1
|
Kisor K, Ruiz D, Jacobson M, Barber D. A role for pH dynamics regulating transcription factor DNA-binding selectivity. Nucleic Acids Res 2025; 53:gkaf474. [PMID: 40464693 PMCID: PMC12135187 DOI: 10.1093/nar/gkaf474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 04/16/2025] [Accepted: 05/19/2025] [Indexed: 06/11/2025] Open
Abstract
Intracellular pH (pHi) dynamics regulates diverse cell processes such as proliferation, dysplasia, and differentiation, often mediated by the protonation state of a functionally critical histidine residue in endogenous pH sensing proteins. How pHi dynamics can directly regulate gene expression or whether transcription factors can function as pH sensors has received limited attention. We tested the prediction that transcription factors with a histidine in their DNA-binding domain (DBD) that forms hydrogen bonds with nucleotides can have pH-regulated activity, which is relevant to more than 85 transcription factors in distinct families, including FOX, KLF, SOX, and MITF/Myc. Focusing on FOX family transcription factors, we use unbiased SELEX-seq to identify pH-dependent DNA-binding motif preferences and confirm pH-regulated binding affinities for FOXC2, FOXM1, and FOXN1 to a canonical FkhP DNA motif that are greater at pH 7.0 compared with pH 7.5 and for FOXN1 to a preferred FHL motif at higher pHi in cells. For FOXC2, we also find that greater activity for an FkhP motif at lower pH is dependent on a conserved histidine (His122) in the DBD. ChIP-seq and RNA-seq with FOXC2 also reveal pH-dependent differences in enriched promoter motifs. Our findings identify pH-regulated transcription factor-DNA binding selectivity with relevance to how pHi dynamics can regulate gene expression for myriad cell behaviours.
Collapse
Affiliation(s)
- Kyle P Kisor
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, United States
| | - Diego Garrido Ruiz
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94143, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94143, United States
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, United States
| |
Collapse
|
2
|
Shi J, Han W, Wang J, Kong X. Anti-Tumor Strategies Targeting Nutritional Deprivation: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415550. [PMID: 39895165 DOI: 10.1002/adma.202415550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/04/2025] [Indexed: 02/04/2025]
Abstract
Higher and richer nutrient requirements are typical features that distinguish tumor cells from AU: cells, ensuring adequate substrates and energy sources for tumor cell proliferation and migration. Therefore, nutrient deprivation strategies based on targeted technologies can induce impaired cell viability in tumor cells, which are more sensitive than normal cells. In this review, nutrients that are required by tumor cells and related metabolic pathways are introduced, and anti-tumor strategies developed to target nutrient deprivation are described. In addition to tumor cells, the nutritional and metabolic characteristics of other cells in the tumor microenvironment (including macrophages, neutrophils, natural killer cells, T cells, and cancer-associated fibroblasts) and related new anti-tumor strategies are also summarized. In conclusion, recent advances in anti-tumor strategies targeting nutrient blockade are reviewed, and the challenges and prospects of these anti-tumor strategies are discussed, which are of theoretical significance for optimizing the clinical application of tumor nutrition deprivation strategies.
Collapse
Affiliation(s)
- Jinsheng Shi
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Wei Han
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Jie Wang
- Pharmacy Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, Shandong, 266000, China
| | - Xiaoying Kong
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China
| |
Collapse
|
3
|
Wen MY, Qi YT, Jiao YT, Zhang XW, Huang WH. Reference-Attached pH Nanosensor for Accurately Monitoring the Rapid Kinetics of Intracellular H + Oscillations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406796. [PMID: 39573856 DOI: 10.1002/smll.202406796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Indexed: 01/23/2025]
Abstract
Intracellular pH (pHi) is an essential indicator of cellular metabolic activity, as its transient or small shift can significantly impact cellular homeostasis and reflect the cellular events. Real-time and precise tracking of these rapid pH changes within a single living cell is therefore important. However, achieving high dynamic response performance (subsecond) pH detection inside a living cell with high accuracy remains a challenge. Here a reference-attached pH nanosensor (R-pH-nanosensor) with fast and precise pHi sensing performance is introduced. The nanosensor comprises a highly conductive H+-sensitive IrRuOx nanowire (SiC@IrRuOx NW) as the intracellular working electrode and a SiC@Ag/AgCl NW as an intracellular reference electrode (RE) to diminish the interferences arising from cell membrane potential fluctuations. This whole-inside-cell detection mode ensures that the entire potential detection circuit is located within the same cell, and the R-pH-nanosensor is able to quantify the mild acidification of cytosol and completely record the fast pH variation within a single cell. It also enables real-time potentiometric monitoring of the pHi oscillations, which synchronize with the glycolysis oscillations in cancer cells. Furthermore, the asymmetry in glycolysis oscillations wave is disclosed and the inhibitory effect of just lactate to glycolysis oscillations is further confirmed.
Collapse
Affiliation(s)
- Ming-Yong Wen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu-Ting Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu-Ting Jiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xin-Wei Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
4
|
Koltai T, Fliegel L. Dichloroacetate for Cancer Treatment: Some Facts and Many Doubts. Pharmaceuticals (Basel) 2024; 17:744. [PMID: 38931411 PMCID: PMC11206832 DOI: 10.3390/ph17060744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Rarely has a chemical elicited as much controversy as dichloroacetate (DCA). DCA was initially considered a dangerous toxic industrial waste product, then a potential treatment for lactic acidosis. However, the main controversies started in 2008 when DCA was found to have anti-cancer effects on experimental animals. These publications showed contradictory results in vivo and in vitro such that a thorough consideration of this compound's in cancer is merited. Despite 50 years of experimentation, DCA's future in therapeutics is uncertain. Without adequate clinical trials and health authorities' approval, DCA has been introduced in off-label cancer treatments in alternative medicine clinics in Canada, Germany, and other European countries. The lack of well-planned clinical trials and its use by people without medical training has discouraged consideration by the scientific community. There are few thorough clinical studies of DCA, and many publications are individual case reports. Case reports of DCA's benefits against cancer have been increasing recently. Furthermore, it has been shown that DCA synergizes with conventional treatments and other repurposable drugs. Beyond the classic DCA target, pyruvate dehydrogenase kinase, new target molecules have also been recently discovered. These findings have renewed interest in DCA. This paper explores whether existing evidence justifies further research on DCA for cancer treatment and it explores the role DCA may play in it.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina
| | - Larry Fliegel
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada;
| |
Collapse
|
5
|
Kisor KP, Ruiz DG, Jacobson MP, Barber DL. A role for pH dynamics regulating transcription factor DNA binding selectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595212. [PMID: 38826444 PMCID: PMC11142074 DOI: 10.1101/2024.05.21.595212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Intracellular pH (pHi) dynamics regulates diverse cell processes such as proliferation, dysplasia, and differentiation, often mediated by the protonation state of a functionally critical histidine residue in endogenous pH sensing proteins. How pHi dynamics can directly regulate gene expression and whether transcription factors can function as pH sensors has received limited attention. We tested the prediction that transcription factors with a histidine in their DNA binding domain (DBD) that forms hydrogen bonds with nucleotides can have pH-regulated activity, which is relevant to more than 85 transcription factors in distinct families, including FOX, KLF, SOX and MITF/Myc. Focusing on FOX family transcription factors, we used unbiased SELEX-seq to identify pH-dependent DNA binding motif preferences, then confirm pH-regulated binding affinities for FOXC2, FOXM1, and FOXN1 to a canonical FkhP DNA motif that are 2.5 to 7.5 greater at pH 7.0 compared with pH 7.5. For FOXC2, we also find greater activity for an FkhP motif at lower pHi in cells and that pH-regulated binding and activity are dependent on a conserved histidine (His122) in the DBD. RNA-seq with FOXC2 also reveals pH-dependent differences in enriched promoter motifs. Our findings identify pH-regulated transcription factor-DNA binding selectivity with relevance to how pHi dynamics can regulate gene expression for myriad cell behaviours.
Collapse
|
6
|
Koltai T, Fliegel L. Exploring monocarboxylate transporter inhibition for cancer treatment. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:135-169. [PMID: 38464385 PMCID: PMC10918235 DOI: 10.37349/etat.2024.00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 03/12/2024] Open
Abstract
Cells are separated from the environment by a lipid bilayer membrane that is relatively impermeable to solutes. The transport of ions and small molecules across this membrane is an essential process in cell biology and metabolism. Monocarboxylate transporters (MCTs) belong to a vast family of solute carriers (SLCs) that facilitate the transport of certain hydrophylic small compounds through the bilipid cell membrane. The existence of 446 genes that code for SLCs is the best evidence of their importance. In-depth research on MCTs is quite recent and probably promoted by their role in cancer development and progression. Importantly, it has recently been realized that these transporters represent an interesting target for cancer treatment. The search for clinically useful monocarboxylate inhibitors is an even more recent field. There is limited pre-clinical and clinical experience with new inhibitors and their precise mechanism of action is still under investigation. What is common to all of them is the inhibition of lactate transport. This review discusses the structure and function of MCTs, their participation in cancer, and old and newly developed inhibitors. Some suggestions on how to improve their anticancer effects are also discussed.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina
| | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| |
Collapse
|
7
|
Schauenburg D, Weil T. Chemical Reactions in Living Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303396. [PMID: 37679060 PMCID: PMC10885656 DOI: 10.1002/advs.202303396] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Indexed: 09/09/2023]
Abstract
The term "in vivo ("in the living") chemistry" refers to chemical reactions that take place in a complex living system such as cells, tissue, body liquids, or even in an entire organism. In contrast, reactions that occur generally outside living organisms in an artificial environment (e.g., in a test tube) are referred to as in vitro. Over the past decades, significant contributions have been made in this rapidly growing field of in vivo chemistry, but it is still not fully understood, which transformations proceed efficiently without the formation of by-products or how product formation in such complex environments can be characterized. Potential applications can be imagined that synthesize drug molecules directly within the cell or confer new cellular functions through controlled chemical transformations that will improve the understanding of living systems and develop new therapeutic strategies. The guiding principles of this contribution are twofold: 1) Which chemical reactions can be translated from the laboratory to the living system? 2) Which characterization methods are suitable for studying reactions and structure formation in complex living environments?
Collapse
Affiliation(s)
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| |
Collapse
|
8
|
Lyukmanova EN, Zaigraev MM, Kulbatskii DS, Isaev AB, Kukushkin ID, Bychkov ML, Shulepko MA, Chugunov AO, Kirpichnikov MP. Molecular Basis for Mambalgin-2 Interaction with Heterotrimeric α-ENaC/ASIC1a/γ-ENaC Channels in Cancer Cells. Toxins (Basel) 2023; 15:612. [PMID: 37888643 PMCID: PMC10610865 DOI: 10.3390/toxins15100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/30/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Cancer progression is characterized by microenvironmental acidification. Tumor cells adapt to low environmental pH by activating acid-sensing trimeric ion channels of the DEG/ENaC family. The α-ENaC/ASIC1a/γ-ENaC heterotrimeric channel is a tumor-specific acid-sensing channel, and its targeting can be considered a new strategy for cancer therapy. Mambalgin-2 from the Dendroaspis polylepis venom inhibits the α-ENaC/ASIC1a/γ-ENaC heterotrimer more effectively than the homotrimeric ASIC1a channel, initially proposed as the target of mambalgin-2. Although the molecular basis of such mambalgin selectivity remained unclear. Here, we built the models of the complexes of mambalgin-2 with the α-ENaC/ASIC1a/γ-ENaC and ASIC1a channels, performed MD and predicted the difference in the binding modes. The importance of the 'head' loop region of mambalgin-2 for the interaction with the hetero-, but not with the homotrimeric channel was confirmed by site-directed mutagenesis and electrophysiology. A new mode of allosteric regulation of the ENaC channels by linking the thumb domain of the ASIC1a subunit with the palm domain of the γ-ENaC subunit was proposed. The data obtained provide new insights into the regulation of various types of acid-sensing ion channels and the development of new strategies for cancer treatment.
Collapse
Affiliation(s)
- Ekaterina N. Lyukmanova
- Faculty of Biology, MSU-BIT Shenzhen University, Shenzhen 518172, China;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow 141701, Russia
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119234, Russia
| | - Maxim M. Zaigraev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow 141701, Russia
| | - Dmitrii S. Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
| | - Aizek B. Isaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow 141701, Russia
| | - Ilya D. Kukushkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow 141701, Russia
| | - Maxim L. Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
| | | | - Anton O. Chugunov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow 141701, Russia
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119234, Russia
| |
Collapse
|
9
|
Capareli F, Costa F, Tuszynski JA, Sousa MC, Setogute YDC, Lima PD, Carvalho L, Santos E, Gumz BP, Sabbaga J, de Castria TB, Jardim DL, Freitas D, Horvat N, Bezerra ROF, Testagrossa L, Costa T, Zanesco T, Iemma AF, Abou‐Alfa GK. Low-energy amplitude-modulated electromagnetic field exposure: Feasibility study in patients with hepatocellular carcinoma. Cancer Med 2023; 12:12402-12412. [PMID: 37184216 PMCID: PMC10278519 DOI: 10.1002/cam4.5944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Patients with advanced hepatocellular carcinoma (HCC) and poor liver function lack effective systemic therapies. Low-energy electromagnetic fields (EMFs) can influence cell biological processes via non-thermal effects and may represent a new treatment option. METHODS This single-site feasibility trial enrolled patients with advanced HCC, Child-Pugh A and B, Eastern Cooperative Oncology Group 0-2. Patients underwent 90-min amplitude-modulated EMF exposure procedures every 2-4 weeks, using the AutEMdev (Autem Therapeutics). Patients could also receive standard care. The primary endpoints were safety and the identification of hemodynamic variability patterns. Exploratory endpoints included health-related quality of life (HRQoL), overall survival (OS). and objective response rate (ORR) using RECIST v1.1. RESULTS Sixty-six patients with advanced HCC received 539 AutEMdev procedures (median follow-up, 30 months). No serious adverse events occurred during procedures. Self-limiting grade 1 somnolence occurred in 78.7% of patients. Hemodynamic variability during EMF exposure was associated with specific amplitude-modulation frequencies. HRQoL was maintained or improved among patients remaining on treatment. Median OS was 11.3 months (95% confidence interval [CI]: 6.0, 16.6) overall (16.0 months [95% CI: 4.4, 27.6] and 12.0 months [6.4, 17.6] for combination therapy and monotherapy, respectively). ORR was 24.3% (32% and 17% for combination therapy and monotherapy, respectively). CONCLUSION AutEMdev EMF exposure has an excellent safety profile in patients with advanced HCC. Hemodynamic alterations at personalized frequencies may represent a surrogate of anti-tumor efficacy. NCT01686412.
Collapse
Affiliation(s)
| | - Frederico Costa
- Oncology DepartmentHospital Sírio‐LibanêsSão PauloBrazil
- Autem Medical LLCHanoverNew HampshireUSA
| | - Jack A. Tuszynski
- Autem Medical LLCHanoverNew HampshireUSA
- Division of Experimental Oncology, Department of OncologyCross Cancer Institute, University of AlbertaEdmontonAlbertaCanada
| | | | | | - Pablo D. Lima
- Oncology DepartmentHospital Sírio‐LibanêsSão PauloBrazil
| | | | - Elizabeth Santos
- Oncology DepartmentHospital Sírio‐LibanêsSão PauloBrazil
- Oncology DepartmentA. C. Camargo Cancer CenterSão PauloBrazil
| | - Brenda P. Gumz
- Oncology DepartmentHospital Sírio‐LibanêsSão PauloBrazil
| | - Jorge Sabbaga
- Oncology DepartmentHospital Sírio‐LibanêsSão PauloBrazil
| | | | | | | | - Natally Horvat
- Memorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | | | | | - Tiago Costa
- Santa Casa de São Paulo School of Medical SciencesSão PauloBrazil
| | | | - Antonio F. Iemma
- Institute of Mathematics and Statistics, University of São PauloSão PauloBrazil
| | - Ghassan K. Abou‐Alfa
- Memorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Weill Medical College at Cornell UniversityNew YorkNew YorkUSA
| |
Collapse
|
10
|
Harguindey S, Reshkin SJ, Alfarouk KO. The Prime and Integral Cause of Cancer in the Post-Warburg Era. Cancers (Basel) 2023; 15:540. [PMID: 36672490 PMCID: PMC9856494 DOI: 10.3390/cancers15020540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Back to beginnings. A century ago, Otto Warburg published that aerobic glycolysis and the respiratory impairment of cells were the prime cause of cancer, a phenomenon that since then has been known as "the Warburg effect". In his early studies, Warburg looked at the effects of hydrogen ions (H+), on glycolysis in anaerobic conditions, as well as of bicarbonate and glucose. He found that gassing with CO2 led to the acidification of the solutions, resulting in decreased rates of glycolysis. It appears that Warburg first interpreted the role of pH on glycolysis as a secondary phenomenon, a side effect that was there just to compensate for the effect of bicarbonate. However, later on, while talking about glycolysis in a seminar at the Rockefeller Foundation, he said: "Special attention should be drawn to the remarkable influence of the bicarbonate…". Departing from the very beginnings of this metabolic cancer research in the 1920s, our perspective advances an analytic as well as the synthetic approach to the new "pH-related paradigm of cancer", while at the same time addressing the most fundamental and recent changing concepts in cancer metabolic etiology and its potential therapeutic implications.
Collapse
Affiliation(s)
| | - Stephan J. Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Khalid O. Alfarouk
- Zamzam Research Center, Zamzam University College, Khartoum 11123, Sudan
| |
Collapse
|
11
|
Di Gregorio E, Israel S, Staelens M, Tankel G, Shankar K, Tuszyński JA. The distinguishing electrical properties of cancer cells. Phys Life Rev 2022; 43:139-188. [PMID: 36265200 DOI: 10.1016/j.plrev.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
In recent decades, medical research has been primarily focused on the inherited aspect of cancers, despite the reality that only 5-10% of tumours discovered are derived from genetic causes. Cancer is a broad term, and therefore it is inaccurate to address it as a purely genetic disease. Understanding cancer cells' behaviour is the first step in countering them. Behind the scenes, there is a complicated network of environmental factors, DNA errors, metabolic shifts, and electrostatic alterations that build over time and lead to the illness's development. This latter aspect has been analyzed in previous studies, but how the different electrical changes integrate and affect each other is rarely examined. Every cell in the human body possesses electrical properties that are essential for proper behaviour both within and outside of the cell itself. It is not yet clear whether these changes correlate with cell mutation in cancer cells, or only with their subsequent development. Either way, these aspects merit further investigation, especially with regards to their causes and consequences. Trying to block changes at various levels of occurrence or assisting in their prevention could be the key to stopping cells from becoming cancerous. Therefore, a comprehensive understanding of the current knowledge regarding the electrical landscape of cells is much needed. We review four essential electrical characteristics of cells, providing a deep understanding of the electrostatic changes in cancer cells compared to their normal counterparts. In particular, we provide an overview of intracellular and extracellular pH modifications, differences in ionic concentrations in the cytoplasm, transmembrane potential variations, and changes within mitochondria. New therapies targeting or exploiting the electrical properties of cells are developed and tested every year, such as pH-dependent carriers and tumour-treating fields. A brief section regarding the state-of-the-art of these therapies can be found at the end of this review. Finally, we highlight how these alterations integrate and potentially yield indications of cells' malignancy or metastatic index.
Collapse
Affiliation(s)
- Elisabetta Di Gregorio
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Simone Israel
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Michael Staelens
- Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada
| | - Gabriella Tankel
- Department of Mathematics & Statistics, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada
| | - Karthik Shankar
- Department of Electrical & Computer Engineering, University of Alberta, 9211 116 Street NW, Edmonton, T6G 1H9, AB, Canada
| | - Jack A Tuszyński
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada; Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada.
| |
Collapse
|
12
|
Garcia SM, Yellowhair TR, Detweiler ND, Ahmadian R, Herbert LM, Gonzalez Bosc LV, Resta TC, Jernigan NL. Smooth muscle Acid-sensing ion channel 1a as a therapeutic target to reverse hypoxic pulmonary hypertension. Front Mol Biosci 2022; 9:989809. [PMID: 36275633 PMCID: PMC9581175 DOI: 10.3389/fmolb.2022.989809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a) is a voltage-independent, non-selective cation channel that conducts both Na+ and Ca2+. Activation of ASIC1a elicits plasma membrane depolarization and stimulates intracellular Ca2+-dependent signaling pathways in multiple cell types, including vascular smooth muscle (SM) and endothelial cells (ECs). Previous studies have shown that increases in pulmonary vascular resistance accompanying chronic hypoxia (CH)-induced pulmonary hypertension requires ASIC1a to elicit enhanced pulmonary vasoconstriction and vascular remodeling. Both SM and EC dysfunction drive these processes; however, the involvement of ASIC1a within these different cell types is unknown. Using the Cre-LoxP system to generate cell-type-specific Asic1a knockout mice, we tested the hypothesis that SM-Asic1a contributes to CH-induced pulmonary hypertension and vascular remodeling, whereas EC-Asic1a opposes the development of CH-induced pulmonary hypertension. The severity of pulmonary hypertension was not altered in mice with specific deletion of EC-Asic1a (TekCre-Asic1afl/fl). However, similar to global Asic1a knockout (Asic1a−/-) mice, mice with specific deletion of SM-Asic1a (MHCCreER-Asic1afl/fl) were protected from the development of CH-induced pulmonary hypertension and right heart hypertrophy. Furthermore, pulmonary hypertension was reversed when deletion of SM-Asic1a was initiated in conditional MHCCreER-Asic1afl/fl mice with established pulmonary hypertension. CH-induced vascular remodeling was also significantly attenuated in pulmonary arteries from MHCCreER-Asic1afl/fl mice. These findings were additionally supported by decreased CH-induced proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) from Asic1a−/- mice. Together these data demonstrate that SM-, but not EC-Asic1a contributes to CH-induced pulmonary hypertension and vascular remodeling. Furthermore, these studies provide evidence for the therapeutic potential of ASIC1a inhibition to reverse pulmonary hypertension.
Collapse
|
13
|
Stimuli-responsive polyelectrolyte multilayer films and microcapsules. Adv Colloid Interface Sci 2022; 310:102773. [DOI: 10.1016/j.cis.2022.102773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/20/2022] [Accepted: 09/05/2022] [Indexed: 12/28/2022]
|
14
|
Bogdanov A, Bogdanov A, Chubenko V, Volkov N, Moiseenko F, Moiseyenko V. Tumor acidity: From hallmark of cancer to target of treatment. Front Oncol 2022; 12:979154. [PMID: 36106097 PMCID: PMC9467452 DOI: 10.3389/fonc.2022.979154] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/08/2022] [Indexed: 12/16/2022] Open
Abstract
Tumor acidity is one of the cancer hallmarks and is associated with metabolic reprogramming and the use of glycolysis, which results in a high intracellular lactic acid concentration. Cancer cells avoid acid stress major by the activation and expression of proton and lactate transporters and exchangers and have an inverted pH gradient (extracellular and intracellular pHs are acid and alkaline, respectively). The shift in the tumor acid-base balance promotes proliferation, apoptosis avoidance, invasiveness, metastatic potential, aggressiveness, immune evasion, and treatment resistance. For example, weak-base chemotherapeutic agents may have a substantially reduced cellular uptake capacity due to "ion trapping". Lactic acid negatively affects the functions of activated effector T cells, stimulates regulatory T cells, and promotes them to express programmed cell death receptor 1. On the other hand, the inversion of pH gradient could be a cancer weakness that will allow the development of new promising therapies, such as tumor-targeted pH-sensitive antibodies and pH-responsible nanoparticle conjugates with anticancer drugs. The regulation of tumor pH levels by pharmacological inhibition of pH-responsible proteins (monocarboxylate transporters, H+-ATPase, etc.) and lactate dehydrogenase A is also a promising anticancer strategy. Another idea is the oral or parenteral use of buffer systems, such as sodium bicarbonate, to neutralize tumor acidity. Buffering therapy does not counteract standard treatment methods and can be used in combination to increase effectiveness. However, the mechanisms of the anticancer effect of buffering therapy are still unclear, and more research is needed. We have attempted to summarize the basic knowledge about tumor acidity.
Collapse
Affiliation(s)
- Alexey Bogdanov
- Saint Petersburg Clinical Research and Practical Center of Specialized Types of Medical Care (Oncological), Saint Petersburg, Russia
| | | | | | | | | | | |
Collapse
|
15
|
Hunley C, Mohsin M, Marucho M. Electrical impulse characterization along actin filaments in pathological conditions. COMPUTER PHYSICS COMMUNICATIONS 2022; 275:108317. [PMID: 35369107 PMCID: PMC8967275 DOI: 10.1016/j.cpc.2022.108317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present an interactive Mathematica notebook that characterizes the electrical impulses along actin filaments in both muscle and non-muscle cells for a wide range of physiological and pathological conditions. The simplicity of the theoretical formulation, and high performance of the Mathematica software, enable the analysis of multiple conditions without computational restrictions. The program is based on a multi-scale (atomic → monomer → filament) approach capable of accounting for the atomistic details of a protein molecular structure, its biological environment, and their impact on the travel distance, velocity, and attenuation of monovalent ionic wave packets propagating along microfilaments. The interactive component allows investigators to choose the experimental conditions (intracellular Vs in vitro), nucleotide state (ATP Vs ADP), actin isoform (alpha, gamma, beta, and muscle or non-muscle cell), as well as a conformation model that covers a variety of mutants and wild-type (the control) actin filament. We used the computational tool to analyze environmental changes such as temperature effects and pH changes of the surrounding solutions, as well as structural changes to an actin monomer due to radius changes. Additionally, we investigated for the first time the electrostatic consequences of actin mutations from different disease conditions. These studies may provide an unprecedented molecular understanding of why and how age, inheritance, and disease conditions induce dysfunctions in the biophysical mechanisms underlying the propagation of electrical signals along actin filaments.
Collapse
Affiliation(s)
- Christian Hunley
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX 78249-5003, USA
| | - Md Mohsin
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX 78249-5003, USA
| | - Marcelo Marucho
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX 78249-5003, USA
| |
Collapse
|
16
|
Guo J, Fang B, Bai H, Wang L, Peng B, Qin XJ, Fu L, Yao C, Li L, Huang W. Dual/Multi-responsive fluorogenic probes for multiple analytes in mitochondria: From design to applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116697] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Harguindey S, Alfarouk K, Polo Orozco J, Reshkin SJ, Devesa J. Hydrogen Ion Dynamics as the Fundamental Link between Neurodegenerative Diseases and Cancer: Its Application to the Therapeutics of Neurodegenerative Diseases with Special Emphasis on Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23052454. [PMID: 35269597 PMCID: PMC8910484 DOI: 10.3390/ijms23052454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
The pH-related metabolic paradigm has rapidly grown in cancer research and treatment. In this contribution, this recent oncological perspective has been laterally assessed for the first time in order to integrate neurodegeneration within the energetics of the cancer acid-base conceptual frame. At all levels of study (molecular, biochemical, metabolic, and clinical), the intimate nature of both processes appears to consist of opposite mechanisms occurring at the far ends of a physiopathological intracellular pH/extracellular pH (pHi/pHe) spectrum. This wide-ranging original approach now permits an increase in our understanding of these opposite processes, cancer and neurodegeneration, and, as a consequence, allows us to propose new avenues of treatment based upon the intracellular and microenvironmental hydrogen ion dynamics regulating and deregulating the biochemistry and metabolism of both cancer and neural cells. Under the same perspective, the etiopathogenesis and special characteristics of multiple sclerosis (MS) is an excellent model for the study of neurodegenerative diseases and, utilizing this pioneering approach, we find that MS appears to be a metabolic disease even before an autoimmune one. Furthermore, within this paradigm, several important aspects of MS, from mitochondrial failure to microbiota functional abnormalities, are analyzed in depth. Finally, and for the first time, a new and integrated model of treatment for MS can now be advanced.
Collapse
Affiliation(s)
- Salvador Harguindey
- Division of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
- Correspondence: ; Tel.: +34-629-047-141
| | - Khalid Alfarouk
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan;
| | - Julián Polo Orozco
- Division of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy;
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, 15886 Teo, Spain;
| |
Collapse
|
18
|
Li X, Buckley B, Stoletov K, Jing Y, Ranson M, Lewis JD, Kelso M, Fliegel L. Roles of the Na +/H + Exchanger Isoform 1 and Urokinase in Prostate Cancer Cell Migration and Invasion. Int J Mol Sci 2021; 22:ijms222413263. [PMID: 34948058 PMCID: PMC8705693 DOI: 10.3390/ijms222413263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer is a leading cause of cancer-associated deaths in men over 60 years of age. Most patients are killed by tumor metastasis. Recent evidence has implicated a role of the tumor microenvironment and urokinase plasminogen activator (uPA) in cancer cell migration, invasion, and metastasis. Here, we examine the role of the Na+/H+ exchanger isoform 1 (NHE1) and uPA in DU 145 prostate cancer cell migration and colony formation. Knockout of NHE1 reduced cell migration. The effects of a series of novel NHE1/uPA hexamethylene-amiloride-based inhibitors with varying efficacy towards NHE1 and uPA were examined on prostate cancer cells. Inhibition of NHE1-alone, or with inhibitors combining NHE1 or uPA inhibition-generally did not prevent prostate cancer cell migration. However, uPA inhibition-but not NHE1 inhibition-prevented anchorage-dependent colony formation. Application of inhibitors at concentrations that only saturate uPA inhibition decreased tumor invasion in vivo. The results suggest that while knockout of NHE1 affects cell migration, these effects are not due to NHE1-dependent proton translocation. Additionally, while neither NHE1 nor uPA activity was critical in cell migration, only uPA activity appeared to be critical in anchorage-dependent colony formation of DU 145 prostate cancer cells and invasion in vivo.
Collapse
Affiliation(s)
- Xiuju Li
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (X.L.); (Y.J.)
| | - Benjamin Buckley
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (B.B.); (M.R.); (M.K.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Konstantin Stoletov
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada; (K.S.); (J.D.L.)
| | - Yang Jing
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (X.L.); (Y.J.)
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (B.B.); (M.R.); (M.K.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - John D. Lewis
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada; (K.S.); (J.D.L.)
| | - Mike Kelso
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (B.B.); (M.R.); (M.K.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (X.L.); (Y.J.)
- Correspondence: ; Tel.: +1-780-492-1848
| |
Collapse
|
19
|
Donahue CET, Siroky MD, White KA. An Optogenetic Tool to Raise Intracellular pH in Single Cells and Drive Localized Membrane Dynamics. J Am Chem Soc 2021; 143:18877-18887. [PMID: 34726911 PMCID: PMC8603357 DOI: 10.1021/jacs.1c02156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
Intracellular pH
(pHi) dynamics are critical for regulating normal
cell physiology. For example, transient increases in pHi (7.2–7.6)
regulate cell behaviors like cell polarization, actin cytoskeleton
remodeling, and cell migration. Most studies on pH-dependent cell
behaviors have been performed at the population level and use nonspecific
methods to manipulate pHi. The lack of tools to specifically manipulate
pHi at the single-cell level has hindered investigation of the role
of pHi dynamics in driving single cell behaviors. In this work, we
show that Archaerhodopsin (ArchT), a light-driven outward proton pump,
can be used to elicit robust and physiological pHi increases over
the minutes time scale. We show that activation of ArchT is repeatable,
enabling the maintenance of high pHi in single cells for up to 45
minutes. We apply this spatiotemporal pHi manipulation tool to determine
whether increased pHi is a sufficient driver of membrane ruffling
in single cells. Using the ArchT tool, we show that increased pHi
in single cells can drive localized membrane ruffling responses within
seconds and increased membrane dynamics (both protrusion and retraction
events) compared to unstimulated ArchT cells as well as control cells.
Overall, this tool allows us to directly investigate the relationship
between increased pHi and single cell behaviors such as membrane ruffling.
This tool will be transformative in facilitating experiments that
are required to determine roles for increased pHi in driving single
cell behaviors.
Collapse
Affiliation(s)
- Caitlin E T Donahue
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Mike and Josie Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana 46617, United States
| | - Michael D Siroky
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Mike and Josie Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana 46617, United States
| | - Katharine A White
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Mike and Josie Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana 46617, United States
| |
Collapse
|
20
|
Pérez-Herrero E, Fernández-Medarde A. The reversed intra- and extracellular pH in tumors as a unified strategy to chemotherapeutic delivery using targeted nanocarriers. Acta Pharm Sin B 2021; 11:2243-2264. [PMID: 34522586 PMCID: PMC8424227 DOI: 10.1016/j.apsb.2021.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/11/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Solid tumors are complex entities, comprising a wide variety of malignancies with very different molecular alterations. Despite this, they share a set of characteristics known as "hallmarks of cancer" that can be used as common therapeutic targets. Thus, every tumor needs to change its metabolism in order to obtain the energy levels required for its high proliferative rates, and these adaptations lead to alterations in extra- and intracellular pH. These changes in pH are common to all solid tumors, and can be used either as therapeutic targets, blocking the cell proton transporters and reversing the pH changes, or as means to specifically deliver anticancer drugs. In this review we will describe how proton transport inhibitors in association with nanocarriers have been designed to block the pH changes that are needed for cancer cells to survive after their metabolic adaptations. We will also describe studies aiming to decrease intracellular pH in cancer using nanoparticles as molecular cages for protons which will be released upon UV or IR light exposure. Finally, we will comment on several studies that have used the extracellular pH in cancer for an enhanced cell internalization and tumor penetration of nanocarriers and a controlled drug delivery, describing how nanocarriers are being used to increase drug stability and specificity.
Collapse
Affiliation(s)
- Edgar Pérez-Herrero
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Universidad de La Laguna, La Laguna 38206, Tenerife, Spain
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, La Laguna 38206, Tenerife, Spain
- Instituto Universitario de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna 38200, Tenerife, Spain
| | - Alberto Fernández-Medarde
- Instituto de Biología Molecular y Celular Del Cáncer, Centro de Investigación Del Cáncer (USAL-CSIC), Salamanca 37007, Spain
| |
Collapse
|
21
|
Yu Q, Ding F, Shen J, He X. A newly nitrobenzoxadiazole (NBD)-fused reversible fluorescence probe for pH monitoring and application in bioimaging. Talanta 2021; 228:122218. [DOI: 10.1016/j.talanta.2021.122218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/31/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
|
22
|
Hypoxia, Acidification and Inflammation: Partners in Crime in Parkinson’s Disease Pathogenesis? IMMUNO 2021. [DOI: 10.3390/immuno1020006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Like in other neurodegenerative diseases, protein aggregation, mitochondrial dysfunction, oxidative stress and neuroinflammation are hallmarks of Parkinson’s disease (PD). Differentiating characteristics of PD include the central role of α-synuclein in the aggregation pathology, a distinct vulnerability of the striato-nigral system with the related motor symptoms, as well as specific mitochondrial deficits. Which molecular alterations cause neurodegeneration and drive PD pathogenesis is poorly understood. Here, we summarize evidence of the involvement of three interdependent factors in PD and suggest that their interplay is likely a trigger and/or aggravator of PD-related neurodegeneration: hypoxia, acidification and inflammation. We aim to integrate the existing knowledge on the well-established role of inflammation and immunity, the emerging interest in the contribution of hypoxic insults and the rather neglected effects of brain acidification in PD pathogenesis. Their tight association as an important aspect of the disease merits detailed investigation. Consequences of related injuries are discussed in the context of aging and the interaction of different brain cell types, in particular with regard to potential consequences on the vulnerability of dopaminergic neurons in the substantia nigra. A special focus is put on the identification of current knowledge gaps and we emphasize the importance of related insights from other research fields, such as cancer research and immunometabolism, for neurodegeneration research. The highlighted interplay of hypoxia, acidification and inflammation is likely also of relevance for other neurodegenerative diseases, despite disease-specific biochemical and metabolic alterations.
Collapse
|
23
|
Chaudhury A, Debnath K, Bu W, Jana NR, Basu JK. Penetration and preferential binding of charged nanoparticles to mixed lipid monolayers: interplay of lipid packing and charge density. SOFT MATTER 2021; 17:1963-1974. [PMID: 33427839 DOI: 10.1039/d0sm01945c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Designing of nanoparticles (NPs) for biomedical applications or mitigating their cytotoxic effects requires microscopic understanding of their interactions with cell membranes. Such insight is best obtained by studying model biomembranes which, however, need to replicate actual cell membranes, especially their compositional heterogeneity and charge. In this work we have investigated the role of lipid charge density and packing of phase separated Langmuir monolayers in the penetration and phase specificity of charged quantum dot (QD) binding. Using an ordered and anionic charged lipid in combination with uncharged but variable stiffness lipids we demonstrate how the subtle interplay of zwitterionic lipid packing and anionic lipid charge density can affect cationic nanoparticle penetration and phase specific binding. Under identical subphase pH, the membrane with higher anionic charge density displays higher NP penetration. We also observe coalescence of charged lipid rafts floating amidst a more fluidic zwitterionic lipid matrix due to the phase specificity of QD binding. Our results suggest effective strategies which can be used to design NPs for diverse biomedical applications as well as to devise remedial actions against their harmful cytotoxic effects especially against respiratory diseases.
Collapse
Affiliation(s)
- Anurag Chaudhury
- Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Koushik Debnath
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Wei Bu
- NSF's ChemMatCARS, University of Chicago, Chicago, IL 60637, USA
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Jaydeep Kumar Basu
- Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
24
|
Hwang SM, Lee JY, Park CK, Kim YH. The Role of TRP Channels and PMCA in Brain Disorders: Intracellular Calcium and pH Homeostasis. Front Cell Dev Biol 2021; 9:584388. [PMID: 33585474 PMCID: PMC7876282 DOI: 10.3389/fcell.2021.584388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Brain disorders include neurodegenerative diseases (NDs) with different conditions that primarily affect the neurons and glia in the brain. However, the risk factors and pathophysiological mechanisms of NDs have not been fully elucidated. Homeostasis of intracellular Ca2+ concentration and intracellular pH (pHi) is crucial for cell function. The regulatory processes of these ionic mechanisms may be absent or excessive in pathological conditions, leading to a loss of cell death in distinct regions of ND patients. Herein, we review the potential involvement of transient receptor potential (TRP) channels in NDs, where disrupted Ca2+ homeostasis leads to cell death. The capability of TRP channels to restore or excite the cell through Ca2+ regulation depending on the level of plasma membrane Ca2+ ATPase (PMCA) activity is discussed in detail. As PMCA simultaneously affects intracellular Ca2+ regulation as well as pHi, TRP channels and PMCA thus play vital roles in modulating ionic homeostasis in various cell types or specific regions of the brain where the TRP channels and PMCA are expressed. For this reason, the dysfunction of TRP channels and/or PMCA under pathological conditions disrupts neuronal homeostasis due to abnormal Ca2+ and pH levels in the brain, resulting in various NDs. This review addresses the function of TRP channels and PMCA in controlling intracellular Ca2+ and pH, which may provide novel targets for treating NDs.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Gachon Pain Center, Department of Physiology, Gachon University College of Medicine, Incheon, South Korea
| | - Ji Yeon Lee
- Gil Medical Center, Department of Anesthesiology and Pain Medicine, Gachon University, Incheon, South Korea
| | - Chul-Kyu Park
- Gachon Pain Center, Department of Physiology, Gachon University College of Medicine, Incheon, South Korea
| | - Yong Ho Kim
- Gachon Pain Center, Department of Physiology, Gachon University College of Medicine, Incheon, South Korea
| |
Collapse
|
25
|
Santos-Pereira C, Rodrigues LR, Côrte-Real M. Emerging insights on the role of V-ATPase in human diseases: Therapeutic challenges and opportunities. Med Res Rev 2021; 41:1927-1964. [PMID: 33483985 DOI: 10.1002/med.21782] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/05/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
The control of the intracellular pH is vital for the survival of all organisms. Membrane transporters, both at the plasma and intracellular membranes, are key players in maintaining a finely tuned pH balance between intra- and extracellular spaces, and therefore in cellular homeostasis. V-ATPase is a housekeeping ATP-driven proton pump highly conserved among prokaryotes and eukaryotes. This proton pump, which exhibits a complex multisubunit structure based on cell type-specific isoforms, is essential for pH regulation and for a multitude of ubiquitous and specialized functions. Thus, it is not surprising that V-ATPase aberrant overexpression, mislocalization, and mutations in V-ATPase subunit-encoding genes have been associated with several human diseases. However, the ubiquitous expression of this transporter and the high toxicity driven by its off-target inhibition, renders V-ATPase-directed therapies very challenging and increases the need for selective strategies. Here we review emerging evidence linking V-ATPase and both inherited and acquired human diseases, explore the therapeutic challenges and opportunities envisaged from recent data, and advance future research avenues. We highlight the importance of V-ATPases with unique subunit isoform molecular signatures and disease-associated isoforms to design selective V-ATPase-directed therapies. We also discuss the rational design of drug development pipelines and cutting-edge methodological approaches toward V-ATPase-centered drug discovery. Diseases like cancer, osteoporosis, and even fungal infections can benefit from V-ATPase-directed therapies.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal.,Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Lígia R Rodrigues
- Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| |
Collapse
|
26
|
Singla N, Ahmad M, Dhiman S, Kumar G, Singh S, Verma S, Kaur S, Rashid M, Kaur S, Luxami V, Singh P, Kumar S. An ESIPT based versatile fluorescent probe for bioimaging live-cells and E. coli under strongly acidic conditions. NEW J CHEM 2021. [DOI: 10.1039/d1nj03933d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A BTNN probe undergoes a 146 times increase in fluorescence intensity at 530 nm on lowering the pH from 7.0 to 2.0 and has been deployed for the bioimaging of MG-63 live cells and E. coli bacteria at different pH levels.
Collapse
Affiliation(s)
- Nancy Singla
- Department of Chemistry, Center for Advanced Studies, Guru Nanak Dev University, Amritsar–143005, India
| | - Manzoor Ahmad
- Department of Chemistry, Center for Advanced Studies, Guru Nanak Dev University, Amritsar–143005, India
| | - Sukhvinder Dhiman
- Department of Chemistry, Center for Advanced Studies, Guru Nanak Dev University, Amritsar–143005, India
| | - Gulshan Kumar
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147004, India
| | - Siloni Singh
- Department of Botanical and Environment Science, Guru Nanak Dev University, Amritsar 143005, India
| | - Shagun Verma
- Department of Botanical and Environment Science, Guru Nanak Dev University, Amritsar 143005, India
| | - Satwinderjeet Kaur
- Department of Botanical and Environment Science, Guru Nanak Dev University, Amritsar 143005, India
| | - Muzamil Rashid
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147004, India
| | - Prabhpreet Singh
- Department of Chemistry, Center for Advanced Studies, Guru Nanak Dev University, Amritsar–143005, India
| | - Subodh Kumar
- Department of Chemistry, Center for Advanced Studies, Guru Nanak Dev University, Amritsar–143005, India
| |
Collapse
|
27
|
Quade BN, Parker MD, Occhipinti R. The therapeutic importance of acid-base balance. Biochem Pharmacol 2021; 183:114278. [PMID: 33039418 PMCID: PMC7544731 DOI: 10.1016/j.bcp.2020.114278] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Baking soda and vinegar have been used as home remedies for generations and today we are only a mouse-click away from claims that baking soda, lemon juice, and apple cider vinegar are miracles cures for everything from cancer to COVID-19. Despite these specious claims, the therapeutic value of controlling acid-base balance is indisputable and is the basis of Food and Drug Administration-approved treatments for constipation, epilepsy, metabolic acidosis, and peptic ulcers. In this narrative review, we present evidence in support of the current and potential therapeutic value of countering local and systemic acid-base imbalances, several of which do in fact involve the administration of baking soda (sodium bicarbonate). Furthermore, we discuss the side effects of pharmaceuticals on acid-base balance as well as the influence of acid-base status on the pharmacokinetic properties of drugs. Our review considers all major organ systems as well as information relevant to several clinical specialties such as anesthesiology, infectious disease, oncology, dentistry, and surgery.
Collapse
Affiliation(s)
- Bianca N Quade
- Department of Physiology and Biophysics, The State University of New York, The University at Buffalo, Buffalo, NY 14203, USA
| | - Mark D Parker
- Department of Physiology and Biophysics, The State University of New York, The University at Buffalo, Buffalo, NY 14203, USA; Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; State University of New York Eye Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
28
|
Role of Stromal Cells in Determining Tumor and Cancer Stem Cell Behaviors and Therapeutic Response. Cancers (Basel) 2020; 12:cancers12113162. [PMID: 33126471 PMCID: PMC7693000 DOI: 10.3390/cancers12113162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022] Open
Abstract
While research previously focused extensively on the tumor cells, over the last two decades, the tumor microenvironment (TME) has received increasing attention with a particular emphasis in its role in tumor development, metabolism, progression, and treatment response [...].
Collapse
|
29
|
Harguindey S, Alfarouk K, Polo Orozco J, Fais S, Devesa J. Towards an Integral Therapeutic Protocol for Breast Cancer Based upon the New H +-Centered Anticancer Paradigm of the Late Post-Warburg Era. Int J Mol Sci 2020; 21:E7475. [PMID: 33050492 PMCID: PMC7589677 DOI: 10.3390/ijms21207475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
A brand new approach to the understanding of breast cancer (BC) is urgently needed. In this contribution, the etiology, pathogenesis, and treatment of this disease is approached from the new pH-centric anticancer paradigm. Only this unitarian perspective, based upon the hydrogen ion (H+) dynamics of cancer, allows for the understanding and integration of the many dualisms, confusions, and paradoxes of the disease. The new H+-related, wide-ranging model can embrace, from a unique perspective, the many aspects of the disease and, at the same time, therapeutically interfere with most, if not all, of the hallmarks of cancer known to date. The pH-related armamentarium available for the treatment of BC reviewed here may be beneficial for all types and stages of the disease. In this vein, we have attempted a megasynthesis of traditional and new knowledge in the different areas of breast cancer research and treatment based upon the wide-ranging approach afforded by the hydrogen ion dynamics of cancer. The concerted utilization of the pH-related drugs that are available nowadays for the treatment of breast cancer is advanced.
Collapse
Affiliation(s)
- Salvador Harguindey
- Department of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Khalid Alfarouk
- Department of Pharmacology, Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah 42316, Saudi Arabia and Alfarouk Biomedical Research LLC, Tampa, FL 33617, USA;
| | - Julián Polo Orozco
- Department of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (National Institute of Health), 00161 Rome, Italy;
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, 15886 Teo, Spain;
| |
Collapse
|
30
|
Pethő Z, Najder K, Carvalho T, McMorrow R, Todesca LM, Rugi M, Bulk E, Chan A, Löwik CWGM, Reshkin SJ, Schwab A. pH-Channeling in Cancer: How pH-Dependence of Cation Channels Shapes Cancer Pathophysiology. Cancers (Basel) 2020; 12:E2484. [PMID: 32887220 PMCID: PMC7565548 DOI: 10.3390/cancers12092484] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
Tissue acidosis plays a pivotal role in tumor progression: in particular, interstitial acidosis promotes tumor cell invasion, and is a major contributor to the dysregulation of tumor immunity and tumor stromal cells. The cell membrane and integral membrane proteins commonly act as important sensors and transducers of altered pH. Cell adhesion molecules and cation channels are prominent membrane proteins, the majority of which is regulated by protons. The pathophysiological consequences of proton-sensitive ion channel function in cancer, however, are scarcely considered in the literature. Thus, the main focus of this review is to highlight possible events in tumor progression and tumor immunity where the pH sensitivity of cation channels could be of great importance.
Collapse
Affiliation(s)
- Zoltán Pethő
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Karolina Najder
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Tiago Carvalho
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 90126 Bari, Italy; (T.C.); (S.J.R.)
| | - Roisin McMorrow
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3035 GD Rotterdam, The Netherlands; (R.M.); (C.W.G.M.L.)
| | - Luca Matteo Todesca
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Micol Rugi
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Etmar Bulk
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Alan Chan
- Percuros B.V., 2333 CL Leiden, The Netherlands;
| | - Clemens W. G. M. Löwik
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3035 GD Rotterdam, The Netherlands; (R.M.); (C.W.G.M.L.)
- Department of Oncology CHUV, UNIL and Ludwig Cancer Center, 1011 Lausanne, Switzerland
| | - Stephan J. Reshkin
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 90126 Bari, Italy; (T.C.); (S.J.R.)
| | - Albrecht Schwab
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| |
Collapse
|
31
|
Role of pH Regulatory Proteins and Dysregulation of pH in Prostate Cancer. Rev Physiol Biochem Pharmacol 2020; 182:85-110. [PMID: 32776252 DOI: 10.1007/112_2020_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prostate cancer is the fourth most commonly diagnosed cancer, and although it is often a slow-growing malignancy, it is the second leading cause of cancer-associated deaths in men and the first in Europe and North America. In many forms of cancer, when the disease is a solid tumor confined to one organ, it is often readily treated. However, when the cancer becomes an invasive metastatic carcinoma, it is more often fatal. It is therefore of great interest to identify mechanisms that contribute to the invasion of cells to identify possible targets for therapy. During prostate cancer progression, the epithelial cells undergo epithelial-mesenchymal transition that is characterized by morphological changes, a loss of cell-cell adhesion, and invasiveness. Dysregulation of pH has emerged as a hallmark of cancer with a reversed pH gradient and with a constitutively increased intracellular pH that is elevated above the extracellular pH. This phenomenon has been referred to as "a perfect storm" for cancer progression. Acid-extruding ion transporters include the Na+/H+ exchanger NHE1 (SLC9A1), the Na+HCO3- cotransporter NBCn1 (SLC4A7), anion exchangers, vacuolar-type adenosine triphosphatases, and the lactate-H+ cotransporters of the monocarboxylate family (MCT1 and MCT4 (SLC16A1 and 3)). Additionally, carbonic anhydrases contribute to acid transport. Of these, several have been shown to be upregulated in different human cancers including the NBCn1, MCTs, and NHE1. Here the role and contribution of acid-extruding transporters in prostate cancer growth and metastasis were examined. These proteins make significant contributions to prostate cancer progression.
Collapse
|
32
|
Bychkov M, Shulepko M, Osmakov D, Andreev Y, Sudarikova A, Vasileva V, Pavlyukov MS, Latyshev YA, Potapov AA, Kirpichnikov M, Shenkarev ZO, Lyukmanova E. Mambalgin-2 Induces Cell Cycle Arrest and Apoptosis in Glioma Cells via Interaction with ASIC1a. Cancers (Basel) 2020; 12:E1837. [PMID: 32650495 PMCID: PMC7408772 DOI: 10.3390/cancers12071837] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
Gliomas are fast growing and highly invasive brain tumors, characterized by tumor microenvironment acidification that drives glioma cell growth and migration. Channels containing Acid-sensing Ion Channel 1a subunit (ASIC1a) mediate amiloride-sensitive cation influx in late stage glioma cells, but not in normal astrocytes. Thus, selective targeting of ASIC1a can be a perspective strategy for glioma treatment. Here, ASIC1a expression in U251 MG and A172 glioma cells, but not in normal astrocytes, was demonstrated. Recombinant analog of mambalgin-2 from black mamba Dendroaspis polylepis inhibited amiloride-sensitive currents at ASIC1a both in Xenopus laevis oocytes and in U251 MG cells, while its mutants with impaired activity towards this channel did not. Mambalgin-2 inhibited U251 MG and A172 glioma cells growth with EC50 in the nanomolar range without affecting the proliferation of normal astrocytes. Notably, mambalgin-2 mutants did not affect glioma cell proliferation, pointing on ASIC1a as the main molecular target of mambalgin-2 in U251 MG and A172 cells. Mambalgin-2 induced a cell cycle arrest, inhibited Cyclin D1 and cyclin-dependent kinases (CDK) phosphorylation and caused apoptosis in U251 MG and A172 cells. Moreover, mambalgin-2 inhibited the growth of low-passage primary cells from a patient with glioblastoma. Altogether, our data point to mambalgin-2 as a useful hit for the development of new drugs for glioma treatment.
Collapse
Affiliation(s)
- Maxim Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (M.B.); (M.S.); (D.O.); (Y.A.); (M.S.P.); (M.K.); (Z.O.S.)
| | - Mikhail Shulepko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (M.B.); (M.S.); (D.O.); (Y.A.); (M.S.P.); (M.K.); (Z.O.S.)
| | - Dmitry Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (M.B.); (M.S.); (D.O.); (Y.A.); (M.S.P.); (M.K.); (Z.O.S.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Yaroslav Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (M.B.); (M.S.); (D.O.); (Y.A.); (M.S.P.); (M.K.); (Z.O.S.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Anastasia Sudarikova
- Institute of Cytology, Russian Academy of Science, 194064 St-Petersburg, Russia; (A.S.); (V.V.)
| | - Valeria Vasileva
- Institute of Cytology, Russian Academy of Science, 194064 St-Petersburg, Russia; (A.S.); (V.V.)
| | - Marat S. Pavlyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (M.B.); (M.S.); (D.O.); (Y.A.); (M.S.P.); (M.K.); (Z.O.S.)
| | - Yaroslav A. Latyshev
- Federal State Autonomous Institution, N.N. Burdenko National Medical Research Center of Neurosurgery, 125047 Moscow, Russia; (Y.A.L.); (A.A.P.)
| | - Alexander A. Potapov
- Federal State Autonomous Institution, N.N. Burdenko National Medical Research Center of Neurosurgery, 125047 Moscow, Russia; (Y.A.L.); (A.A.P.)
| | - Mikhail Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (M.B.); (M.S.); (D.O.); (Y.A.); (M.S.P.); (M.K.); (Z.O.S.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Zakhar O. Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (M.B.); (M.S.); (D.O.); (Y.A.); (M.S.P.); (M.K.); (Z.O.S.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Moscow Region, Russia
| | - Ekaterina Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (M.B.); (M.S.); (D.O.); (Y.A.); (M.S.P.); (M.K.); (Z.O.S.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
33
|
Osmakov DI, Khasanov TA, Andreev YA, Lyukmanova EN, Kozlov SA. Animal, Herb, and Microbial Toxins for Structural and Pharmacological Study of Acid-Sensing Ion Channels. Front Pharmacol 2020; 11:991. [PMID: 32733241 PMCID: PMC7360831 DOI: 10.3389/fphar.2020.00991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are of the most sensitive molecular sensors of extracellular pH change in mammals. Six isoforms of these channels are widely represented in membranes of neuronal and non-neuronal cells, where these molecules are involved in different important regulatory functions, such as synaptic plasticity, learning, memory, and nociception, as well as in various pathological states. Structural and functional studies of both wild-type and mutant ASICs are essential for human care and medicine for the efficient treatment of socially significant diseases and ensure a comfortable standard of life. Ligands of ASICs serve as indispensable tools for these studies. Such bioactive compounds can be synthesized artificially. However, to date, the search for such molecules has been most effective amongst natural sources, such as animal venoms or plants and microbial extracts. In this review, we provide a detailed and comprehensive structural and functional description of natural compounds acting on ASICs, as well as the latest information on structural aspects of their interaction with the channels. Many of the examples provided in the review demonstrate the undoubted fundamental and practical successes of using natural toxins. Without toxins, it would not be possible to obtain data on the mechanisms of ASICs' functioning, provide detailed study of their pharmacological properties, or assess the contribution of the channels to development of different pathologies. The selectivity to different isoforms and variety in the channel modulation mode allow for the appraisal of prospective candidates for the development of new drugs.
Collapse
Affiliation(s)
- Dmitry I Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Timur A Khasanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Yaroslav A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ekaterina N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
34
|
Schwartz L, Peres S, Jolicoeur M, da Veiga Moreira J. Cancer and Alzheimer's disease: intracellular pH scales the metabolic disorders. Biogerontology 2020; 21:683-694. [PMID: 32617766 DOI: 10.1007/s10522-020-09888-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) and cancer have much in common than previously recognized. These pathologies share common risk factors (inflammation and aging), with similar epidemiological and biochemical features such as impaired mitochondria. Metabolic reprogramming occurs during aging and inflammation. We assume that inflammation is directly responsible of the Warburg effect in cancer cells, with a decreased oxidative phosphorylation and a compensatory highthroughput glycolysis (HTG). Similarly, the Warburg effect in cancer is thought to support an alkaline intracellular pH (pHi), a key component of unrelenting cell growth. In the brain, inflammation results in increased secretion of lactate by astrocytes. The increased uptake of lactic acid by neurons results in the inverse Warburg effect, such as seen in AD. The neuronal activity is dampened by a fall of pHi. Pronounced cytosol acidification results in decreased mitochondrial energy yield as well as apoptotic cell death. The link between AD and cancer is reinforced by the fact that treatment aiming at restoring the mitochondrial activity have been experimentally shown to be effective in both diseases. Low carb diet, lipoic acid, and/or methylene blue could then appear promising in both sets of these clinically diverse diseases.
Collapse
Affiliation(s)
| | - Sabine Peres
- LRI, Université Paris-Sud, CNRS, Université Paris-Saclay, 91405, Orsay, France.,MaIAGE, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Mario Jolicoeur
- Research Laboratory in Applied Metabolic Engineering, Department of Chemical, Engineering, Ecole Polytechnique de Montréal, Montréal, QC, Canada
| | - Jorgelindo da Veiga Moreira
- Research Laboratory in Applied Metabolic Engineering, Department of Chemical, Engineering, Ecole Polytechnique de Montréal, Montréal, QC, Canada.
| |
Collapse
|
35
|
The Interplay of Dysregulated pH and Electrolyte Imbalance in Cancer. Cancers (Basel) 2020; 12:cancers12040898. [PMID: 32272658 PMCID: PMC7226178 DOI: 10.3390/cancers12040898] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer cells and tissues have an aberrant regulation of hydrogen ion dynamics driven by a combination of poor vascular perfusion, regional hypoxia, and increased the flux of carbons through fermentative glycolysis. This leads to extracellular acidosis and intracellular alkalinization. Dysregulated pH dynamics influence cancer cell biology, from cell transformation and tumorigenesis to proliferation, local growth, invasion, and metastasis. Moreover, this dysregulated intracellular pH (pHi) drives a metabolic shift to increased aerobic glycolysis and reduced mitochondrial oxidative phosphorylation, referred to as the Warburg effect, or Warburg metabolism, which is a selective feature of cancer. This metabolic reprogramming confers a thermodynamic advantage on cancer cells and tissues by protecting them against oxidative stress, enhancing their resistance to hypoxia, and allowing a rapid conversion of nutrients into biomass to enable cell proliferation. Indeed, most cancers have increased glucose uptake and lactic acid production. Furthermore, cancer cells have very dysregulated electrolyte balances, and in the interaction of the pH dynamics with electrolyte, dynamics is less well known. In this review, we highlight the interconnected roles of dysregulated pH dynamics and electrolytes imbalance in cancer initiation, progression, adaptation, and in determining the programming and reprogramming of tumor cell metabolism.
Collapse
|
36
|
Harguindey S, Alfarouk K, Polo Orozco J, Hardonnière K, Stanciu D, Fais S, Devesa J. A New and Integral Approach to the Etiopathogenesis and Treatment of Breast Cancer Based upon Its Hydrogen Ion Dynamics. Int J Mol Sci 2020; 21:E1110. [PMID: 32046158 PMCID: PMC7036897 DOI: 10.3390/ijms21031110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Despite all efforts, the treatment of breast cancer (BC) cannot be considered to be a success story. The advances in surgery, chemotherapy and radiotherapy have not been sufficient at all. Indeed, the accumulated experience clearly indicates that new perspectives and non-main stream approaches are needed to better characterize the etiopathogenesis and treatment of this disease. This contribution deals with how the new pH-centric anticancer paradigm plays a fundamental role in reaching a more integral understanding of the etiology, pathogenesis, and treatment of this multifactorial disease. For the first time, the armamentarium available for the treatment of the different types and phases of BC is approached here from a Unitarian perspective-based upon the hydrogen ion dynamics of cancer. The wide-ranged pH-related molecular, biochemical and metabolic model is able to embrace most of the fields and subfields of breast cancer etiopathogenesis and treatment. This single and integrated approach allows advancing towards a unidirectional, concerted and synergistic program of treatment. Further efforts in this line are likely to first improve the therapeutics of each subtype of this tumor and every individual patient in every phase of the disease.
Collapse
Affiliation(s)
- Salvador Harguindey
- Institute of Clinical Biology and Metabolism, Postas 13, 01004 Vitoria, Spain;
| | - Khalid Alfarouk
- Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah, Saudi Arabia and Alfarouk Biomedical Research LLC, Tampa, FL 33617, USA;
| | - Julián Polo Orozco
- Institute of Clinical Biology and Metabolism, Postas 13, 01004 Vitoria, Spain;
| | - Kévin Hardonnière
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290 Châtenay-Malabry, France;
| | - Daniel Stanciu
- Scientific Direction, MCS Foundation For Life, 5623KR Eindhoven, The Netherlands;
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (National Institute of Health), Viale Regina Elena, 299, 00161 Rome, Italy;
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, Travesía de Montouto 24, 15886 Teo, Spain;
| |
Collapse
|
37
|
Harguindey S, Polo Orozco J, Alfarouk KO, Devesa J. Hydrogen Ion Dynamics of Cancer and a New Molecular, Biochemical and Metabolic Approach to the Etiopathogenesis and Treatment of Brain Malignancies. Int J Mol Sci 2019; 20:ijms20174278. [PMID: 31480530 PMCID: PMC6747469 DOI: 10.3390/ijms20174278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
The treatment of cancer has been slowly but steadily progressing during the last fifty years. Some tumors with a high mortality in the past are curable nowadays. However, there is one striking exception: glioblastoma multiforme. No real breakthrough has been hitherto achieved with this tumor with ominous prognosis and very short survival. Glioblastomas, being highly glycolytic malignancies are strongly pH-dependent and driven by the sodium hydrogen exchanger 1 (NHE1) and other proton (H+) transporters. Therefore, this is one of those pathologies where the lessons recently learnt from the new pH-centered anticancer paradigm may soon bring a promising change to treatment. This contribution will discuss how the pH-centric molecular, biochemical and metabolic perspective may introduce some urgently needed and integral novel treatments. Such a prospective therapeutic approach for malignant brain tumors is developed here, either to be used alone or in combination with more standard therapies.
Collapse
Affiliation(s)
| | | | - Khalid O Alfarouk
- Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah 42316, Saudi Arabia
- Alfarouk Biomedical Research LLC, Tampa, FL 33617, USA
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, 15886 Teo, Spain
| |
Collapse
|
38
|
Baraban L, Ibarlucea B, Baek E, Cuniberti G. Hybrid Silicon Nanowire Devices and Their Functional Diversity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900522. [PMID: 31406669 PMCID: PMC6685480 DOI: 10.1002/advs.201900522] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/25/2019] [Indexed: 05/06/2023]
Abstract
In the pool of nanostructured materials, silicon nanostructures are known as conventionally used building blocks of commercially available electronic devices. Their application areas span from miniaturized elements of devices and circuits to ultrasensitive biosensors for diagnostics. In this Review, the current trends in the developments of silicon nanowire-based devices are summarized, and their functionalities, novel architectures, and applications are discussed from the point of view of analog electronics, arisen from the ability of (bio)chemical gating of the carrier channel. Hybrid nanowire-based devices are introduced and described as systems decorated by, e.g., organic complexes (biomolecules, polymers, and organic films), aimed to substantially extend their functionality, compared to traditional systems. Their functional diversity is explored considering their architecture as well as areas of their applications, outlining several groups of devices that benefit from the coatings. The first group is the biosensors that are able to represent label-free assays thanks to the attached biological receptors. The second group is represented by devices for optoelectronics that acquire higher optical sensitivity or efficiency due to the specific photosensitive decoration of the nanowires. Finally, the so-called new bioinspired neuromorphic devices are shown, which are aimed to mimic the functions of the biological cells, e.g., neurons and synapses.
Collapse
Affiliation(s)
- Larysa Baraban
- Max Bergmann Center of Biomaterials and Institute for Materials ScienceTechnische Universität Dresden01062DresdenGermany
- Center for Advancing Electronics Dresden (CfAED) TU Dresden01062DresdenGermany
| | - Bergoi Ibarlucea
- Max Bergmann Center of Biomaterials and Institute for Materials ScienceTechnische Universität Dresden01062DresdenGermany
- Center for Advancing Electronics Dresden (CfAED) TU Dresden01062DresdenGermany
| | - Eunhye Baek
- Max Bergmann Center of Biomaterials and Institute for Materials ScienceTechnische Universität Dresden01062DresdenGermany
- Center for Advancing Electronics Dresden (CfAED) TU Dresden01062DresdenGermany
| | - Gianaurelio Cuniberti
- Max Bergmann Center of Biomaterials and Institute for Materials ScienceTechnische Universität Dresden01062DresdenGermany
- Center for Advancing Electronics Dresden (CfAED) TU Dresden01062DresdenGermany
| |
Collapse
|
39
|
Identification of alkaline pH optimum of human glucokinase because of ATP-mediated bias correction in outcomes of enzyme assays. Sci Rep 2019; 9:11422. [PMID: 31388064 PMCID: PMC6684659 DOI: 10.1038/s41598-019-47883-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/08/2019] [Indexed: 12/16/2022] Open
Abstract
Adenosine triphosphate (ATP) is a crucial substrate and energy source commonly used in enzyme reactions. However, we demonstrated that the addition of this acidic compound to enzyme assay buffers can serve as a source of unnoticed pH changes. Even relatively low concentrations of ATP (up to 5 mM) shifted pH of reaction mixtures to acidic values. For example, Tris buffer lost buffering capacity at pH 7.46 by adding ATP at a concentration higher than 2 mM. In addition to the buffering capacity, the pH shifts differed with respect to the buffer concentration. High ATP concentrations are commonly used in hexokinase assays. We demonstrated how the presence of ATP affects pH of widely used enzyme assay buffers and inversely affected KM of human hexokinase 2 and S0.5 of human glucokinase. The pH optimum of human glucokinase was never reported before. We found that previously reported optimum of mammalian glucokinase was incorrect, affected by the ATP-induced pH shifts. The pH optimum of human glucokinase is at pH 8.5-8.7. Suggested is the full disclosure of reaction conditions, including the measurement of pH of the whole reaction mixtures instead of measuring pH prior to the addition of all the components.
Collapse
|
40
|
The Role of Sodium Hydrogen Exchanger 1 in Dysregulation of Proton Dynamics and Reprogramming of Cancer Metabolism as a Sequela. Int J Mol Sci 2019; 20:ijms20153694. [PMID: 31357694 PMCID: PMC6696090 DOI: 10.3390/ijms20153694] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer cells have an unusual regulation of hydrogen ion dynamics that are driven by poor vascularity perfusion, regional hypoxia, and increased glycolysis. All these forces synergize/orchestrate together to create extracellular acidity and intracellular alkalinity. Precisely, they lead to extracellular pH (pHe) values as low as 6.2 and intracellular pH values as high as 8. This unique pH gradient (∆pHi to ∆pHe) across the cell membrane increases as the tumor progresses, and is markedly displaced from the electrochemical equilibrium of protons. These unusual pH dynamics influence cancer cell biology, including proliferation, metastasis, and metabolic adaptation. Warburg metabolism with increased glycolysis, even in the presence of Oxygen with the subsequent reduction in Krebs’ cycle, is a common feature of most cancers. This metabolic reprogramming confers evolutionary advantages to cancer cells by enhancing their resistance to hypoxia, to chemotherapy or radiotherapy, allowing rapid production of biological building blocks that support cellular proliferation, and shielding against damaging mitochondrial free radicals. In this article, we highlight the interconnected roles of dysregulated pH dynamics in cancer initiation, progression, adaptation, and in determining the programming and re-programming of tumor cell metabolism.
Collapse
|
41
|
Dolz‐Edo L, van der Deen M, Brul S, Smits GJ. Caloric restriction controls stationary phase survival through Protein Kinase A (PKA) and cytosolic pH. Aging Cell 2019; 18:e12921. [PMID: 30790427 PMCID: PMC6516148 DOI: 10.1111/acel.12921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 12/30/2018] [Accepted: 01/23/2019] [Indexed: 11/28/2022] Open
Abstract
Calorie restriction is the only physiological intervention that extends lifespan throughout all kingdoms of life. In the budding yeast Saccharomyces cerevisiae, cytosolic pH (pHc) controls growth and responds to nutrient availability, decreasing upon glucose depletion. We investigated the interactions between glucose availability, pHc and the central nutrient signalling cAMP‐Protein Kinase A (PKA) pathway. Glucose abundance during the growth phase enhanced acidification upon glucose depletion, via modulation of PKA activity. This actively controlled reduction in starvation pHc correlated with reduced stationary phase survival. Whereas changes in PKA activity affected both acidification and survival, targeted manipulation of starvation pHc showed that cytosolic acidification was downstream of PKA and the causal agent of the reduced chronological lifespan. Thus, caloric restriction controls stationary phase survival through PKA and cytosolic pH.
Collapse
Affiliation(s)
- Laura Dolz‐Edo
- Department of Molecular Biology and Microbial Food Safety Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam The Netherlands
| | - Margaretha van der Deen
- Department of Molecular Biology and Microbial Food Safety Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam The Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam The Netherlands
| | - Gertien Jacoba Smits
- Department of Molecular Biology and Microbial Food Safety Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
42
|
Charafeddine RA, Cortopassi WA, Lak P, Tan R, McKenney RJ, Jacobson MP, Barber DL, Wittmann T. Tau repeat regions contain conserved histidine residues that modulate microtubule-binding in response to changes in pH. J Biol Chem 2019; 294:8779-8790. [PMID: 30992364 DOI: 10.1074/jbc.ra118.007004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/13/2019] [Indexed: 12/20/2022] Open
Abstract
Tau, a member of the MAP2/tau family of microtubule-associated proteins, stabilizes and organizes axonal microtubules in healthy neurons. In neurodegenerative tauopathies, tau dissociates from microtubules and forms neurotoxic extracellular aggregates. MAP2/tau family proteins are characterized by three to five conserved, intrinsically disordered repeat regions that mediate electrostatic interactions with the microtubule surface. Here, we used molecular dynamics, microtubule-binding experiments, and live-cell microscopy, revealing that highly-conserved histidine residues near the C terminus of each microtubule-binding repeat are pH sensors that can modulate tau-microtubule interaction strength within the physiological intracellular pH range. We observed that at low pH (<7.5), these histidines are positively charged and interact with phenylalanine residues in a hydrophobic cleft between adjacent tubulin dimers. At higher pH (>7.5), tau deprotonation decreased binding to microtubules both in vitro and in cells. Electrostatic and hydrophobic characteristics of histidine were both required for tau-microtubule binding, as substitutions with constitutively and positively charged nonaromatic lysine or uncharged alanine greatly reduced or abolished tau-microtubule binding. Consistent with these findings, tau-microtubule binding was reduced in a cancer cell model with increased intracellular pH but was rapidly restored by decreasing the pH to normal levels. These results add detailed insights into the intracellular regulation of tau activity that may be relevant in both normal and pathological conditions.
Collapse
Affiliation(s)
- Rabab A Charafeddine
- From the Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California 94143
| | - Wilian A Cortopassi
- the Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, and
| | - Parnian Lak
- the Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, and
| | - Ruensern Tan
- the Department of Molecular and Cellular Biology, University of California Davis, Davis, California 95616
| | - Richard J McKenney
- the Department of Molecular and Cellular Biology, University of California Davis, Davis, California 95616
| | - Matthew P Jacobson
- the Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, and
| | - Diane L Barber
- From the Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California 94143
| | - Torsten Wittmann
- From the Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California 94143,
| |
Collapse
|
43
|
Panić M, Radić Stojković M, Kraljić K, Škevin D, Radojčić Redovniković I, Gaurina Srček V, Radošević K. Ready-to-use green polyphenolic extracts from food by-products. Food Chem 2019; 283:628-636. [PMID: 30722921 DOI: 10.1016/j.foodchem.2019.01.061] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 11/29/2022]
Abstract
To establish environmentally friendly polyphenolic extracts from grape and olive pomace, natural deep eutectic solvents (NADES) were used coupled with alternative energy sources - ultrasound and microwave irradiation. Obtained extracts were characterized by HPLC analysis, while antioxidant capacity was determined by ORAC method. Furthermore, in vitro cytotoxicity of prepared extracts was assessed by antiproliferation assay on two tumour cell lines, whereas for investigation of type of cell death or cell cycle arrest a flow cytometric analysis was applied. In addition, a detection of compounds with DNA/RNA-bindingaffinity in extracts was investigated by UV/Vis and circular dichroism spectroscopy. Grape pomace extract in NADES showed to be the best of all extracts tested, with regard to extraction of total polyphenolic compounds (p < 0.05) and related biological activities such as antioxidant and antiproliferative activity. Prepared polyphenolic extracts in NADES could be considered as ready-to-use in food and pharmaceutical industry without demanding and expensive downstream purification steps.
Collapse
Affiliation(s)
- Manuela Panić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotijeva 6, 10000 Zagreb, Croatia
| | - Marijana Radić Stojković
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, P. O. Box 180, 10002 Zagreb, Croatia
| | - Klara Kraljić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotijeva 6, 10000 Zagreb, Croatia
| | - Dubravka Škevin
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotijeva 6, 10000 Zagreb, Croatia
| | | | - Višnja Gaurina Srček
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotijeva 6, 10000 Zagreb, Croatia
| | - Kristina Radošević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
44
|
Mons C, Botzanowski T, Nikolaev A, Hellwig P, Cianférani S, Lescop E, Bouton C, Golinelli-Cohen MP. The H2O2-Resistant Fe–S Redox Switch MitoNEET Acts as a pH Sensor To Repair Stress-Damaged Fe–S Protein. Biochemistry 2018; 57:5616-5628. [DOI: 10.1021/acs.biochem.8b00777] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Cécile Mons
- Institut de Chimie
des Substances Naturelles, CNRS UPR 2301, Univ Paris-Sud, Université
Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Thomas Botzanowski
- Laboratoire de
Spectrométrie de Masse BioOrganique, Université de Strasbourg,
CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Anton Nikolaev
- Laboratoire de Bioélectrochimie
et Spectroscopie, UMR 7140, Chimie de la Matière Complexe,
Université de Strasbourg-CNRS, 1 rue Blaise Pascal, 67000 Strasbourg, France
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie
et Spectroscopie, UMR 7140, Chimie de la Matière Complexe,
Université de Strasbourg-CNRS, 1 rue Blaise Pascal, 67000 Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de
Spectrométrie de Masse BioOrganique, Université de Strasbourg,
CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Ewen Lescop
- Institut de Chimie
des Substances Naturelles, CNRS UPR 2301, Univ Paris-Sud, Université
Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Cécile Bouton
- Institut de Chimie
des Substances Naturelles, CNRS UPR 2301, Univ Paris-Sud, Université
Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Marie-Pierre Golinelli-Cohen
- Institut de Chimie
des Substances Naturelles, CNRS UPR 2301, Univ Paris-Sud, Université
Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
45
|
Harguindey S, Koltai T, Reshkin SJ. Curing cancer? Further along the new pH-centric road and paradigm. Oncoscience 2018; 5:132-133. [PMID: 30035164 PMCID: PMC6049299 DOI: 10.18632/oncoscience.422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 04/30/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- S Harguindey
- Salvador Harguindey, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain
| | - T Koltai
- Salvador Harguindey, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain
| | - S J Reshkin
- Salvador Harguindey, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain
| |
Collapse
|
46
|
Guedes JP, Pereira CS, Rodrigues LR, Côrte-Real M. Bovine Milk Lactoferrin Selectively Kills Highly Metastatic Prostate Cancer PC-3 and Osteosarcoma MG-63 Cells In Vitro. Front Oncol 2018; 8:200. [PMID: 29915723 PMCID: PMC5994723 DOI: 10.3389/fonc.2018.00200] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer and osteosarcoma are the second most common type of cancer affecting men and the fifth most common malignancy among adolescents, respectively. The use of non-toxic natural or natural-derived products has been one of the current strategies for cancer therapy, owing to the reduced risks of induced-chemoresistance development and the absence of secondary effects. In this perspective, lactoferrin (Lf), a natural protein derived from milk, emerges as a promising anticancer agent due to its well-recognized cytotoxicity and anti-metastatic activity. Here, we aimed to ascertain the potential activity of bovine Lf (bLf) against highly metastatic cancer cells. The bLf effect on prostate PC-3 and osteosarcoma MG-63 cell lines, both displaying plasmalemmal V-ATPase, was studied and compared with the breast cancer MDA-MB-231 and the non-tumorigenic BJ-5ta cell lines. Cell proliferation, cell death, intracellular pH, lysosomal acidification, and extracellular acidification rate were evaluated. Results show that bLf inhibits proliferation, induces apoptosis, intracellular acidification, and perturbs lysosomal acidification only in highly metastatic cancer cell lines. By contrast, BJ-5ta cells are insensitive to bLf. Overall, our results establish a common mechanism of action of bLf against highly metastatic cancer cells exhibiting plasmalemmal V-ATPase. This study opens promising perspectives for further research on the anticancer role of Lf, which ultimately will contribute to its safer and more rational application in the human therapy of these life-threatening cancers.
Collapse
Affiliation(s)
- Joana P Guedes
- Center of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- Center of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Cátia S Pereira
- Center of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- Center of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Lígia R Rodrigues
- Center of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Center of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
47
|
Montero S, Martin R, Mansilla R, Cocho G, Nieto-Villar JM. Parameters Estimation in Phase-Space Landscape Reconstruction of Cell Fate: A Systems Biology Approach. Methods Mol Biol 2018; 1702:125-170. [PMID: 29119505 DOI: 10.1007/978-1-4939-7456-6_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The thermodynamical formalism of irreversible processes offers a theoretical framework appropriate to explain the complexity observed at the macroscopic level of dynamic systems. In this context, together with the theory of complex systems and systems biology, the thermodynamical formalism establishes an appropriate conceptual framework to address the study of biological systems, in particular cancer.The Chapter is organized as follows: In Subheading 1, an integrative view of these disciplines is offered, for the characterization of the emergence and evolution of cancer, seen as a self-organized dynamic system far from the thermodynamic equilibrium. Development of a thermodynamic framework, based on the entropy production rate, is presented in Subheading 2. Subheading 3 is dedicated to all tumor growth, as seen through a "phase transitions" far from equilibrium. Subheading 4 is devoted to complexity of cancer glycolysis. Finally, some concluding remarks are presented in Subheading 5.
Collapse
Affiliation(s)
- Sheyla Montero
- Department of Basics Science, University of Medical Science of Havana, Havana, 10400, Cuba
| | - Reynaldo Martin
- Department of Chemical-Physics, A. Alzola Group of Thermodynamics of Complex Systems M.V. Lomonosov Chemistry Chair, Faculty of Chemistry, University of Havana, Havana, 10400, Cuba
| | - Ricardo Mansilla
- Centro de Investigaciones Interdisciplinarias en Ciencias y Humanidades, UNAM, México, Mexico
| | | | - José Manuel Nieto-Villar
- Department of Chemical-Physics, A. Alzola Group of Thermodynamics of Complex Systems M.V. Lomonosov Chemistry Chair, Faculty of Chemistry, University of Havana, Havana, 10400, Cuba.
| |
Collapse
|