murcia, España.
| | - A T Serrano-Antón
- Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca. IMIB-Arrixaca, Murcia, España
| | - V López-González
- Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca. IMIB-Arrixaca, Murcia, España; CIBERER. Insituto de Salud Carlos III, Madrid. España
| | - E Guillén-Navarro
- Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca. IMIB-Arrixaca, Murcia, España; CIBERER. Insituto de Salud Carlos III, Madrid. España
| |
Collapse
|
14
|
Sakaguchi Y, Yoshihashi H, Uehara T, Miyama S, Kosaki K, Takenouchi T. Coloboma may be a shared feature in a spectrum of disorders caused by mutations in the WDR37-PACS1-PACS2 axis. Am J Med Genet A 2020; 185:884-888. [PMID: 33369122 DOI: 10.1002/ajmg.a.62020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/12/2023]
Abstract
We report a male adult with early infantile-onset epilepsy, facial dysmorphism, and iridal and choroidal coloboma who had a de novo heterozygous mutation in PACS2, that is, c.625G > A p.(Glu209Lys). This specific mutation was previously reported in a patient with PACS2-related disorder (early infantile epileptic encephalopathy 66). De novo heterozygous mutations in WDR37 have been shown to cause a novel human disorder, neurooculocardiogenitourinary syndrome (NOCGUS syndrome) (OMIM #618652), characterized by intellectual disability, facial dysmorphism, and coloboma. According to large-scale interactome data, WDR37 interacts most strongly, by far, with PACS1 and PACS2. Clinically, coloboma has been described as a feature in a WDR37-related disorder and a PACS1-related disorder (Schuurs-Hoeijmakers syndrome), but not in a PACS2-related disorder. Our review of the phenotypes of three human disorders caused by WDR37, PACS1, and PACS2 mutations showed a significant overlap of epilepsy, intellectual disability, cerebellar atrophy, and facial features. The present observation of coloboma as a shared feature among these three disorders suggests that this group of genes may be involved in ocular development. We propose that dysregulation of the WDR37-PACS1-PACS2 axis results in a spectrum that is recognizable by intellectual disability, distinctive facial features, and coloboma.
Collapse
Affiliation(s)
- Yuri Sakaguchi
- Division of Neurology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Hiroshi Yoshihashi
- Division of Clinical Genetics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Sahoko Miyama
- Division of Neurology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|