1
|
Xu A, Liu J, Tong L, Shen T, Xing S, Xia Y, Zhang B, Wu Z, Yuan W, Yu A, Kan Z, Yang W, Zhang C, Zhang C. Machine Learning Reveals Aneuploidy Characteristics in Cancers: The Impact of BEX4. FRONT BIOSCI-LANDMRK 2024; 29:407. [PMID: 39735979 DOI: 10.31083/j.fbl2912407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Aneuploidy is crucial yet under-explored in cancer pathogenesis. Specifically, the involvement of brain expressed X-linked gene 4 (BEX4) in microtubule formation has been identified as a potential aneuploidy mechanism. Nevertheless, BEX4's comprehensive impact on aneuploidy incidence across different cancer types remains unexplored. METHODS Patients from The Cancer Genome Atlas (TCGA) were stratified into high-score (training) and low-score (control) groups based on the aneuploidy score. Mfuzz expression pattern clustering and functional enrichment were applied to genes with BEX4 as the core to explore their regulatory mechanisms. Various machine learning techniques were employed to screen aneuploidy-associated genes, after which aneuploidy characteristic subtypes were established in cancers. Moreover, the aneuploidy characteristics across multiple cancer types were investigated by integrating the extent of tumor cell stemness acquisition and a series of immune traits. Immunohistochemistry and proliferation assay mainly verified the anti-tumor effect of different BEX4 level. RESULTS Functional clustering results showed that aneuploidy and stemness were significantly associated in kidney chromophobe (KICH) and thyroid carcinoma (THCA). And cell metabolism and cell cycle had key effects. Residual analysis indicates superior screening performance by random forest (RF). An aneuploid feature gene set with BEX4 as the core was screened to construct a Nomogram model. BEX4, calmodulin regulated spectrin associated protein 2 (CAMSAP2), and myristoylated alanine rich protein kinase C substrate (MARCKS) were identified as aneuploidy characteristic hub genes. Molecular subtypes in thymoma (THYM), thyroid carcinoma (THCA), and kidney chromophobe (KICH) showed significant differences in tumor cell stemness among different subtypes. The competitive endogenous RNA (ceRNA)-Genes network revealed that hub genes, co-regulated by hsa-miR-425-5p, hsa-miR-200c-3p, and others, regulate microtubules, centrosomes, and microtubule cytoskeleton. Furthermore, elevated BEX4 emerged as a significant protective factor in Pancreatic adenocarcinoma (PAAD), KICH, kidney renal papillary cell carcinoma (KIRP), and kidney renal clear cell carcinoma (KIRC). CONCLUSIONS BEX4, CAMSAP2, and MARCKS specifically express in microtubules, centrioles, and cytoskeletons, influencing tumor chromosome division and inducing aneuploidy. Additionally, the relationship between the acquisition of tumor cell stemness and the severity of aneuploidy varies significantly across tumor types, displaying positive and negative correlations.
Collapse
Affiliation(s)
- Aizhong Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
- Department of General Surgery, Anqing Municipal Hospital, 246000 Anqing, Anhui, China
| | - Jianjun Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Li Tong
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Tingting Shen
- Clinical Pathology Center, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
- Clinical Pathology Center, Anhui Public Health Clinical Center, 230011 Hefei, Anhui, China
| | - Songlin Xing
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
- School of Basic Medical Sciences, Anhui Medical University, 230032 Hefei, Anhui, China
| | - Yujie Xia
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Bosen Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Zihao Wu
- Clinical Pathology Center, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
- Clinical Pathology Center, Anhui Public Health Clinical Center, 230011 Hefei, Anhui, China
| | - Wenkang Yuan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Anhai Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Zijie Kan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Wenqi Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Chao Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Chong Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| |
Collapse
|
2
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
3
|
Krzysiek-Maczka G, Brzozowski T, Ptak-Belowska A. Helicobacter pylori-activated fibroblasts as a silent partner in gastric cancer development. Cancer Metastasis Rev 2023; 42:1219-1256. [PMID: 37460910 PMCID: PMC10713772 DOI: 10.1007/s10555-023-10122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/20/2023] [Indexed: 12/18/2023]
Abstract
The discovery of Helicobacter pylori (Hp) infection of gastric mucosa leading to active chronic gastritis, gastroduodenal ulcers, and MALT lymphoma laid the groundwork for understanding of the general relationship between chronic infection, inflammation, and cancer. Nevertheless, this sequence of events is still far from full understanding with new players and mediators being constantly identified. Originally, the Hp virulence factors affecting mainly gastric epithelium were proposed to contribute considerably to gastric inflammation, ulceration, and cancer. Furthermore, it has been shown that Hp possesses the ability to penetrate the mucus layer and directly interact with stroma components including fibroblasts and myofibroblasts. These cells, which are the source of biophysical and biochemical signals providing the proper balance between cell proliferation and differentiation within gastric epithelial stem cell compartment, when exposed to Hp, can convert into cancer-associated fibroblast (CAF) phenotype. The crosstalk between fibroblasts and myofibroblasts with gastric epithelial cells including stem/progenitor cell niche involves several pathways mediated by non-coding RNAs, Wnt, BMP, TGF-β, and Notch signaling ligands. The current review concentrates on the consequences of Hp-induced increase in gastric fibroblast and myofibroblast number, and their activation towards CAFs with the emphasis to the altered communication between mesenchymal and epithelial cell compartment, which may lead to inflammation, epithelial stem cell overproliferation, disturbed differentiation, and gradual gastric cancer development. Thus, Hp-activated fibroblasts may constitute the target for anti-cancer treatment and, importantly, for the pharmacotherapies diminishing their activation particularly at the early stages of Hp infection.
Collapse
Affiliation(s)
- Gracjana Krzysiek-Maczka
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Tomasz Brzozowski
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Agata Ptak-Belowska
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland
| |
Collapse
|
4
|
An anticancer effect of umbilical cord-derived mesenchymal stem cell secretome on the breast cancer cell line. Cell Tissue Bank 2019; 20:423-434. [PMID: 31338647 DOI: 10.1007/s10561-019-09781-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022]
Abstract
Nowadays, Mesenchymal stem cells (MSCs) have become one of the most attractive tools for treating tumors, due to their specific characteristics, the most prominent of which are tropism toward tumor. These cells will exert their effects through their secretion. In this study, our aim was to evaluate the anti-cancer effect of umbilical cord-derived mesenchymal cells (UCMSC) secretome, on MCF-7 tumor cells. MSCs were extracted from the umbilical cord of mothers, having normal delivery or cesarean section. After culture, the supernatants of these cells were collected and freeze-dried. The cytotoxic effect of freeze-dried secretome was examined at different concentrations on MCF-7 and the optimum concentrations (IC50) were calculated, using MTT assay. These results were confirmed by BrdU assay. The effect of induction of apoptosis of the MSC secretome on MCF-7 was determined, using annexin V/PI method by flow cytometry. The results of our study indicate that the isolation and growth time of UCMSCs of mothers who were naturally delivered was lower than those who received cesarean section. Co-culture studies showed that MSCs had cytotoxic effects on MCF-7 cells. The MSC secretome also showed cytotoxic effects on the MCF-7 cell line, this effect was mediated by induction of apoptosis, which was dose-dependent with an IC50 of 10 mg/mL.
Collapse
|
5
|
Atashzar MR, Baharlou R, Karami J, Abdollahi H, Rezaei R, Pourramezan F, Zoljalali Moghaddam SH. Cancer stem cells: A review from origin to therapeutic implications. J Cell Physiol 2019; 235:790-803. [PMID: 31286518 DOI: 10.1002/jcp.29044] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are elucidated as cells that can perpetuate themselves via autorestoration. These cells are highly resistant to current therapeutic approaches and are the main reason for cancer recurrence. Radiotherapy has made a lot of contributions to cancer treatment. However, despite continuous achievements, therapy resistance and tumor recurrence are still prevalent in most patients. This resistance might be partly related to the existence of CSCs. In the present study, recent advances in the investigation of different biological properties of CSCs, such as their origin, markers, characteristics, and targeting have been reviewed. We have also focused our discussion on radioresistance and adaptive responses of CSCs and their related extrinsic and intrinsic influential factors. In summary, we suggest CSCs as the prime therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Mohammad Reza Atashzar
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Rasoul Baharlou
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Jafar Karami
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Abdollahi
- Department of Radiologic Sciences and Medical Physics, School of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ramazan Rezaei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Pourramezan
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | |
Collapse
|
6
|
Moradi F, Babashah S, Sadeghizadeh M, Jalili A, Hajifathali A, Roshandel H. Signaling pathways involved in chronic myeloid leukemia pathogenesis: The importance of targeting Musashi2-Numb signaling to eradicate leukemia stem cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:581-589. [PMID: 31231484 PMCID: PMC6570743 DOI: 10.22038/ijbms.2019.31879.7666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/15/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Chronic myeloid leukemia (CML) is a myeloid clonal proliferation disease defining by the presence of the Philadelphia chromosome that shows the movement of BCR-ABL1. In this study, the critical role of the Musashi2-Numb axis in determining cell fate and relationship of the axis to important signaling pathways such as Hedgehog and Notch that are essential for self-renewal pathways in CML stem cells will be reviewed meticulously. MATERIALS AND METHODS In this review, a PubMed search using the keywords of Leukemia, signaling pathways, Musashi2-Numb was performed, and then we summarized different research works . RESULTS Although tyrosine kinase inhibitors such as Imatinib significantly kill and remove the cell with BCR-ABL1 translocation, they are unable to target BCR-ABL1 leukemia stem cells. The main problem is stem cells resistance to Imatinib therapy. Therefore, the identification and control of downstream molecules/ signaling route of the BCR-ABL1 that are involved in the survival and self-renewal of leukemia stem cells can be an effective treatment strategy to eliminate leukemia stem cells, which supposed to be cured by Musashi2-Numb signaling pathway. CONCLUSION The control of molecules /pathways downstream of the BCR-ABL1 and targeting Musashi2-Numb can be an effective therapeutic strategy for treatment of chronic leukemia stem cells. While Musashi2 is a poor prognostic marker in leukemia, in treatment and strategy, it has significant diagnostic value.
Collapse
Affiliation(s)
- Foruzan Moradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arsalan Jalili
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hajifathali Roshandel
- Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Salazar‐García L, Pérez‐Sayáns M, García‐García A, Carracedo Á, Cruz R, Lozano A, Sobrino B, Barros F. Whole exome sequencing approach to analysis of the origin of cancer stem cells in patients with head and neck squamous cell carcinoma. J Oral Pathol Med 2018; 47:938-944. [DOI: 10.1111/jop.12771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022]
Affiliation(s)
| | - Mario Pérez‐Sayáns
- Oral Medicine, Oral Surgery and Implantology Unit Faculty of Medicine and Dentistry Instituto de Investigación Sanitaria de Santiago (IDIS) Santiago de Compostela Spain
| | - Abel García‐García
- Oral Medicine, Oral Surgery and Implantology Unit Faculty of Medicine and Dentistry Instituto de Investigación Sanitaria de Santiago (IDIS) Santiago de Compostela Spain
| | - Ángel Carracedo
- Fundacion Publica Galega de Medicina Xenomica‐SERGAS Santiago de Compostela Spain
- Grupo de Medicina Xenómica CIBER de Enfermedades Raras (CIBERER)‐Instituto de Salud Carlos III Universidade de Santiago de Compostela Santiago de Compostela Spain
| | - Raquel Cruz
- Grupo de Medicina Xenómica CIBER de Enfermedades Raras (CIBERER)‐Instituto de Salud Carlos III Universidade de Santiago de Compostela Santiago de Compostela Spain
| | - Antonio Lozano
- Department of Gastroenterology University Hospital Santiago de Compostela Spain
| | - Beatriz Sobrino
- Fundacion Publica Galega de Medicina Xenomica‐SERGAS Santiago de Compostela Spain
| | - Francisco Barros
- Fundacion Publica Galega de Medicina Xenomica‐SERGAS Santiago de Compostela Spain
- Grupo de Medicina Xenómica CIBER de Enfermedades Raras (CIBERER)‐Instituto de Salud Carlos III Universidade de Santiago de Compostela Santiago de Compostela Spain
| |
Collapse
|
8
|
Shi Y, Liu N, Lai W, Yan B, Chen L, Liu S, Liu S, Wang X, Xiao D, Liu X, Mao C, Jiang Y, Jia J, Liu Y, Yang R, Cao Y, Tao Y. Nuclear EGFR-PKM2 axis induces cancer stem cell-like characteristics in irradiation-resistant cells. Cancer Lett 2018; 422:81-93. [PMID: 29477380 DOI: 10.1016/j.canlet.2018.02.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/31/2018] [Accepted: 02/17/2018] [Indexed: 12/17/2022]
Abstract
Radiation therapy has become an important tool in the treatment of cancer patients, but most patients relapse within 5 years. Relapse is due to the presence of cancer stem cells (CSCs), but the molecular mechanism of radioresistance in CSCs remains largely elusive. Here, we found that irradiation-resistant (IR) cells exhibited increased stem cell-like properties together with elevated anchorage-independent growth and metastasis ability. EGFR not only leads to increased acquisition of endometrial cancer stem cell markers in radioresistant sublines but is critical for the cancer stem-cell phenotype and tumorigenicity. Moreover, PKM2 functions as an interacting partner of EGFR, which induces the EMT phenotype and stem cell-like properties in IR cells. Finally, we found that the regulatory function of the EGFR-PKM2 axis is dependent on nuclear EGFR. In sum, our study indicated that EGFR and PKM2 directly interact and bind with each other to regulate the transcription of stemness-related genes and promote the stem-like phenotype, thus promoting invasion and metastasis.
Collapse
Affiliation(s)
- Ying Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China
| | - Na Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China
| | - Weiwei Lai
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China
| | - Bin Yan
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China
| | - Ling Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China
| | - Shouping Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China
| | - Shuang Liu
- Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China
| | - Xiang Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008 China
| | - Xiaoli Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China
| | - Chao Mao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China
| | - Yiqun Jiang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China
| | - Jiantao Jia
- Department of Pathophysiology, Changzhi Medical College, Changzhi, Shanxi, 046000 China
| | - Yating Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China
| | - Rui Yang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
9
|
Rhyu MG, Oh JH, Hong SJ. Species-specific role of gene-adjacent retroelements in human and mouse gastric carcinogenesis. Int J Cancer 2017; 142:1520-1527. [PMID: 29055047 DOI: 10.1002/ijc.31120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/22/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori (HP) infection promotes the recruitment of bone marrow stem cells into chronic gastritis lesions. Some of these marrow stem cells can differentiate into gastric epithelial cells and neoplastic cells. We propose that HP-associated methylation could stabilize trans-differentiation of marrow-derived stem cells and that an unstable methylation status is associated with a risk of gastric cancer. Pathobiologic behavior of experimental mouse gastric cancer is mild compared to invasive and metastatic human gastric cancer. Differences in epigenetic stabilization of adult cell phenotypes between humans and mice could provide a foundation to explore the development of invasive and metastatic gastric cancer. Retroelements are highly repetitive sequences that play an essential role in the generation of species diversity. In this review, we analyzed retroelements adjacent to human and mouse housekeeping genes and proposed a possible epigenetic mechanism for HP-associated carcinogenesis.
Collapse
Affiliation(s)
- Mun-Gan Rhyu
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung-Hwan Oh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Jin Hong
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
10
|
Hsu CL, Chung FH, Chen CH, Hsu TT, Liu SM, Chung DS, Hsu YF, Chen CL, Ma N, Lee HC. Genotypes of cancer stem cells characterized by epithelial-to-mesenchymal transition and proliferation related functions. Sci Rep 2016; 6:32523. [PMID: 27597445 PMCID: PMC5011650 DOI: 10.1038/srep32523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs), or cancer cells with stem cell-like properties, generally exhibit drug resistance and have highly potent cancer inducing capabilities. Genome-wide expression data collected at public repositories over the last few years provide excellent material for studies that can lead to insights concerning the molecular and functional characteristics of CSCs. Here, we conducted functional genomic studies of CSC based on fourteen PCA-screened high quality public CSC whole genome gene expression datasets and, as control, four high quality non-stem-like cancer cell and non-cancerous stem cell datasets from the Gene Expression Omnibus database. A total of 6,002 molecular signatures were taken from the Molecular Signatures Database and used to characterize the datasets, which, under two-way hierarchical clustering, formed three genotypes. Type 1, consisting of mainly glia CSCs, had significantly enhanced proliferation, and significantly suppressed epithelial-mesenchymal transition (EMT), related functions. Type 2, mainly breast CSCs, had significantly enhanced EMT, but not proliferation, related functions. Type 3, composed of ovarian, prostate, and colon CSCs, had significantly suppressed proliferation related functions and mixed expressions on EMT related functions.
Collapse
Affiliation(s)
- Chueh-Lin Hsu
- Institute of Systems Biology and Bioinformatics, Department of Biomedical Science and Engineering, National Central University, Zhongli, 32001, Taiwan
| | - Feng-Hsiang Chung
- Institute of Systems Biology and Bioinformatics, Department of Biomedical Science and Engineering, National Central University, Zhongli, 32001, Taiwan
| | - Chih-Hao Chen
- Institute of Systems Biology and Bioinformatics, Department of Biomedical Science and Engineering, National Central University, Zhongli, 32001, Taiwan
| | - Tzu-Ting Hsu
- Institute of Systems Biology and Bioinformatics, Department of Biomedical Science and Engineering, National Central University, Zhongli, 32001, Taiwan
| | - Szu-Mam Liu
- Institute of Systems Biology and Bioinformatics, Department of Biomedical Science and Engineering, National Central University, Zhongli, 32001, Taiwan
| | - Dao-Sheng Chung
- Department of Radiation Oncology, Landseed Hospital, Taoyuan, 324, Taiwan
| | - Ya-Fen Hsu
- Department of Surgery, Landseed Hospital, Taoyuan, 324, Taiwan
| | - Chien-Lung Chen
- Department of Nephrology, Landseed Hospital, Taoyuan, 324, Taiwan
| | - Nianhan Ma
- Institute of Systems Biology and Bioinformatics, Department of Biomedical Science and Engineering, National Central University, Zhongli, 32001, Taiwan
| | - Hoong-Chien Lee
- Institute of Systems Biology and Bioinformatics, Department of Biomedical Science and Engineering, National Central University, Zhongli, 32001, Taiwan.,Department of Physics, Chung Yuan Christian University, Zhongli, 32023, Taiwan.,Center for Dynamical Biomarkers and Translational Medicine, National Central University, Zhongli, 32001, Taiwan
| |
Collapse
|
11
|
Song L, Li Y, He B, Gong Y. Development of Small Molecules Targeting the Wnt Signaling Pathway in Cancer Stem Cells for the Treatment of Colorectal Cancer. Clin Colorectal Cancer 2015; 14:133-145. [PMID: 25799881 DOI: 10.1016/j.clcc.2015.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/13/2015] [Accepted: 02/06/2015] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) was ranked third in morbidity and mortality in the United States in 2013. Although substantial progress has been made in surgical techniques and postoperative chemotherapy in recent years, the prognosis for colon cancer is still not satisfactory, mainly because of cancer recurrence and metastasis. The latest studies have shown that cancer stem cells (CSCs) play important roles in cancer recurrence and metastasis. Drugs that target CSCs might therefore have great therapeutic potential in prevention of cancer recurrence and metastasis. The wingless-int (Wnt) signaling pathway in CSCs has been suggested to play crucial roles in colorectal carcinogenesis, and has become a popular target for anti-CRC therapy. Dysregulation of the Wnt signaling pathway, mostly by inactivating mutations of the adenomatous polyposis coli tumor suppressor or oncogenic mutations of β-catenin, has been implicated as a key factor in colorectal tumorigenesis. Abnormal increases of β-catenin levels represents a common pathway in Wnt signaling activation and is also observed in other human malignancies. These findings highlight the importance of developing small-molecule drugs that target the Wnt pathway. Herein we provide an overview on the current development of small molecules that target the Wnt pathway in colorectal CSCs and discuss future research directions.
Collapse
Affiliation(s)
- Lele Song
- Department of Radiotherapy, the PLA 309 Hospital, Beijing, China; BioChain (Beijing) Science and Technology, Inc, Beijing, China.
| | - Yuemin Li
- Department of Radiotherapy, the PLA 309 Hospital, Beijing, China.
| | - Baoming He
- Department of Nuclear Medicine, the PLA 309 Hospital, Beijing, China
| | - Yuan Gong
- Department of Gastroenterology, the PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Current Status on Stem Cells and Cancers of the Gastric Epithelium. Int J Mol Sci 2015; 16:19153-69. [PMID: 26287172 PMCID: PMC4581291 DOI: 10.3390/ijms160819153] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/28/2015] [Accepted: 08/06/2015] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer is still a leading cause of cancer-related mortality worldwide in spite of declining incidence. Gastric cancers are, essentially, adenocarcinomas and one of the strongest risk factors is still infection with Helicobacter pylori. Within the last years, it became clear that gastric self-renewal and carcinogenesis are intimately linked, particularly during chronic inflammatory conditions. Generally, gastric cancer is now regarded as a disease resulting from dysregulated differentiation of stem and progenitor cells, mainly due to an inflammatory environment. However, the situation in the stomach is rather complex, consisting of two types of gastric units which show bidirectional self-renewal from an unexpectedly large variety of progenitor/stem cell populations. As in many other tumors, cancer stem cells have also been characterized for gastric cancer. This review focuses on the various gastric epithelial stem cells, how they contribute to self-renewal and which routes are known to gastric adenocarcinomas, including their stem cells.
Collapse
|
13
|
A critical examination of the mode of action of quinacrine in the reproductive tract in a 2-year rat cancer bioassay and its implications for human clinical use. Regul Toxicol Pharmacol 2015; 71:371-8. [DOI: 10.1016/j.yrtph.2015.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/21/2015] [Accepted: 02/05/2015] [Indexed: 01/28/2023]
|
14
|
Liang Y, Feng Q, Hong J, Feng F, Sang Y, Hu W, Xu M, Peng R, Kang T, Bei J, Zeng Y. Tumor growth and metastasis can be inhibited by maintaining genomic stability in cancer cells. Front Med 2015; 9:57-62. [DOI: 10.1007/s11684-015-0389-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 12/26/2014] [Indexed: 11/25/2022]
|
15
|
Wang X, Zou F, Deng H, Fu Z, Li Y, Wu L, Wang Z, Liu L. Characterization of sphere‑forming cells with stem‑like properties from the gastric cancer cell lines MKN45 and SGC7901. Mol Med Rep 2014; 10:2937-41. [PMID: 25270642 DOI: 10.3892/mmr.2014.2601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 04/28/2014] [Indexed: 11/06/2022] Open
Abstract
Traditionally, it was presumed that gastric cancer was derived from tumor cells with stem‑like properties. In the present study, stem‑like cells from the gastric cancer cell lines MKN45 and SGC7901 were enriched by growing them as spheres in a defined serum‑free medium. Following enrichment for stem‑like cells, cluster of differentiation (CD)24 and CD44 were applied as candidate stem cell markers to examine the expression profile. It was revealed that the sphere‑derived cells contained a higher proportion of cells expressing the stem cell surface markers CD24 and CD44 when compared with the parental cells. It was also identified that the expression of cytokeratin 18 in sphere‑derived cells was decreased and the expression of vimentin and aldehyde dehydrogenase 1 (ALDH1) was increased compared with the parental cells. This finding supports the existence of a population of tumor sphere‑forming cells with stem cell properties in the MKN45 and SGC7901 cell lines. Furthermore, the stem cell population was enriched in cells expressing CD24, CD44, vimentin and ALDH1 cell surface markers. These results support the existence of gastric cancer stem cells and provide an alternative approach to the diagnosis and treatment of gastric cancer.
Collapse
Affiliation(s)
- Xuming Wang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Feng Zou
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Hao Deng
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Zhengqi Fu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Yan Li
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Lixia Wu
- Department of Pathology and Pathophysiology, School of Basic Medical Science of Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Zhaoyi Wang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Lijiang Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| |
Collapse
|
16
|
Allegra A, Alonci A, Penna G, Innao V, Gerace D, Rotondo F, Musolino C. The cancer stem cell hypothesis: a guide to potential molecular targets. Cancer Invest 2014; 32:470-95. [PMID: 25254602 DOI: 10.3109/07357907.2014.958231] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Common cancer theories hold that tumor is an uncontrolled somatic cell proliferation caused by the progressive addition of random mutations in critical genes that control cell growth. Nevertheless, various contradictions related to the mutation theory have been reported previously. These events may be elucidated by the persistence of residual tumor cells, called Cancer Stem Cells (CSCs) responsible for tumorigenesis, tumor maintenance, tumor spread, and tumor relapse. Herein, we summarize the current understanding of CSCs, with a focus on the possibility to identify specific markers of CSCs, and discuss the clinical application of targeting CSCs for cancer treatment.
Collapse
|
17
|
Case Report: Postradiation Chondrosarcoma with a Short Latency Period of 6 Months. Int J Biol Markers 2014; 29:e440-4. [PMID: 25385242 DOI: 10.5301/jbm.5000109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2014] [Indexed: 01/24/2023]
Abstract
We describe a case of postradiation chondrosarcoma after basal cell carcinoma treatment. At the time he presented, the patient was a 35-year-old man who had received radiotherapy at a dose of 70 Gy for 8 weeks. Six months after radiation treatment, a rapidly growing mass at the upper right alveolar ridge of the gums, where radiation had been given, was diagnosed as chondrosarcoma. Generally, chondrosarcoma occurs after a latency period of several years following radiation. However, there are a few relevant reports indicating that maxillofacial chondrosarcoma can develop after radiotherapy for basal cell carcinoma, with a short latency of 6 months. We hypothesize that the dosage and treatment time of radiation may have played a role in the opening/closing of the Hh-signaling pathway in the case of this patient.
Collapse
|
18
|
Pacini N, Borziani F. Cancer stem cell theory and the warburg effect, two sides of the same coin? Int J Mol Sci 2014; 15:8893-930. [PMID: 24857919 PMCID: PMC4057766 DOI: 10.3390/ijms15058893] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/28/2014] [Accepted: 05/12/2014] [Indexed: 12/12/2022] Open
Abstract
Over the last 100 years, many studies have been performed to determine the biochemical and histopathological phenomena that mark the origin of neoplasms. At the end of the last century, the leading paradigm, which is currently well rooted, considered the origin of neoplasms to be a set of genetic and/or epigenetic mutations, stochastic and independent in a single cell, or rather, a stochastic monoclonal pattern. However, in the last 20 years, two important areas of research have underlined numerous limitations and incongruities of this pattern, the hypothesis of the so-called cancer stem cell theory and a revaluation of several alterations in metabolic networks that are typical of the neoplastic cell, the so-called Warburg effect. Even if this specific “metabolic sign” has been known for more than 85 years, only in the last few years has it been given more attention; therefore, the so-called Warburg hypothesis has been used in multiple and independent surveys. Based on an accurate analysis of a series of considerations and of biophysical thermodynamic events in the literature, we will demonstrate a homogeneous pattern of the cancer stem cell theory, of the Warburg hypothesis and of the stochastic monoclonal pattern; this pattern could contribute considerably as the first basis of the development of a new uniform theory on the origin of neoplasms. Thus, a new possible epistemological paradigm is represented; this paradigm considers the Warburg effect as a specific “metabolic sign” reflecting the stem origin of the neoplastic cell, where, in this specific metabolic order, an essential reason for the genetic instability that is intrinsic to the neoplastic cell is defined.
Collapse
Affiliation(s)
- Nicola Pacini
- Laboratorio Privato di Biochimica F. Pacini, via trabocchetto 10, 89126 Reggio Calabria, Italy.
| | - Fabio Borziani
- Laboratorio Privato di Biochimica F. Pacini, via trabocchetto 10, 89126 Reggio Calabria, Italy.
| |
Collapse
|
19
|
Ahn SH, Henderson YC, Williams MD, Lai SY, Clayman GL. Detection of thyroid cancer stem cells in papillary thyroid carcinoma. J Clin Endocrinol Metab 2014; 99:536-44. [PMID: 24302752 PMCID: PMC3913805 DOI: 10.1210/jc.2013-2558] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
CONTEXT Special populations of cells that can efficiently initiate tumor growth have been characterized, and this feature supports the cancer stem cell theory. These cancer stem cell populations have been identified with CD44 and POU5F1. Most cancer stem cells express high levels of CD44 and low levels of CD24. In thyroid lesions, cancer stem cells have been detected in anaplastic carcinoma. However, little is known about the presence of cancer stem cells in papillary thyroid carcinoma (PTC), especially in recurrent PTC. OBJECTIVE AND DESIGN PTC cells were labeled and sorted by flow cytometry to obtain two populations. Total RNA was prepared from cells with high CD44 and CD24 expressions (CD44+CD24+) and from cells with high CD44 and low CD24 expressions (CD44+CD24-). The expressions of the stem cell marker POU5F1 and several differentiated thyroid markers were measured via real-time PCR. RESULTS CD44+CD24- cells were present in all PTCs tested, and the percentage of these cells was higher in clinically aggressive recurrent PTC than in less aggressive primary PTCs. Higher expression of POU5F1 was found in CD44+CD24- cells compared with that of CD44+CD24+ cells. The expression of POU5F1 was higher in thyrospheroids grown in serum-free condition than in cells grown in the presence of serum from the same patient, and the tumor was initiated in mice using thyrospheroids. CONCLUSIONS The percentage of CD44+CD24- cells varied from tumor to tumor. Our findings suggest that cancer stem cells are present in PTC.
Collapse
Affiliation(s)
- Soon-Hyun Ahn
- Department of Otolaryngology-Head and Neck Surgery (S-H.A.), College of Medicine, Seoul National University Bundang Hospital, Kyunggi-do 463-707, South Korea; and Departments of Head and Neck Surgery (Y.C.H., S.Y.L., G.L.C.), Pathology (M.D.W.), Molecular and Cellular Oncology (S.Y.L.), and Cancer Biology (G.L.C.), The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | | | | | | | | |
Collapse
|
20
|
In Vitro Assessment of Migratory Behavior of Two Cell Populations in a Simple Multichannel Microdevice. Processes (Basel) 2013. [DOI: 10.3390/pr1030349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
21
|
Abstract
SLC5A8 is a putative tumor suppressor that is inactivated in more than 10 different types of cancer, but neither the oncogenic signaling responsible for SLC5A8 inactivation nor the functional relevance of SLC5A8 loss to tumor growth has been elucidated. Here, we identify oncogenic HRAS (HRAS(G12V)) as a potent mediator of SLC5A8 silencing in human nontransformed normal mammary epithelial cell lines and in mouse mammary tumors through DNMT1. Further, we demonstrate that loss of Slc5a8 increases cancer-initiating stem cell formation and promotes mammary tumorigenesis and lung metastasis in an HRAS-driven murine model of mammary tumors. Mammary-gland-specific overexpression of Slc5a8 (mouse mammary tumor virus-Slc5a8 transgenic mice), as well as induction of endogenous Slc5a8 in mice with inhibitors of DNA methylation, protects against HRAS-driven mammary tumors. Collectively, our results provide the tumor-suppressive role of SLC5A8 and identify the oncogenic HRAS as a mediator of tumor-associated silencing of this tumor suppressor in mammary glands. These findings suggest that pharmacological approaches to reactivate SLC5A8 expression in tumor cells have potential as a novel therapeutic strategy for breast cancer treatment.
Collapse
|
22
|
Ma Y, Liang D, Liu J, Wen JG, Servoll E, Waaler G, Sæter T, Axcrona K, Vlatkovic L, Axcrona U, Paus E, Yang Y, Zhang Z, Kvalheim G, Nesland JM, Suo Z. SHBG is an important factor in stemness induction of cells by DHT in vitro and associated with poor clinical features of prostate carcinomas. PLoS One 2013; 8:e70558. [PMID: 23936228 PMCID: PMC3728318 DOI: 10.1371/journal.pone.0070558] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 06/24/2013] [Indexed: 11/18/2022] Open
Abstract
Androgen plays a vital role in prostate cancer development. However, it is not clear whether androgens influence stem-like properties of prostate cancer, a feature important for prostate cancer progression. In this study, we show that upon DHT treatment in vitro, prostate cancer cell lines LNCaP and PC-3 were revealed with higher clonogenic potential and higher expression levels of stemness related factors CD44, CD90, Oct3/4 and Nanog. Moreover, sex hormone binding globulin (SHBG) was also simultaneously upregulated in these cells. When the SHBG gene was blocked by SHBG siRNA knock-down, the induction of Oct3/4, Nanog, CD44 and CD90 by DHT was also correspondingly blocked in these cells. Immunohistochemical evaluation of clinical samples disclosed weakly positive, and areas negative for SHBG expression in the benign prostate tissues, while most of the prostate carcinomas were strongly positive for SHBG. In addition, higher levels of SHBG expression were significantly associated with higher Gleason score, more seminal vesicle invasions and lymph node metastases. Collectively, our results show a role of SHBG in upregulating stemness of prostate cancer cells upon DHT exposure in vitro, and SHBG expression in prostate cancer samples is significantly associated with poor clinicopathological features, indicating a role of SHBG in prostate cancer progression.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Dongming Liang
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jian Liu
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jian-Guo Wen
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, China
| | - Einar Servoll
- Department of Surgery, Soerlandet Hospital, Arendal, Norway
| | - Gudmund Waaler
- Department of Surgery, Soerlandet Hospital, Arendal, Norway
| | | | - Karol Axcrona
- Departments of Urology, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ljiljana Vlatkovic
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ulrika Axcrona
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Elisabeth Paus
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Yue Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhiqian Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Gunnar Kvalheim
- Departments of Cell Therapy, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Jahn M. Nesland
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Zhenhe Suo
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, China
- * E-mail:
| |
Collapse
|
23
|
Miyazawa M, Yamaue H. [Current topics and future to vaccine for pancreatic cancer]. NIHON JIBIINKOKA GAKKAI KAIHO 2013; 116:573-580. [PMID: 24024272 DOI: 10.3950/jibiinkoka.116.573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
24
|
Ye L, Tao K, Yu Y, Wang G. Reduction of G0 phase cells of colon cancer caco-2 cells may enhance 5-fluorouracil efficacy. J Biomed Res 2013; 24:64-8. [PMID: 23554613 PMCID: PMC3596537 DOI: 10.1016/s1674-8301(10)60010-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Indexed: 11/08/2022] Open
Abstract
Objective A major problem in the chemotherapy of colon caner may be due to those cells that are in residence in the G0 phase where they are less vulnerable to conventional therapy. To overcome this phenomenon, we attempted to recruit the reentry of these cells into the cell cycle via a signaling pathway that manipulates tumor growth. Methods Epidermal growth factor (EGF) was used to stimulate colon cancer caco-2 cells. FACS analysis and proliferating cell nuclear antigen (PCNA) staining were used to estimate the cell cycle transition and cell proliferation activated by EGF, and a MTT assay was used to evaluate the synergistic effect of EGF and chemotherapy. Results The percentage of caco-2 cells in the G0/G1 phase was significantly reduced by nearly 20% and the percentages in the S and G2/M phases were increased by EGF. The combined use of EGF and 5-fluorouracil (5-FU) enhanced the caco-2 cell chemosensitivity to 5-FU, reaching a maximum of an approximately threefold greater sensitivity than to 5-FU alone as judged by the 50% inhibiting concentration (IC50). Conclusion Our study demonstrated that stimulation by EGF enhanced the chemosensitivity of caco-2 cells to 5-FU, which may be a novel therapeutic protocol in colon cancer.
Collapse
Affiliation(s)
- Lin Ye
- Department of Laproscope Surgery, Union Hospital affiliated to HuaZhong University of Science and Technology, WuHan 430022, China
| | | | | | | |
Collapse
|
25
|
Vira D, Basak SK, Veena MS, Wang MB, Batra RK, Srivatsan ES. Cancer stem cells, microRNAs, and therapeutic strategies including natural products. Cancer Metastasis Rev 2012; 31:733-51. [PMID: 22752409 DOI: 10.1007/s10555-012-9382-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Embryonic stem cells divide continuously and differentiate into organs through the expression of specific transcription factors at specific time periods. Differentiated adult stem cells on the other hand remain in quiescent state and divide by receiving cues from the environment (extracellular matrix or niche), as in the case of wound healing from tissue injury or inflammation. Similarly, it is believed that cancer stem cells (CSCs), forming a smaller fraction of the tumor bulk, also remain in a quiescent state. These cells are capable of initiating and propagating neoplastic growth upon receiving environmental cues, such as overexpression of growth factors, cytokines, and chemokines. Candidate CSCs express distinct biomarkers that can be utilized for their identification and isolation. This review focuses on the known and candidate cancer stem cell markers identified in various solid tumors and the promising future of disease management and therapy targeted at these markers. The review also provides details on the differential expression of microRNAs (miRNAs), and the miRNA- and natural product-based therapies that could be applied for the treatment of cancer stem cells.
Collapse
Affiliation(s)
- Darshni Vira
- Department of Surgery, VAGLAHS West Los Angeles, Los Angeles, CA 90073, USA
| | | | | | | | | | | |
Collapse
|
26
|
Xu HM, Liang Y, Chen Q, Wu QN, Guo YM, Shen GP, Zhang RH, He ZW, Zeng YX, Xie FY, Kang TB. Correlation of Skp2 overexpression to prognosis of patients with nasopharyngeal carcinoma from South China. CHINESE JOURNAL OF CANCER 2012; 30:204-12. [PMID: 21352698 PMCID: PMC4013317 DOI: 10.5732/cjc.010.10403] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
S-phase kinase-associated protein 2 (Skp2), which plays a role in cell cycle regulation, is commonly overexpressed in a variety of human cancers and associated with poor prognosis. However, its role in nasopharyngeal carcinoma (NPC) is not well understood. In this study, we examined the clinical significance of Skp2, with a particular emphasis on overall survival (OS) and disease-free survival (DFS), in NPC cases in South China, where NPC is an epidemic. Additionally, we explored the function of Skp2 in maintaining a cancer stem cell-like phenotype in NPC cell lines. Skp2 expression was assessed for 127 NPC patients using tissue microarrays and immunohistochemistry and analyzed together with clinicopathologic features, OS, and DFS. Skp2 expression was detectable, or positive, in 75.6% of patients. Although there was no correlation between Skp2 and any clinicopathologic factor, Skp2 expression significantly portended inferior OS (P = 0.013) and DFS (P = 0.012). In the multivariate model, Skp2 expression remained significantly predictive of poor OS [P = 0.009, risk ratio (RR) = 4.06] and DFS (P = 0.008, RR = 3.56), and this was also true for clinical stage (P = 0.012 and RR=3.201 for OS; P = 0.002 and RR=1.94 for DFS) and sex (P = 0.016 and RR=0.31 for OS; P = 0.006 and RR = 0.27 for DFS). After Skp2 knockdown, a colony formation assay was used to evaluate the self-renewal property of stem-like cells in the NPC cell lines CNE-1 and CNE-2. The colony formation efficiency in CNE-1 and CNE-2 cells was decreased. In Skp2-transfected CNE-1 and CNE-2 cells, side population (SP) proportion was increased as detected by flow cytometry. Skp2 is an independent prognostic marker for OS and DFS in NPC. Skp2 may play a role in maintaining the cancer stem cell-like phenotype of NPC cell lines.
Collapse
Affiliation(s)
- Hui-Min Xu
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510060, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rocco A, Compare D, Nardone G. Cancer stem cell hypothesis and gastric carcinogenesis: Experimental evidence and unsolved questions. World J Gastrointest Oncol 2012; 4:54-9. [PMID: 22468184 PMCID: PMC3312929 DOI: 10.4251/wjgo.v4.i3.54] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 02/27/2012] [Accepted: 03/05/2012] [Indexed: 02/05/2023] Open
Abstract
Traditionally, the clonal evolution model has been used to explain gastric cancer (GC) growth dynamics. According to this model, GC cells result from multiple mutations over time resulting in a population of continually diversifying cells. This heterogeneity enables the survival of different clones under particular conditions allowing growth at metastatic locations or resistance to chemotherapeutics. Cancer stem cell (CSC) theory completely overturns this traditional understanding of cancer suggesting that only CSCs can self-renew and promote tumor growth. CSCs are relatively refractory to conventional therapies, thus explaining why anti-cancer therapies are far from curative and why relapses of cancer are frequent. The identification of the CSC component of a tumor might, thus, open new therapeutic perspective based on the selective targeting of this small population of cells. In this review we examine the current scientific evidence supporting the existence of CSC in gastric tumors and analyze the main unsolved questions of this difficult field of cancer research.
Collapse
Affiliation(s)
- Alba Rocco
- Alba Rocco, Debora Compare, Gerardo Nardone, Department of Clinical and Experimental Medicine, Gastroenterology Unit, University Federico II of Naples, 80131 Naples, Italy
| | | | | |
Collapse
|
28
|
Liu GM, Zhou C, Xie C, Yang Z, Lv NH. Recent advances in research of gastric cancer stem cells. Shijie Huaren Xiaohua Zazhi 2012; 20:574-579. [DOI: 10.11569/wcjd.v20.i7.574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is a common malignancy of the digestive tract that has a high mortality and seriously affects people's health. At present, the pathogenesis of gastric cancer is still unclear. According to the cancer stem cell theory, cancer stem cells are malignant cells with the characteristics of normal stem cells, probably formed by the mutation of normal stem cells. Tumor stem cells have been identified in a variety of solid tumors. Recent studies have shown that the location of gastric cancer is consistent with the settlement area of stem cells, indicating that gastric cancer may be a kind of stem cells disease. In this article we will review the existence, origin, identification and separation of cancer stem cells.
Collapse
|
29
|
Mamun MA, Rahman MS, Fahmid Islam M, Honi U, Sobhani ME. Molecular biology and riddle of cancer: the ‘Tom & Jerry’ show. Oncol Rev 2011. [DOI: 10.1007/s12156-011-0091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
30
|
Grande E, Capdevila J, Barriuso J, Antón-Aparicio L, Castellano D. Gastroenteropancreatic neuroendocrine tumor cancer stem cells: do they exist? Cancer Metastasis Rev 2011; 31:47-53. [DOI: 10.1007/s10555-011-9328-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Jang BI, Li Y, Graham DY, Cen P. The Role of CD44 in the Pathogenesis, Diagnosis, and Therapy of Gastric Cancer. Gut Liver 2011. [PMID: 22195236 DOI: 10.5009/gnl.2 011.5.4.397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
CD44 is a transmembrane glycoprotein and surface receptor for hyaluronan that is involved in the response of cells to their microenvironment. CD44 splice variants play roles in carcinogenesis, differentiation, and lymph node metastasis and are predictive of the prognosis for various carcinomas, including gastric cancer. Current data suggest that gastric tissue stem cells and gastric cancer stem cells both express the splice variant, CD44v9. Overall, the data regarding the alterations that occur in CD44 and its splice variants in response to acute and chronic infection with Helicobacter pylori are scant and poorly elucidated in terms of possible changes in expression that occur in gastric cancer precursor lesions, such as chronic atrophic gastritis, pyloric metaplasia and intestinal metaplasia. In this study, we discuss the available data and suggest which new data would likely be useful in clinical practice. We also discuss the potential for CD44-targeted therapeutic strategies in gastric cancer. CD44 and its splice variants are positively associated with the initiation and progression of gastric cancer and may also play important roles in diagnosis, therapy and prognosis. CD44 research has been active but fragmented, and it may offer new therapeutic approaches to gastric cancer.
Collapse
Affiliation(s)
- Byung Ik Jang
- Department of Medicine, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|
32
|
Jang BI, Li Y, Graham DY, Cen P. The Role of CD44 in the Pathogenesis, Diagnosis, and Therapy of Gastric Cancer. Gut Liver 2011; 5:397-405. [PMID: 22195236 PMCID: PMC3240781 DOI: 10.5009/gnl.2011.5.4.397] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/18/2011] [Accepted: 09/30/2011] [Indexed: 01/06/2023] Open
Abstract
CD44 is a transmembrane glycoprotein and surface receptor for hyaluronan that is involved in the response of cells to their microenvironment. CD44 splice variants play roles in carcinogenesis, differentiation, and lymph node metastasis and are predictive of the prognosis for various carcinomas, including gastric cancer. Current data suggest that gastric tissue stem cells and gastric cancer stem cells both express the splice variant, CD44v9. Overall, the data regarding the alterations that occur in CD44 and its splice variants in response to acute and chronic infection with Helicobacter pylori are scant and poorly elucidated in terms of possible changes in expression that occur in gastric cancer precursor lesions, such as chronic atrophic gastritis, pyloric metaplasia and intestinal metaplasia. In this study, we discuss the available data and suggest which new data would likely be useful in clinical practice. We also discuss the potential for CD44-targeted therapeutic strategies in gastric cancer. CD44 and its splice variants are positively associated with the initiation and progression of gastric cancer and may also play important roles in diagnosis, therapy and prognosis. CD44 research has been active but fragmented, and it may offer new therapeutic approaches to gastric cancer.
Collapse
Affiliation(s)
- Byung Ik Jang
- Department of Medicine, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|
33
|
Vaughan AE, Halbert CL, Wootton SK, Miller AD. Lung cancer in mice induced by the jaagsiekte sheep retrovirus envelope protein is not maintained by rare cancer stem cells, but tumorigenicity does correlate with Wnt pathway activation. Mol Cancer Res 2011; 10:86-95. [PMID: 22064658 DOI: 10.1158/1541-7786.mcr-11-0285] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
JSRV, a simple beta-retrovirus, is the etiologic agent of ovine pulmonary adenocarcinoma, a form of non-small cell lung cancer in sheep and goats. It has been shown that the envelope protein alone is sufficient to induce tumorigenesis in the lungs of mice when delivered via an adeno-associated viral vector. Here, we tested the hypothesis that JSRV envelope-induced tumors are maintained by a small population of tumor-initiating cells, termed cancer stem cells. To test this hypothesis, dissociated cancer cells were sorted from envelope-induced tumors in mouse lung based on the putative stem cell markers Sca-1, CD34, and CD133, the pluripotency-associated transcription factor Oct4, and the level of Wnt signaling. No association with increased tumor-initiating capacity was found with any of the cell-surface markers. In addition, we were unable to detect any evidence of Oct4 expression in tumor-bearing mouse lung. However, tumor cells possessing an active Wnt signaling pathway did show a significant correlation with increased tumor formation upon transplantation. Limiting dilution transplant analysis suggests the existence of a large fraction of cells with the ability to propagate tumor growth, with increasing tumor initiation potential correlating with activated Wnt signaling.
Collapse
Affiliation(s)
- Andrew E Vaughan
- Human Biology and Basic Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Osteosarcoma is a highly malignant bone tumor of children and young adults. Cytotoxic chemotherapy combined with aggressive surgery only has a 60% survival rate. Historically, chemotherapy has been developed assuming that all cells within a particular cancer are clonal and near identical. Appreciating the now apparent functional heterogeneity of osteosarcoma cells within and between individual tumors will likely be critical in developing much needed novel effective therapies. The foundation for this heterogeneity may lie in the so called "cancer stem cell" or tumorigenic cell of origin. In this brief review, we will examine the evidence for the existence of this cell and its potential importance for future therapies.
Collapse
|
35
|
Hatziapostolou M, Iliopoulos D. Epigenetic aberrations during oncogenesis. Cell Mol Life Sci 2011; 68:1681-702. [PMID: 21249513 PMCID: PMC11114845 DOI: 10.1007/s00018-010-0624-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/02/2010] [Accepted: 12/28/2010] [Indexed: 12/18/2022]
Abstract
The aberrant epigenetic landscape of a cancer cell is characterized by global genomic hypomethylation, CpG island promoter hypermethylation of tumor suppressor genes, and changes in histone modification patterns, as well as altered expression profiles of chromatin-modifying enzymes. Recent advances in the field of epigenetics have revealed that microRNAs' expression is also under epigenetic regulation and that certain microRNAs control elements of the epigenetic machinery. The reversibility of epigenetic marks catalyzed the development of epigenetic-altering drugs. However, a better understanding of the intertwined relationship between genetics, epigenetics and microRNAs is necessary in order to resolve how gene expression aberrations that contribute to tumorigenesis can be therapeutically corrected.
Collapse
Affiliation(s)
- Maria Hatziapostolou
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Boston, MA 02115 USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115 USA
| | - Dimitrios Iliopoulos
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Boston, MA 02115 USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
36
|
Wei B, Chen L, Li R, Tian J. Stem cells in gastrointestinal cancers: a matter of choice in cell fate determination. Expert Rev Anticancer Ther 2011; 10:1621-33. [PMID: 20942633 DOI: 10.1586/era.10.52] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cancerous stem cells share the same properties of self-renewal and differentiation as normal stem cells, and have a similar phenotype to adult stem cells isolated from the same tissue. Some believe that cancer stem cells are derived from mutation of normal stem cells, whereas others suspect them to have different origins. Although complicated and controversial, the stem cell as the progenitor of cancer has found support in leukemia research, and subsequently in some solid tumors. It was first accepted that both stem and progenitor cells could acquire genetic abnormalities that would lead to uncontrolled replication and dysregulated differentiation, causing them to transform into cancerous stem cells that might then initiate and maintain a tumor. In this article, we discuss recent progress in the studies of stomach and intestinal cancer stem cells, while focusing on the complex molecular pathways underlying stem cell transformation and gastrointestinal tumorigenesis. This understanding provides a basis for promising new therapies that may specifically target gastrointestinal cancer stem cells.
Collapse
Affiliation(s)
- Bo Wei
- Department of General Surgery, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing 100853, Peoples Republic of China
| | | | | | | |
Collapse
|
37
|
Kurtzberg LS, Roth S, Krumbholz R, Crawford J, Bormann C, Dunham S, Yao M, Rouleau C, Bagley RG, Yu XJ, Wang F, Schmid SM, LaVoie EJ, Teicher BA. Genz-644282, a Novel Non-Camptothecin Topoisomerase I Inhibitor for Cancer Treatment. Clin Cancer Res 2011; 17:2777-87. [DOI: 10.1158/1078-0432.ccr-10-0542] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Frame FM, Maitland NJ. Cancer stem cells, models of study and implications of therapy resistance mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 720:105-18. [PMID: 21901622 DOI: 10.1007/978-1-4614-0254-1_9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is now compelling evidence for tumour initiating or cancer stem cells (CSCs) in human cancers. The current evidence of this CSC hypothesis, the CSC phenotype and methods of identification, culture and in vitro modelling will be presented, with an emphasis on prostate cancer. Inherent in the CSC hypothesis is their dual role, as a tumour-initiating cell, and as a source of treatment-resistant cells; the mechanisms behind therapeutic resistance will be discussed. Such resistance is a consequence of the unique CSC phenotype, which differs from the differentiated progeny, which make up the bulk of a tumour. It seems that to target the whole tumour, employing traditional therapies to target bulk populations alongside targeted CSC-specific drugs, provides the best hope of lasting treatment or even cure.
Collapse
Affiliation(s)
- Fiona M Frame
- Department of Biology, University of York, Heslington, North Yorkshire, YO10 5DD, UK.
| | | |
Collapse
|
39
|
Tumor-initiating and -propagating cells: cells that we would like to identify and control. Neoplasia 2010; 12:506-15. [PMID: 20651980 DOI: 10.1593/neo.10290] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 03/26/2010] [Accepted: 03/29/2010] [Indexed: 02/08/2023] Open
Abstract
Identification of the cell types capable of initiating and sustaining growth of the neoplastic clone in vivo is a fundamental problem in cancer research. It is likely that tumor growth can be sustained both by rare cancer stem-like cells and selected aggressive clones and that the nature of the mutations, the cell of origin, and its environment will contribute to tumor propagation. Genomic instability, suggested as a driving force in tumorigenesis, may be induced by genetic and epigenetic changes. The feature of self-renewal in stem cells is shared with tumor cells, and deviant function of the stem cell regulatory networks may, in complex ways, contribute to malignant transformation and the establishment of a cancer stem cell-like phenotype. Understanding the nature of the more quiescent cancer stem-like cells and their niches has the potential to develop novel cancer therapeutic protocols including pharmacological targeting of self-renewal pathways. Drugs that target cancer-related inflammation may have the potential to reeducate a tumor-promoting microenvironment. Because most epigenetic modifications may be reversible, DNA methylation and histone deacetylase inhibitors can be used to induce reexpression of genes that have been silenced epigenetically. Design of therapies that eliminate cancer stem-like cells without eliminating normal stem cells will be important. Further insight into the mechanisms by which pluripotency transcription factors (e.g., OCT4, SOX2, and Nanog), polycomb repressive complexes and microRNA balance selfrenewal and differentiation will be essential for our understanding of both embryonic differentiation and human carcinogenesis and for the development of new treatment strategies.
Collapse
|
40
|
Bone marrow derived mesenchymal stem cells incorporate into the prostate during regrowth. PLoS One 2010; 5:e12920. [PMID: 20886110 PMCID: PMC2944821 DOI: 10.1371/journal.pone.0012920] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 08/30/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Prostate cancer recurrence involves increased growth of cancer epithelial cells, as androgen dependent prostate cancer progresses to castrate resistant prostate cancer (CRPC) following initial therapy. Understanding CRPC prostate regrowth will provide opportunities for new cancer therapies to treat advanced disease. METHODOLOGY/PRINCIPAL FINDINGS Elevated chemokine expression in the prostate stroma of a castrate resistant mouse model, Tgfbr2(fspKO), prompted us to look at the involvement of bone marrow derived cells (BMDCs) in prostate regrowth. We identified bone marrow cells recruited to the prostate in GFP-chimeric mice. A dramatic increase in BMDC recruitment for prostate regrowth occurred three days after exogenous testosterone implantation. Recruitment led to incorporation of BMDCs within the prostate epithelia. Immunofluorescence staining suggested BMDCs in the prostate coexpressed androgen receptor; p63, a basal epithelial marker; and cytokeratin 8, a luminal epithelial marker. A subset of the BMDC population, mesenchymal stem cells (MSCs), were specifically found to be incorporated in the prostate at its greatest time of remodeling. Rosa26 expressing MSCs injected into GFP mice supported MSC fusion with resident prostate epithelial cells through co-localization of β-galactosidase and GFP during regrowth. In a human C4-2B xenograft model of CRPC, MSCs were specifically recruited. Injection of GFP-labeled MSCs supported C4-2B tumor progression by potentiating canonical Wnt signaling. The use of MSCs as a targeted delivery vector for the exogenously expressed Wnt antagonist, secreted frizzled related protein-2 (SFRP2), reduced tumor growth, increased apoptosis and potentiated tumor necrosis. CONCLUSIONS/SIGNIFICANCE Mesenchymal stem cells fuse with prostate epithelia during the process of prostate regrowth. MSCs recruited to the regrowing prostate can be used as a vehicle for transporting genetic information with potential therapeutic effects on castrate resistant prostate cancer, for instance by antagonizing Wnt signaling through SFRP2.
Collapse
|
41
|
Hemmings C. The elaboration of a critical framework for understanding cancer: the cancer stem cell hypothesis. Pathology 2010; 42:105-12. [PMID: 20085510 DOI: 10.3109/00313020903488773] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The cancer stem cell hypothesis suggests that malignant tumours may arise from a limited number of specialised cells possessing the key 'stem' properties of self-renewal and the ability to produce differentiated progeny. Such cells purportedly constitute a small fraction of most tumours but have greater potential to produce new tumours than their 'non-stem' counterparts. However, they have proven difficult to identify and characterise in most malignancies. Cancer stem cells are liable to be resistant to most forms of conventional chemotherapy and radiation and so may help to explain tumour recurrence after a seemingly good response to initial therapy. This review examines the evidence for the existence of such cells, the therapeutic implications of this hypothesis, and problems posed by it, as well as outlining the concept of the stem cell niche and its possible role in tumour development and progression.
Collapse
Affiliation(s)
- Chris Hemmings
- ACT Pathology at The Canberra Hospital, Canberra, Australian Capital Territory, and School of Surgery, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
42
|
Gastric carcinogenesis and the cancer stem cell hypothesis. Gastric Cancer 2010; 13:11-24. [PMID: 20373071 DOI: 10.1007/s10120-009-0537-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 12/02/2009] [Indexed: 02/07/2023]
Abstract
Normal stem cells (NSCs) are reported to exist in most tissues, including the brain, bone marrow, and probably the gastrointestinal tract. In the latter case, they are thought to possess both the self-renewal capacity and asymmetrical division capacity to generate progenitor cells which differentiate into epithelial cells. NSCs in the normal gastric mucosa are thought to be present in the proliferative zone of the neck/isthmus region, and to undergo a complex bipolar migration from the neck/isthmus region either upward or downward, becoming differentiated normal epithelial cells. NSCs in human gastric mucosa are difficult to identify due to the current lack of a useful marker. A precise definition of cancer stem cells (CSCs) is still under discussion. CSCs are generally defined as malignant cells with NSC capacity. However, many studies of CSCs have demonstrated their rapid growth and high metastatic potential, while NSCs are thought to be slow-growing and self-renewing, and to lack functional capacities such as cell migration and attachment. Recent evidence suggests the existence of CSCs in a wide variety of solid tumors. In this review, we will discuss the existence and cell biology of gastric NSCs and CSCs. We will also discuss whether gastric CSCs originate as organ-specific stem cells or as bone marrow-derived cells (BMDCs). Under certain conditions, the local microenvironment may promote the development of gastric cancer. Thus, Helicobacter pylori infection and the accompanying chronic inflammatory processes will supply critical initiators inducing cell growth and the tissue repair response, leading to carcinogenesis. This mechanism will be discussed in light of stem cell research. Progress in stem cell research in the gastric field is still limited to experimental animal models. However, recent studies should enhance our understanding of human cancer biology, and provide novel tools for the treatment of incurable gastric cancer.
Collapse
|
43
|
Liang Y, Zhong Z, Huang Y, Deng W, Cao J, Tsao G, Liu Q, Pei D, Kang T, Zeng YX. Stem-like cancer cells are inducible by increasing genomic instability in cancer cells. J Biol Chem 2009; 285:4931-40. [PMID: 20007324 PMCID: PMC2836097 DOI: 10.1074/jbc.m109.048397] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The existence of cancer stem cells (CSCs) or stem-like cancer cells (SLCCs) is regarded as the cause of tumor formation and recurrence. However, the origin of such cells remains controversial with two competing hypotheses: CSCs are either transformed from tissue adult stem cells or dedifferentiated from transformed progenitor cells. Compelling evidence has determined the chromosomal aneuploidy to be one of the hallmarks of cancer cells, indicating genome instability plays an important role in tumorigenesis, for which CSCs are believed to be the initiator. To gain direct evidence that genomic instability is involved in the induction of SLCCs, we utilized multiple approaches to enhance genomic instability and monitored the percentage of SLCC in cultured cancer cells. Using side population (SP) cells as a marker for SLCC in human nasopharyngeal carcinoma (NPC) and CD133 for human neuroblastoma cells, we found that DNA damage inducers, UV and mitomycin C were capable of increasing SP cells in NPC CNE-2 and neuroblastoma SKN-SH cells. Likewise, either overexpression of a key regulator of cell cycle, Mad2, or knock down of Aurora B, an important kinase in mitosis, or Cdh1, a key E3 ligase in cell cycle, resulted in a significant increase of SP cells in CNE-2. More interestingly, enrichment of SP cells was observed in recurrent tumor tissues as compared with the primary tumor in the same NPC patients. Our study thus suggested that, beside transformation of tissue stem cells leading to CSC generation, genomic instability could be another potential mechanism resulting in SLCC formation, especially at tumor recurrence stage.
Collapse
Affiliation(s)
- Yi Liang
- State Key Laboratory of Oncology in Southern China, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cancer stem cells and tumor response to therapy: current problems and future prospects. Semin Radiat Oncol 2009; 19:96-105. [PMID: 19249647 DOI: 10.1016/j.semradonc.2008.11.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The presence of a subpopulation of cells within tumors, so-called cancer stemlike cells, that is uniquely capable of reestablishing the tumor during and after definitive radio(chemo)therapy and must be effectively controlled for a long-term cure is being increasingly appreciated. The existence and physiology of a rare cancer cell population, termed cancer cell clonogens, with similar properties has been extensively described in the radiobiology literature for several decades based on studies using tumor cells transplanted into syngeneic or immunodeficient animals. The earlier studies have identified important features that govern tumor establishment; tumor growth and homeostasis; and therapeutic resistance, including clonogen number, tumor type, vascular status, hypoxia, repopulation dynamics during treatment, and immunologic and microenvironmental status. These discoveries led to therapeutic strategies, some of which have shown efficacy and have become current standard clinical practice (eg, concomitant boost and concurrent radio chemotherapy). Although the identity of cancer stemlike cells and cancer cell clonogens has not been definitively shown, recent characterization of molecular signaling pathways controlling stem cells and their microenvironmental niche combined with the earlier findings on clonogen physiology may now lead to the development of molecularly targeted strategies to overcome therapeutic resistance of this rare subpopulation of tumor cells. Along these lines, we describe 3 unique treatment settings (ie, before, during, and after definitive radio[chemo]therapy) in which molecularly targeted approaches might specifically counteract cancer stemlike cell resistance mechanisms and enhance the curative efficiency of radio(chemo)therapy.
Collapse
|
45
|
Takaishi S, Okumura T, Tu S, Wang SSW, Shibata W, Vigneshwaran R, Gordon SAK, Shimada Y, Wang TC. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 2009; 27:1006-20. [PMID: 19415765 DOI: 10.1002/stem.30] [Citation(s) in RCA: 809] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) have been defined as a unique subpopulation in tumors that possess the ability to initiate tumor growth and sustain tumor self-renewal. Although the evidence has been provided to support the existence of CSCs in various solid tumors, the identity of gastric CSCs has not been reported. In this study, we have identified gastric cancer-initiating cells from a panel of human gastric cancer cell lines using cell surface marker CD44. Among six gastric cancer cell lines, three lines MKN-45, MKN-74, and NCI-N87 had a sizeable subpopulation of CD44(+) cells, and these cells showed spheroid colony formation in serum-free media in vitro as well as tumorigenic ability when injected into stomach and skin of severe combined immunodeficient (SCID) mice in vivo. The CD44(+) gastric cancer cells showed the stem cell properties of self-renewal and the ability to form differentiated progeny and gave rise to CD44(-) cells. CD44 knockdown by short hairpin RNA resulted in much reduced spheroid colony formation and smaller tumor production in SCID mice, and the CD44(-) populations had significantly reduced tumorigenic ability in vitro and in vivo. Other potential CSC markers, such as CD24, CD133, CD166, stage-specific embryonic antigen-1 (SSEA-1), and SSEA-4, or sorting for side population did not show any correlation with tumorigenicity in vitro or in vivo. The CD44(+) gastric cancer cells showed increased resistance for chemotherapy- or radiation-induced cell death. These results support the existence of gastric CSCs and may provide novel approaches to the diagnosis and treatment of gastric cancer.
Collapse
Affiliation(s)
- Shigeo Takaishi
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Quante M, Wang TC. Inflammation and stem cells in gastrointestinal carcinogenesis. Physiology (Bethesda) 2009; 23:350-9. [PMID: 19074742 DOI: 10.1152/physiol.00031.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation-induced carcinogenesis is a commonly accepted entity and is frequently seen within the gastrointestinal tract, although the underlying mechanisms remain unclear. Alterations in specific oncogenes and tumor suppressor genes are known to be responsible for malignant transformation. Nevertheless, the inflammatory microenvironment classically affects tumor promotion in its role as an altered stem cell niche and can also affect tumor initiation and tumor progression. The origin of the tumor cells is often attributed to stem cells, a unique subpopulation within tumors that possess the ability to initiate tumor growth and sustain self-renewal, as well as is largely responsible for their metastatic potential. Here, we review the link between inflammation and gastrointestinal carcinogenesis and the relationship between stem cells and cancer stem cells.
Collapse
Affiliation(s)
- Michael Quante
- Division of Digestive and Liver Diseases, Columbia University Medical Center, Irving Cancer Research Center, New York, New York, USA
| | | |
Collapse
|
47
|
"Cancer stem cells"-lessons from Hercules to fight the Hydra. Urol Oncol 2008; 26:581-9. [PMID: 18818107 DOI: 10.1016/j.urolonc.2008.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/14/2008] [Accepted: 07/14/2008] [Indexed: 12/21/2022]
Abstract
Following the initial identification of hematopoietic tumor stem cells, such cells were also found in several solid tumor types. In urology, cancer stem cells have only been found in prostate tumors so far. The concept and detection of tumor stem cells rely heavily on findings derived from stem cell research. Therefore, in addition to identifying and characterizing urologic tumor stem cells, research in uro-oncology should also aim at better understanding the stem-cell biology of urologic organs. Insights in similarities and differences gleaned from these studies could be used to develop strategies for targeted destruction of tumor stem cells while sparing the physiological stem cells. The main target of future curative therapies in uro-oncology must therefore be the central, immortal head of the Hydra, the tumor stem cell.
Collapse
|
48
|
Abstract
Cancer stem cells are defined as the unique subpopulation in the tumors that possess the ability to initiate tumor growth and sustain self-renewal as well as metastatic potential. Accumulating evidence in recent years strongly indicate the existence of cancer stem cells in solid tumors of a wide variety of organs. In this review, we will discuss the possible existence of a gastric cancer stem cell. Our recent data suggest that a subpopulation with a defined marker shows spheroid colony formation in serum-free media in vitro, as well as tumorigenic ability in immunodeficient mice in vivo. We will also discuss the possible origins of the gastric cancer stem cell from an organ-specific stem cell versus a recently recognized new candidate bone marrow-derived cell (BMDC). We have previously shown that BMDC contributed to malignant epithelial cells in the mouse model of Helicobacter-associated gastric cancer. On the basis of these findings from animal model, we propose that a similar phenomenon may also occur in human cancer biology, particularly in the cancer origin of other inflammation-associated cancers. The expanding research field of cancer stem-cell biology may offer a novel clinical apparatus to the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Shigeo Takaishi
- Division of Digestive and Liver Disease, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
49
|
Mravec B, Gidron Y, Hulin I. Neurobiology of cancer: Interactions between nervous, endocrine and immune systems as a base for monitoring and modulating the tumorigenesis by the brain. Semin Cancer Biol 2008; 18:150-63. [DOI: 10.1016/j.semcancer.2007.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 12/05/2007] [Indexed: 12/26/2022]
|
50
|
Park ET, Gum JR, Kakar S, Kwon SW, Deng G, Kim YS. Aberrant expression of SOX2 upregulates MUC5AC gastric foveolar mucin in mucinous cancers of the colorectum and related lesions. Int J Cancer 2008; 122:1253-60. [PMID: 18027866 DOI: 10.1002/ijc.23225] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mucinous colorectal cancers are characterized by abundant production of intestinal goblet cell mucin, MUC2 and frequent ectopic expression of gastric foveolar mucin, MUC5AC. SOX2, an HMG-box transcription factor expressed in gastric mucosa but not in intestine is thought to play an important role in regulating transcription and expression of gastric differentiation related genes. Herein, we investigated the possible role of SOX2 in MUC5AC transcription and in the development of mucinous cancers. We observed good correlation between SOX2 and MUC5AC message levels in most colon cancer cell lines. SOX2 expression significantly transactivated MUC5AC promoter/reporter constructs in 3 of 5 colon cancer cell lines. We also examined SOX2 expression in normal stomach and colon, nonmucinous and mucinous colorectal cancers, serrated polyps and conventional adenomas using immunohistochemistry and in situ hybridization. SOX2 was expressed in the nuclei of both gastric foveolar cells and fundic glands by immunohistochemistry and in the cytoplasm by in situ hybridization. SOX2 was not expressed in normal colon but was strongly expressed in serrated polyps, mucinous and signet ring cell carcinomas, but rarely in nonmucinous carcinomas and tubular adenomas. Concordant expression of SOX2 with MUC5AC was observed in these lesions. Our results suggest that SOX2 is important in the upregulation of gastric foveolar mucin, MUC5AC in colorectal mucinous and signet ring cell carcinomas. In addition, the expression of both SOX2 and MUC5AC in serrated polyps supports the hypothesis that these polyps may be predominant precursors of mucinous and signet ring cell carcinomas of the colorectum.
Collapse
Affiliation(s)
- Eun Taek Park
- Gastrointestinal Research Laboratory, Department of Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | | | | | | | | | | |
Collapse
|