1
|
Guo Q, Qin H, Chen Z, Zhang W, Zheng L, Qin T. Key roles of ubiquitination in regulating critical regulators of cancer stem cell functionality. Genes Dis 2025; 12:101311. [PMID: 40034124 PMCID: PMC11875185 DOI: 10.1016/j.gendis.2024.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 03/05/2025] Open
Abstract
The ubiquitin (Ub) system, a ubiquitous presence across eukaryotes, plays a crucial role in the precise orchestration of diverse cellular protein processes. From steering cellular signaling pathways and orchestrating cell cycle progression to guiding receptor trafficking and modulating immune responses, this process plays a crucial role in regulating various biological functions. The dysregulation of Ub-mediated signaling pathways in prevalent cancers ushers in a spectrum of clinical outcomes ranging from tumorigenesis and metastasis to recurrence and drug resistance. Ubiquitination, a linchpin process mediated by Ub, assumes a central mantle in molding cellular signaling dynamics. It navigates transitions in biological cues and ultimately shapes the destiny of proteins. Recent years have witnessed an upsurge in the momentum surrounding the development of protein-based therapeutics aimed at targeting the Ub system under the sway of cancer stem cells. The article provides a comprehensive overview of the ongoing in-depth discussions regarding the regulation of the Ub system and its impact on the development of cancer stem cells. Amidst the tapestry of insights, the article delves into the expansive roles of E3 Ub ligases, deubiquitinases, and transcription factors entwined with cancer stem cells. Furthermore, the spotlight turns to the interplay with pivotal signaling pathways the Notch, Hedgehog, Wnt/β-catenin, and Hippo-YAP signaling pathways all play crucial roles in the regulation of cancer stem cells followed by the specific modulation of Ub-proteasome.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou 550014, China
| | - Zelong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Artificial Intelligence and IoT Smart Medical Engineering Research Center of Henan Province, Zhengzhou, Henan 450008, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| |
Collapse
|
2
|
Ye L, Pan Y, Bao J, Guo Y, Lu L, Zheng J. Overexpression of ZNF468 promotes esophageal squamous cell carcinoma progression via the AKT/mTOR pathway. Int Immunopharmacol 2024; 143:113509. [PMID: 39486174 DOI: 10.1016/j.intimp.2024.113509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/10/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND ZNF468 is a zinc finger protein that plays a key role in the occurrence and development of tumors. However, no studies have demonstrated whether ZNF468 is involved in the progression of esophageal squamous cell carcinoma (ESCC). METHODS The expression of ZNF468 in ESCC tumor and normal samples was analyzed by the TCGA database and confirmed by tissue immunohistochemistry. Subsequently, we established the lentivirus ZNF468 knockdown and ZNF468 overexpression models using ESCC cell lines. The effect of ZNF468 on ESCC was assessed by in vivo and in vitro experiments. The latter included CCK8, colony formation, wound healing, and transwell assays. Additionally, we also explored the underlying mechanism. RESULTS The mRNA and protein expression of ZNF468 were significantly increased in the tumor tissue of ESCC patients compared to normal para-cancerous tissue. Patients with high ZNF468 level were significantly related to shorter overall survival and disease-specific survival. Overexpression of ZNF468 increased the ability of proliferation, migration, and invasion of ESCC cells. In vivo experiments indicated that ZNF468 inhibition could also decrease the ESCC tumor growth. At last, we found that ZNF468 might affect ESCC progression through the AKT/mTOR signaling pathway. CONCLUSIONS These findings showed that increased ZNF468 expression might promote ESCC progression via the AKT/mTOR pathway, which might be a potential biomarker and drug target for ESCC.
Collapse
Affiliation(s)
- Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yixiao Pan
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jiaqian Bao
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Lingxiao Lu
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jingmin Zheng
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.
| |
Collapse
|
3
|
Panda SK, Robinson N, Desiderio V. Decoding secret role of mesenchymal stem cells in regulating cancer stem cells and drug resistance. Biochim Biophys Acta Rev Cancer 2024; 1879:189205. [PMID: 39481663 DOI: 10.1016/j.bbcan.2024.189205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
Drug resistance caused by the efflux of chemotherapeutic drugs is one of the most challenging obstacles to successful cancer therapy. Several efflux transporters have been identified since the discovery of the P-gp/ABCB1 transporter in 1976. Over the last four decades, researchers have focused on developing efflux transporter inhibitors to overcome drug resistance. However, even with the third-generation inhibitors available, we are still far from effectively inhibiting the efflux transporters. Additionally, Cancer stem cells (CSCs) pose another significant challenge, contributing to cancer recurrence even after successful treatment. The ability of CSCs to enter dormancy and evade detection makes them almost invulnerable to chemotherapeutic drug treatment. In this review, we discuss how Mesenchymal stem cells (MSCs), one of the key components of the Tumor Microenvironment (TME), regulate both the CSCs and efflux transporters. We propose a new approach focusing on MSCs, which can be crucial to successfully address CSCs and efflux transporters.
Collapse
Affiliation(s)
- Sameer Kumar Panda
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy; Center for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia
| | - Nirmal Robinson
- Center for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy.
| |
Collapse
|
4
|
Villares E, Gerecht S. Engineered Biomaterials and Model Systems to Study YAP/TAZ in Cancer. ACS Biomater Sci Eng 2024; 10:5550-5561. [PMID: 39190867 DOI: 10.1021/acsbiomaterials.4c01170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The transcriptional coactivators yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are master regulators involved in a multitude of cancer types and a wide range of tumorigenic events, including cancer stem cell renewal, invasion, metastasis, tumor precursor emergence, and drug resistance. YAP/TAZ are known to be regulated by several external cues and stimuli, such as extracellular matrix stiffness, cell spreading, cell geometry, and shear stress. Therefore, there is a need in the field of cancer research to develop and design relevant in vitro models that can accurately reflect the complex biochemical and biophysical cues of the tumor microenvironment central to the YAP/TAZ signaling nexus. While much progress has been made, this remains a major roadblock to advancing research in this field. In this review, we highlight the current engineered biomaterials and in vitro model systems that can be used to advance our understanding of how YAP/TAZ shapes several aspects of cancer. We begin by discussing current 2D and 3D hydrogel systems that model the YAP/TAZ response to ECM stiffness. We then examine the current trends in organoid culture systems and the use of microfluidics to model the effects of cellular density and shear stress on YAP/TAZ. Finally, we analyze the ongoing pitfalls of the present models used and important future directions in engineering systems that will advance our current knowledge of YAP/TAZ in cancer.
Collapse
Affiliation(s)
- Emma Villares
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27705, United States
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27705, United States
| |
Collapse
|
5
|
Liu D, van der Zalm AP, Koster J, Bootsma S, Oyarce C, van Laarhoven HWM, Bijlsma MF. Predictive biomarkers for response to TGF- β inhibition in resensitizing chemo(radiated) esophageal adenocarcinoma. Pharmacol Res 2024; 207:107315. [PMID: 39059615 DOI: 10.1016/j.phrs.2024.107315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/26/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Epithelial-mesenchymal transition (EMT) has been identified as a driver of therapy resistance, particularly in esophageal adenocarcinoma (EAC), where transforming growth factor beta (TGF-β) can induce this process. Inhibitors of TGF-β may counteract the occurrence of mesenchymal, resistant tumor cell populations following chemo(radio)therapy and improve treatment outcomes in EAC. Here, we aimed to identify predictive biomarkers for the response to TGF-β targeting. In vitro approximations of neoadjuvant treatment were applied to publicly available primary EAC cell lines. TGF-β inhibitors fresolimumab and A83-01 were employed to inhibit EMT, and mesenchymal markers were quantified via flow cytometry to assess efficacy. Our results demonstrated a robust induction of mesenchymal cell states following chemoradiation, with TGF-β inhibition leading to variable reductions in mesenchymal markers. The cell lines were clustered into responders and non-responders. Genomic expression profiles were obtained through RNA-seq analysis. Differentially expressed gene (DEG) analysis identified 10 positively- and 23 negatively-associated hub genes, which were bioinformatically identified. Furthermore, the correlation of DEGs with response to TGF-β inhibition was examined using public pharmacogenomic databases, revealing 9 positively associated and 11 negatively associated DEGs. Among these, ERBB2, EFNB1, and TNS4 were the most promising candidates. Our findings reveal a distinct gene expression pattern associated with the response to TGF-β inhibition in chemo(radiated) EAC. The identified DEGs and predictive markers may assist patient selection in clinical studies investigating TGF-β targeting.
Collapse
Affiliation(s)
- Dajia Liu
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Amber P van der Zalm
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Jan Koster
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Sanne Bootsma
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Cesar Oyarce
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Hanneke W M van Laarhoven
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Yuan J, Hou B, Guo K, Zhu J, Xiao H. Tumor-derived exosomal hyaluronidase 1 induced M2 macrophage polarization and promoted esophageal cancer progression. Exp Cell Res 2024; 439:113963. [PMID: 38382806 DOI: 10.1016/j.yexcr.2024.113963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/18/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The communication between tumor-derived exosomes and macrophages plays an important role in facilitating the progression of tumors. However, the regulatory mechanisms by which exosomes regulate tumor progression in esophageal squamous cell carcinoma (ESCC) have not been fully elucidated. We constructed a coculture system containing an ESCC cell line and macrophages using a Transwell chamber. We isolated exosomes from the conditioned medium of cancer cells, and characterized them with transmission electron microscopy and western blotting and used then to treat macrophages. We used co-immunoprecipitation to evaluate the interaction between hyaluronidase 1 (HYAL1) and Aurora B kinase (AURKB). We evaluated HYAL1 and AURKB expression in tissues and cells with quantitative reverse-transcription polymerase chain reaction (RT-qPCR) and western blotting. We used RT-qPCR, enzyme-linked immunosorbent assay (ELISA) and flow cytometry to detect macrophage polarization. We assessed cell viability, invasion and migration with the cell counting kit-8 (CCK-8), Transwell and wound healing assays. HYAL1 was highly expressed in ESCC tissues and cells and cancer cell-derived exosomes, and exosomes can be delivered to macrophages through the cancer cell-derived exosomes. The exosomes extracted from HYAL1-overexpressed ESCC cells suppressed M1 macrophage polarization and induced M2 macrophage polarization, thereby promoting ESCC cell viability, invasion and migration. HYAL1 silencing in ESCC cells produced the opposite effects on macrophage polarization and cancer cell functions. We found that HYAL1 interacted with AURKB and further activated the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway in macrophages. In conclusion, ESCC-derived exosomes containing HYAL1 facilitate M2 macrophage polarization by targeting AURKB to active the PI3K/AKT signaling pathway, which in turn promotes ESCC progression.
Collapse
Affiliation(s)
- Jinyan Yuan
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Bin Hou
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Kai Guo
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Jianfei Zhu
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Haimin Xiao
- Department 1 of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China.
| |
Collapse
|
7
|
Gao A, Zhang M, Zhu SQ, Zou S, Chen H, Li X, He C, Zhou L, Mei Y, Ding W, Zhou J, Zhou Y, Cao Y. DNA polymerase iota promotes EMT and metastasis of esophageal squamous cell carcinoma by interacting with USP7 to stabilize HIF-1α. Cell Death Dis 2024; 15:171. [PMID: 38402183 PMCID: PMC10894303 DOI: 10.1038/s41419-024-06552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/26/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancer types, with a low 5-year survival rate of ~20%. Our prior research has suggested that DNA Polymerase iota (Pol ι), a member of Y-family DNA polymerase, plays a crucial role in the invasion and metastasis of ESCC. However, the underlying mechanism is not well understood. In this study, we utilized ChIP-PCR and luciferase reporter assays to investigate the binding of HIF-1α to the promoter of the Pol ι gene. Transwell, wound healing, and mouse models were employed to assess the impact of Pol ι and HIF-1α on the motility of ESCC cells. Co-immunoprecipitation and Western blot were carried out to explore the interaction between Pol ι and HIF-1α, while qRT-PCR and Western blot were conducted to confirm the regulation of Pol ι and HIF-1α on their downstream targets. Our results demonstrate that HIF-1α activates the transcription of the Pol ι gene in ESCC cells under hypoxic conditions. Furthermore, the knockdown of Pol ι impeded HIF-1α-induced invasion and metastasis. Additionally, we found that Pol ι regulates the expression of genes involved in epithelial-mesenchymal transition (EMT) and initiates EMT through the stabilization of HIF-1α. Mechanistically, Pol ι maintains the protein stability of HIF-1α by recruiting USP7 to mediate the deubiquitination of HIF-1α, with the residues 446-578 of Pol being crucial for the interaction between Pol ι and USP7. Collectively, our findings unveil a novel feedforward molecular axis of HIF-1α- Pol ι -USP7 in ESCC that contributes to ESCC metastasis. Hence, our results present an attractive target for intervention in ESCC.
Collapse
Affiliation(s)
- Aidi Gao
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Mingxia Zhang
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Shuang Qi Zhu
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Shitao Zou
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Hengrui Chen
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Xiaoqin Li
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Chao He
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Liangsu Zhou
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Yan Mei
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Weiqun Ding
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Jundong Zhou
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China.
| | - Yue Zhou
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.
| | - Yuandong Cao
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China.
| |
Collapse
|
8
|
Wang L, Liu H, Liu Y, Guo S, Yan Z, Chen G, Wu Q, Xu S, Zhou Q, Liu L, Peng M, Cheng X, Yan T. Potential markers of cancer stem-like cells in ESCC: a review of the current knowledge. Front Oncol 2024; 13:1324819. [PMID: 38239657 PMCID: PMC10795532 DOI: 10.3389/fonc.2023.1324819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024] Open
Abstract
In patients with esophageal squamous cell carcinoma (ESCC), the incidence and mortality rate of ESCC in our country are also higher than those in the rest of the world. Despite advances in the treatment department method, patient survival rates have not obviously improved, which often leads to treatment obstruction and cancer repeat. ESCC has special cells called cancer stem-like cells (CSLCs) with self-renewal and differentiation ability, which reflect the development process and prognosis of cancer. In this review, we evaluated CSLCs, which are identified from the expression of cell surface markers in ESCC. By inciting EMTs to participate in tumor migration and invasion, stem cells promote tumor redifferentiation. Some factors can inhibit the migration and invasion of ESCC via the EMT-related pathway. We here summarize the research progress on the surface markers of CSLCs, EMT pathway, and the microenvironment in the process of tumor growth. Thus, these data may be more valuable for clinical applications.
Collapse
Affiliation(s)
- Lu Wang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huijuan Liu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yiqian Liu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shixing Guo
- Clinical Laboratory Medicine Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhenpeng Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guohui Chen
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qinglu Wu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Songrui Xu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qichao Zhou
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lili Liu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meilan Peng
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolong Cheng
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ting Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
9
|
Cruz-Acuña R, Kariuki SW, Sugiura K, Karaiskos S, Plaster EM, Loebel C, Efe G, Karakasheva T, Gabre JT, Hu J, Burdick JA, Rustgi AK. Engineered hydrogel reveals contribution of matrix mechanics to esophageal adenocarcinoma and identifies matrix-activated therapeutic targets. J Clin Invest 2023; 133:e168146. [PMID: 37788109 PMCID: PMC10688988 DOI: 10.1172/jci168146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
Increased extracellular matrix (ECM) stiffness has been implicated in esophageal adenocarcinoma (EAC) progression, metastasis, and resistance to therapy. However, the underlying protumorigenic pathways are yet to be defined. Additional work is needed to develop physiologically relevant in vitro 3D culture models that better recapitulate the human tumor microenvironment and can be used to dissect the contributions of matrix stiffness to EAC pathogenesis. Here, we describe a modular, tumor ECM-mimetic hydrogel platform with tunable mechanical properties, defined presentation of cell-adhesive ligands, and protease-dependent degradation that supports robust in vitro growth and expansion of patient-derived EAC 3D organoids (EAC PDOs). Hydrogel mechanical properties control EAC PDO formation, growth, proliferation, and activation of tumor-associated pathways that elicit stem-like properties in the cancer cells, as highlighted through in vitro and in vivo environments. We also demonstrate that the engineered hydrogel serves as a platform for identifying potential therapeutic targets to disrupt the contribution of protumorigenic matrix mechanics in EAC. Together, these studies show that an engineered PDO culture platform can be used to elucidate underlying matrix-mediated mechanisms of EAC and inform the development of therapeutics that target ECM stiffness in EAC.
Collapse
Affiliation(s)
- Ricardo Cruz-Acuña
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Secunda W. Kariuki
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Kensuke Sugiura
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Spyros Karaiskos
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Claudia Loebel
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Gizem Efe
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Tatiana Karakasheva
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joel T. Gabre
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Jianhua Hu
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Jason A. Burdick
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, USA
| | - Anil K. Rustgi
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
10
|
Zhang Y, Xiong W, Yang C, Li P, Tong H. Circ-FNDC3B Functions as an Oncogenic Factor in Esophageal Squamous Cell Carcinoma via Upregulating MYO5A by Absorbing miR-136-5p and miR-370-3p. Biochem Genet 2023; 61:1917-1936. [PMID: 36884165 DOI: 10.1007/s10528-023-10354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023]
Abstract
Circular RNAs (circRNAs) are a class of key regulators in cancers via regulating gene levels by acting as sponges of miRNAs. This study was devoted to explore the functional mechanism of circRNA fibronectin type III domain-containing protein 3B (circ-FNDC3B) in esophageal squamous cell carcinoma (ESCC). RNA levels were examined via reverse transcription-quantitative polymerase chain reaction assay. Cell viability detection was performed using Cell Counting Kit-8 assay. The proliferation ability was determined through colony formation assay and EDU assay. Flow cytometry was applied for analysis of apoptosis. Invasion ability was assessed via transwell assay. Target binding was analyzed by dual-luciferase reporter assay. The protein expression was measured using western blot. In vivo research was conducted via xenograft model in mice. Circ-FNDC3B exhibited significant upregulation in ESCC tissues and cells. Downregulation of circ-FNDC3B inhibited ESCC cell proliferation and invasion but accelerated cell apoptosis. Circ-FNDC3B interacted with miR-136-5p or miR-370-3p. The function of circ-FNDC3B was achieved by sponging miR-136-5p or miR-370-3p. Myosin VA (MYO5A) acted as a downstream target of miR-136-5p or miR-370-3p. MYO5A reversed miR-136-5p/miR-370-3p-induced tumor inhibition in ESCC cells. Circ-FNDC3B targeted miR-136-5p or miR-370-3p to affect MYO5A expression. Circ-FNDC3B knockdown reduced tumor growth in vivo by inhibiting miR-136-5p or miR-370-3p-mediated MYO5A expression. These findings demonstrated that circ-FNDC3B contributed to malignant progression of ESCC cells via miR-136-5p/MYO5A or miR-370-3p/MYO5A axis.
Collapse
Affiliation(s)
- Yuanqiang Zhang
- Department of Cardiothoracic Surgery, Zigong First People's Hospital, No.42nd, ShangYiHao Branch 1st, Zi Liu Jing District, Zigong City, 643000, Sichuan Province, China
| | - Wei Xiong
- Department of Cardiothoracic Surgery, Zigong First People's Hospital, No.42nd, ShangYiHao Branch 1st, Zi Liu Jing District, Zigong City, 643000, Sichuan Province, China
| | - Chunping Yang
- Department of Cardiothoracic Surgery, Zigong First People's Hospital, No.42nd, ShangYiHao Branch 1st, Zi Liu Jing District, Zigong City, 643000, Sichuan Province, China
| | - Ping Li
- Department of Cardiothoracic Surgery, Zigong First People's Hospital, No.42nd, ShangYiHao Branch 1st, Zi Liu Jing District, Zigong City, 643000, Sichuan Province, China
| | - Huajie Tong
- Department of Cardiothoracic Surgery, Zigong First People's Hospital, No.42nd, ShangYiHao Branch 1st, Zi Liu Jing District, Zigong City, 643000, Sichuan Province, China.
| |
Collapse
|
11
|
M2 tumor-associated macrophage mediates the maintenance of stemness to promote cisplatin resistance by secreting TGF-β1 in esophageal squamous cell carcinoma. J Transl Med 2023; 21:26. [PMID: 36641471 PMCID: PMC9840838 DOI: 10.1186/s12967-022-03863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a deadly gastrointestinal malignancy, and chemotherapy resistance is a key factor leading to its poor prognosis. M2 tumor-associated macrophages (M2-TAMs) may be an important cause of chemoresistance in ESCC, but its exact mechanism is still unclear. METHODS In order to study the role of M2-TAMs in ESCC chemoresistance, CCK-8, clone formation assay, flow cytometric apoptosis assay, qRT-PCR, western blotting, and serum-free sphere formation assays were used. In vivo animal experiments and human ESCC tissues were used to confirm the findings. RESULTS In vitro and in vivo animal experiments, M2-TAMs reduced the sensitivity of ESCC cells to cisplatin. Mechanistically, M2-TAMs highly secreted TGF-β1 which activated the TGFβR1-smad2/3 pathway to promote and maintain the stemness characteristic of ESCC cells, which could inhibit the sensitivity to cisplatin. Using TGFβ signaling inhibitor SB431542 or knockdown of TGFβR1 could reverse the cisplatin resistance of ESCC cells. In 92 cases of human ESCC tissues, individuals with a high density of M2-TAMs had considerably higher levels of TGF-β1. These patients also had worse prognoses and richer stemness markers. CONCLUSION TGF-β1 secreted from M2-TAMs promoted and maintained the stemness characteristic to induce cisplatin resistance in ESCC by activating the TGFβ1-Smad2/3 pathway.
Collapse
|
12
|
Khales SA, Mozaffari-Jovin S, Geerts D, Abbaszadegan MR. TWIST1 activates cancer stem cell marker genes to promote epithelial-mesenchymal transition and tumorigenesis in esophageal squamous cell carcinoma. BMC Cancer 2022; 22:1272. [PMID: 36474162 PMCID: PMC9724315 DOI: 10.1186/s12885-022-10252-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the deadliest cancers worldwide. Overexpression of EMT master transcription factors can promote differentiated cells to undergo cancer reprogramming processes and acquire a stem cell-like status. METHODS The KYSE-30 and YM-1 ESCC cell lines were transduced with retroviruses expressing TWIST1 or GFP and analyzed by quantitative reverse transcription PCR (qRT-PCR), chromatin immunoprecipitation (ChIP), and immunostaining to investigate the correlation between TWIST1 and stemness markers expression. Cells expressing TWIST1 were characterized for mRNA candidates by qRT-PCR and for protein candidates by Flow cytometry and Immunocytochemistry. TWIST1-ESCC cells were also evaluated for apoptosis and drug resistance. RESULTS Here we identify a role for TWIST1 in the establishment of ESCC cancer stem cell (CSC)-like phenotype, facilitating the transformation of non-CSCs to CSCs. We provide evidence that TWIST1 expression correlates with the expression of CSC markers in ESCC cell lines. ChIP assay results demonstrated that TWIST1 regulates CSC markers, including CD44, SALL4, NANOG, MEIS1, GDF3, and SOX2, through binding to the E-box sequences in their promoters. TWIST1 promoted EMT through E-cadherin downregulation and vimentin upregulation. Moreover, TWIST1 expression repressed apoptosis in ESCC cells through upregulation of Bcl-2 and downregulation of the Bax protein, and increased ABCG2 and ABCC4 transporters expression, which may lead to drug resistance. CONCLUSIONS These findings support a critical role for TWIST1 in CSC-like generation, EMT progression, and inhibition of apoptosis in ESCC. Thus, TWIST1 represents a therapeutic target for the suppression of esophageal cell transformation to CSCs and ESCC malignancy.
Collapse
Affiliation(s)
- Sima Ardalan Khales
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dirk Geerts
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Sun G, Yang Y, Liu J, Gao Z, Xu T, Chai J, Xu J, Fan Z, Xiao T, Jia Q, Li M. Cancer stem cells in esophageal squamous cell carcinoma. Pathol Res Pract 2022; 237:154043. [DOI: 10.1016/j.prp.2022.154043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023]
|
14
|
Deng Y, Li Y, Wu T, Chen X, Li X, Cai K, Wu X. RAD6 Positively Affects Tumorigenesis of Esophageal Squamous Cell Carcinoma by Regulating Histone Ubiquitination of CCNB1. Biol Proced Online 2022; 24:4. [PMID: 35321657 PMCID: PMC8943946 DOI: 10.1186/s12575-022-00165-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Esophageal carcinoma (ESCA) is deadly cancer worldwide with unknown etiology. This study aimed to investigate the impact and mechanism of RAD6 on the development of Esophageal squamous cell carcinoma (ESCC). Expressions of RAD6A and RAD6B in ESCA were investigated from TCGA dataset and their expressions in tissue sample of ESCA patients and cells were determined. Functional experiments were conducted to explore the impact of RAD6A and RAD6B on malignant characteristics of several kinds of ESCC cells. Animal experiment was established and injected with RAD6A and RAD6B shRNA to evaluate the effect on tumor growth. RAD6A and RAD6B were up-regulated in ESCC cells and tissues. Overexpressed RAD6A and RAD6B similarly increased ESCC cell proliferation, invasion and migration and silencing of RAD6 exerted opposite effects. Knockdown of RAD6A suppressed tumor growth and decreased the level of H2B, as data demonstrated positive correlation between RAD6A and CCNB1 in ESCC tissues. Collectively, this study elucidates that RAD6 is up-regulated in ESCC and promotes the progression of ESCC through up-regulation of CCNB1 to enhance H2B ubiquitination. These evidence provide a novel insight into the pathogenesis of ESCC and might contribute to the development of targeted therapy.
Collapse
Affiliation(s)
- Yu Deng
- Department of Thoracic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yujiang Li
- Department of Thoracic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China.,Department of Thoracic and Cardiovascular Surgery, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Tiantong Wu
- Department of General Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Xuyuan Chen
- Department of Thoracic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Xiang Li
- Department of Emergency Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Kaican Cai
- Department of Thoracic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| | - Xu Wu
- Department of Thoracic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Qiao L, Chen Y, Liang N, Xie J, Deng G, Chen F, Wang X, Liu F, Li Y, Zhang J. Targeting Epithelial-to-Mesenchymal Transition in Radioresistance: Crosslinked Mechanisms and Strategies. Front Oncol 2022; 12:775238. [PMID: 35251963 PMCID: PMC8888452 DOI: 10.3389/fonc.2022.775238] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy exerts a crucial role in curing cancer, however, its treatment efficiency is mostly limited due to the presence of radioresistance. Epithelial-to-mesenchymal transition (EMT) is a biological process that endows the cancer cells with invasive and metastatic properties, as well as radioresistance. Many potential mechanisms of EMT-related radioresistance being reported have broaden our cognition, and hint us the importance of an overall understanding of the relationship between EMT and radioresistance. This review focuses on the recent progresses involved in EMT-related mechanisms in regulating radioresistance, irradiation-mediated EMT program, and the intervention strategies to increase tumor radiosensitivity, in order to improve radiotherapy efficiency and clinical outcomes of cancer patients.
Collapse
Affiliation(s)
- Lili Qiao
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Yanfei Chen
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Ning Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Jian Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Guodong Deng
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Fangjie Chen
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Xiaojuan Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Fengjun Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Yupeng Li
- Department of Oncology, Shandong First Medical University, Jinan, China.,Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jiandong Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| |
Collapse
|
16
|
Taeb S, Ashrafizadeh M, Zarrabi A, Rezapoor S, Musa AE, Farhood B, Najafi M. Role of Tumor Microenvironment in Cancer Stem Cells Resistance to Radiotherapy. Curr Cancer Drug Targets 2021; 22:18-30. [PMID: 34951575 DOI: 10.2174/1568009622666211224154952] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/29/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Cancer is a chronic disorder that involves several elements of both the tumor and the host stromal cells. At present, the complex relationship between the various factors presents in the tumor microenvironment (TME) and tumor cells, as well as immune cells located within the TME, is still poorly known. Within the TME, the crosstalk of these factors and immune cells essentially determines how a tumor reacts to the treatment and how the tumor can ultimately be destroyed, remain dormant, or develop and metastasize. Also, in TME, reciprocal crosstalk between cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), hypoxia-inducible factor (HIF) intensifies the proliferation capacity of cancer stem cells (CSCs). CSCs are subpopulation of cells that reside within the tumor bulk and have the capacity to self-renew, differentiate, and repair DNA damage. These characteristics make CSCs develop resistance to a variety of treatments, such as radiotherapy (RT). RT is a frequent and often curative treatment for local cancer which mediates tumor elimination by cytotoxic actions. Also, cytokines and growth factors that are released into TME, have been involved in the activation of tumor radioresistance and the induction of different immune cells, altering local immune responses. In this review, we discuss the pivotal role of TME in resistance of CSCs to RT.
Collapse
Affiliation(s)
- Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 , Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Turkey
| | - Saeed Rezapoor
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences., Iraq
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Iran
| |
Collapse
|
17
|
Yan J, Shi L, Lin S, Li Y. MicroRNA-624-mediated ARRDC3/YAP/HIF1α axis enhances esophageal squamous cell carcinoma cell resistance to cisplatin and paclitaxel. Bioengineered 2021; 12:5334-5347. [PMID: 34415232 PMCID: PMC8806716 DOI: 10.1080/21655979.2021.1938497] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
Development of chemoresistance remains a major challenge in treating patients suffering from esophageal squamous cell carcinoma (ESCC), despite treatment advances. MicroRNAs (miRNAs) have been shown to play critical roles in the regulation of ESCC cell chemoresistance. Here, we aimed to investigate the role of miR-624 in ESCC and its molecular mechanism in mediating the resistance of ESCC cells to two common chemotherapeutic drugs, cisplatin (CIS) and paclitaxel (PT). Expression patterns of miR-624, arrestin domain-containing 3 (ARRDC3), Yes-associated protein (YAP), and hypoxia-inducible factor-1α (HIF1α) in ESCC tissues and cell lines were identified using RT-qPCR and Western blot analysis. The binding affinities with the miR-624/ARRDC3/YAP/HIF1α axis were characterized. The chemotherapy-sensitive cell line KYSE150 and chemotherapy-resistant cell line KYSE410 were transfected with an overexpression plasmid or shRNA to study the effect of miR-624/ARRDC3/YAP/HIF1α axis on ESCC cell resistance to CIS and PT. Their in vivo effects on resistance to PT were assessed in tumor-bearing nude mice. High expression of miR-624, YAP and HIF1α, and low expression of ARRDC3 were observed in ESCC tissues and cell lines. miR-624 presented with higher expression in KYSE410 than in KYSE150 cells. miR-624 downregulated ARRDC3 to increase YAP and HIF1α expression so as to enhance ESCC cell resistance to CIS and PT in vitro and in vivo. Taken together, these data indicate an important role for miR-624 in promoting the chemoresistance of ESCC cells, highlighting a potential strategy to overcome drug resistance in ESCC treatment. miR-624 targets ARRDC3 to inhibit its expression, and consequently upregulates YAP expression by inhibiting degradation of YAP. By this mechanism, HIF1α expression is upregulated and the HIF1α signaling pathway is activated. ESCC cell chemotherapy resistance is eventually increased.
Collapse
Affiliation(s)
- Jie Yan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Litong Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Shan Lin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Yi Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
18
|
Zhao J, Li L, Wang Z, Li L, He M, Han S, Dong Y, Liu X, Zhao W, Ke Y, Wang C. Luteolin attenuates cancer cell stemness in PTX-resistant oesophageal cancer cells through mediating SOX2 protein stability. Pharmacol Res 2021; 174:105939. [PMID: 34655772 DOI: 10.1016/j.phrs.2021.105939] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022]
Abstract
Cancer drug resistance is a formidable obstacle that enhances cancer stem-like cell properties, tumour metastasis and relapse. Luteolin (Lut) is a natural flavonoid with strong antitumor effects. However, the underlying mechanism(s) by which Lut protects against paclitaxel-resistant (PTX-resistant) cancer cell remains unknown. Herein, we found that Lut significantly attenuated the stem-like properties of PTX-resistant cancer cells by downregulating the expression of SOX2 protein. Additionally, further study showed that Lut could inhibit the PI3K/AKT pathway to decrease the phosphorylation level of AKT(S473) and UBR5 expression, which is an ubiquitin E3 ligase that promotes SOX2 degradation. In addition, Lut also inhibited PTX-resistant cancer cell migration and invasion by blocking epithelial-mesenchymal transition (EMT). Importantly, Lut inhibited the tumorigenic ability of oesophageal PTX-resistant cancer cells and showed no obvious toxicity in vivo. Thus, Lut has potential as a promising agent for drug-resistant oesophageal cancer therapy.
Collapse
Affiliation(s)
- Jinzhu Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Leilei Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Zhijia Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Linlin Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Mingjing He
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Shuhua Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Yalong Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiaojie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Wen Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Cong Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.
| |
Collapse
|
19
|
Liu Y, Li J, Ding H, Ge D, Wang J, Xu C. Perfluorooctane sulfonate (PFOS) triggers migration and invasion of esophageal squamous cell carcinoma cells via regulation of Zeb1. Drug Chem Toxicol 2021; 45:2804-2813. [PMID: 34732098 DOI: 10.1080/01480545.2021.1991775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent and deadly cancers worldwide, especially in Eastern Asia. As a potential endocrine-disrupting chemical (EDC), perfluorooctane sulfonate (PFOS) can mimic estrogen, disturb the estrogen signals, and then cause various diseases. Although ESCC can be directly exposed to PFOS during food digestion, the effects and mechanisms of PFOS on the development of ESCC are still not well illustrated. This study showed that PFOS can promote the migration and invasion of ESCC cells. Further, PFOS treatment can increase the expression of matrix metalloproteinase-2 (MMP-2) and MMP-9, while decreasing the expression of E-Cadherin (E-Cad). Zeb1, an important transcription factor for cell motility, was essential for PFOS induced migration and invasion of ESCC cells. PFOS can increase the expression of Zeb1 via upregulation of its transcription and proteins stability. A-kinase interacting protein 1 (AKIP1) and ataxia-telangiectasia mutated (ATM) were responsible for PFOS induced transcription and proteins stability of Zeb1 in ESCC cells, respectively. Collectively, our data indicated that environmental exposure and body accumulation of PFOS might be an important risk factor for ESCC progression.
Collapse
Affiliation(s)
- Yaqing Liu
- Internal Medicine Department, The First People's Hospital of Shangqiu, Shangqiu, P. R. China.,Department of Gastroenterology, Shangqiu Clinical College, Xuzhou Medical University, Shangqiu, P. R. China
| | - Jian Li
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou, P. R. China
| | - Hui Ding
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou, P. R. China
| | - Dahe Ge
- Internal Medicine Department, The First People's Hospital of Shangqiu, Shangqiu, P. R. China.,Department of Gastroenterology, Shangqiu Clinical College, Xuzhou Medical University, Shangqiu, P. R. China
| | - Juntao Wang
- Internal Medicine Department, The First People's Hospital of Shangqiu, Shangqiu, P. R. China
| | - Chunjin Xu
- Internal Medicine Department, The First People's Hospital of Shangqiu, Shangqiu, P. R. China.,Department of Gastroenterology, Shangqiu Clinical College, Xuzhou Medical University, Shangqiu, P. R. China
| |
Collapse
|
20
|
Tang K, Cheng Y, Li Q. Construction and Verification of a Hypoxia-Stemness-Based Gene Signature for Risk Stratification in Esophageal Cancer. Med Sci Monit 2021; 27:e934359. [PMID: 34716287 PMCID: PMC8565098 DOI: 10.12659/msm.934359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background Numerous studies have shown that esophageal cancer (ESCA) contains areas of intertumoral hypoxia. It is widely accepted that the association of hypoxia with cancer stemness in the tumor microenvironment of ESCA is of profound clinical significance. However, reliable prognostic signatures based on hypoxia and cancer stemness are still lacking in ESCA. Material/Methods The t-SNE algorithm was used to estimate the hypoxia status based on the transcriptome profiles of the discovery cohort in the TCGA database. Median values of the stemness index were used to group and identify stemness-associated differentially expressed genes (DEGs). The LASSO method and Cox regression model were combined to screen for prognostic genes and to establish a genetic signature based on hypoxia-stemness. The robustness of the prognostic model was then tested in an external independent validation cohort of the GEO database. Results A total of 8 genes – FBLN2, IL17RB, CYP2W1, AMTN, FABP1, FOXA2, GAS1, and CTSF – were identified to construct a gene signature for ESCA risk stratification. Overall survival was significantly lower in the high-risk group than in the low-risk group in both the internal discovery set and the external validation set. The risk score was found to be an independent prognostic factor for ESCA patients. In addition, a higher risk score was significantly associated with the sensitivity of ESCA patients to gefitinib, bexarotene, dasatinib, and imatinib. Conclusions The hypoxia-stemness-based genetic signature established for the first time in our study could be a promising tool for ESCA cancer risk stratification.
Collapse
Affiliation(s)
- Kang Tang
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yong Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Qian Li
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
21
|
Jin X, Liu L, Wu J, Jin X, Yu G, Jia L, Wang F, Shi M, Lu H, Liu J, Liu D, Yang J, Li H, Ni Y, Luo Q, Jia W, Wang W, Chen W. A multi-omics study delineates new molecular features and therapeutic targets for esophageal squamous cell carcinoma. Clin Transl Med 2021; 11:e538. [PMID: 34586744 PMCID: PMC8473482 DOI: 10.1002/ctm2.538] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a major histological subtype of esophageal cancer with inferior prognosis. Here, we conducted comprehensive transcriptomic, proteomic, phosphoproteomic, and metabolomic characterization of human, treatment-naive ESCC and paired normal adjacent tissues (cohort 1, n = 24) in an effort to identify new molecular vulnerabilities for ESCC and potential therapeutic targets. Integrative analysis revealed a small group of genes that were related to the active posttranscriptional and posttranslational regulation of ESCC. By using proteomic, phosphoproteomic, and metabolomic data, networks of ESCC-related signaling and metabolic pathways that were closely linked to cancer etiology were unraveled. Notably, integrative analysis of proteomic and phosphoproteomic data pinpointed that certain pathways involved in RNA transcription, processing, and metabolism were stimulated in ESCC. Importantly, proteins with close linkage to ESCC prognosis were identified. By enrolling an ESCC patient cohort 2 (n = 41), three top-ranked prognostic proteins X-prolyl aminopeptidase 3 (XPNPEP3), bromodomain PHD finger transcription factor (BPTF), and fibrillarin (FBL) were verified to have increased expression in ESCC. Among these prognostic proteins, only FBL, a well-known nucleolar methyltransferase, was essential for ESCC cell growth in vitro and in vivo. Furthermore, a validation study using an ESCC patient cohort 3 (n = 100) demonstrated that high FBL expression predicted unfavorable patient survival. Finally, common cancer/testis antigens and established cancer drivers and kinases, all of which could direct therapeutic decisions, were characterized. Collectively, our multi-omics analyses delineated new molecular features associated with ESCC pathobiology involving epigenetic, posttranscriptional, posttranslational, and metabolic characteristics, and unveiled new molecular vulnerabilities with therapeutic potential for ESCC.
Collapse
Affiliation(s)
- Xing Jin
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lei Liu
- Department of Thoracic SurgeryThe Affiliated Tumor Hospital of Nantong UniversityNantongChina
| | - Jia Wu
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiaoxia Jin
- Department of PathologyThe Affiliated Tumor Hospital of Nantong UniversityNantongChina
| | - Guanzhen Yu
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lijun Jia
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Fengying Wang
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Minxin Shi
- Department of Thoracic SurgeryThe Affiliated Tumor Hospital of Nantong UniversityNantongChina
| | - Haimin Lu
- Department of Thoracic SurgeryThe Affiliated Tumor Hospital of Nantong UniversityNantongChina
| | - Jibin Liu
- Department of Thoracic SurgeryThe Affiliated Tumor Hospital of Nantong UniversityNantongChina
| | - Dan Liu
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jing Yang
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hua Li
- Bio‐ID CenterSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yan Ni
- The Children's HospitalNational Clinical Research Center for Child HealthZhejiang University School of MedicineHangzhouChina
| | - Qin Luo
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Wei Jia
- Hong Kong Traditional Chinese Medicine Phenome Research CenterSchool of Chinese MedicineHong Kong Baptist UniversityKowloon TongHong KongChina
| | - Wei Wang
- Department of Thoracic SurgeryThe Affiliated Tumor Hospital of Nantong UniversityNantongChina
| | - Wen‐Lian Chen
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
22
|
Artocarpin Targets Focal Adhesion Kinase-Dependent Epithelial to Mesenchymal Transition and Suppresses Migratory-Associated Integrins in Lung Cancer Cells. Pharmaceutics 2021; 13:pharmaceutics13040554. [PMID: 33920031 PMCID: PMC8071053 DOI: 10.3390/pharmaceutics13040554] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 01/09/2023] Open
Abstract
Focal adhesion kinase (FAK) controls several cancer aggressive potentials of cell movement and dissemination. As epithelial–mesenchymal transition (EMT) and the migratory-associated integrins, known influencers of metastasis, have been found to be linked with FAK activity, this study unraveled the potential pharmacological effect of artocarpin in targeting FAK resulting in the suppression of EMT and migratory behaviors of lung cancer cells. Treatment with artocarpin was applied at concentrations of 0–10 μM, and the results showed non-cytotoxicity in lung cancer cell lines (A549 and H460), normal lung (BEAS-2B) cells and primary metastatic lung cancer cells (ELC12, ELC16, and ELC20). We also found that artocarpin (0–10 µM) had no effect on cell viability, proliferation, and migration in BEAS-2B cells. For metastasis-related approaches, artocarpin significantly inhibited cell migration, invasion, and filopodia formation. Artocarpin also dramatically suppressed anchorage-independent growth, cancer stem cell (CSC) spheroid formation, and viability of CSC-rich spheroids. For molecular targets of artocarpin action, computational molecular docking revealed that artocarpin had the best binding affinity of −8.0 kcal/mol with FAK protein. Consistently, FAK-downstream proteins, namely active Akt (phosphorylated Akt), active mTOR (phosphorylated mTOR), and Cdc42, and EMT marker and transcription factor (N-cadherin, Vimentin, and Slug), were found to be significantly depleted in response to artocarpin treatment. Furthermore, we found the decrease of Caveolin-1 (Cav-1) accompanied by the reduction of integrin-αν and integrin-β3. Taken together, these findings support the anti-metastasis potentials of the compound to be further developed for cancer therapy.
Collapse
|
23
|
Yu L, Guo QM, Wang Y, Xu Y, Liu L, Zhang XT. EpCAM expression in esophageal cancer and its correlation with immunotherapy of solitomab. J Thorac Dis 2021; 13:2404-2413. [PMID: 34012588 PMCID: PMC8107559 DOI: 10.21037/jtd-21-442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Background Recurrence of esophageal cancer (EC) after chemotherapy may mainly be explained by the existence of chemotherapy-resistant cells, and an effective drug against chemotherapy-resistant cells is highly sought. The aim of this study was to investigate the cytotoxicity of bispecific antibody solitomab combined with γ δ T cells on Eca109 cell spheres. Methods We cultured Eca109 cell spheres in serum-free medium, and the morphological differences between wild-type Eca109 cells and Eca109 cell spheres were compared by microscope and flow cytometry. Different concentrations of nanoparticle albumin-bound paclitaxel (Nab-PTX) and cisplatin were used to treat the two groups of cells and compare their drug resistance. Flow cytometry was then used to detect the expression level of epithelial cell adhesion molecule (EpCAM) and the cytotoxicity of γ δ T cells combined with bispecific antibody solitomab on the two groups. Results Flow cytometry analysis showed that Eca109 cell spheres were smaller in size and had less cytoplasmic granules and CCK-8 assay showed that the viability of Eca109 cell spheres treated with different concentrations of Nab-PTX and cisplatin was significantly higher than that of wild-type Eca109 cells (P<0.05). Flow cytometry also showed that the expression level of EpCAM on Eca109 cell spheres was higher than that of wild-type Eca109 cells. Co-culture experiment showed that there was no significant difference in the cytotoxicity of γ δ T cells to wild-type Eca109 cells and Eca109 cell spheres without solitomab. However, after adding solitomab, the cytotoxicity of γ δ T cells to Eca109 cell spheres was significantly higher than that of wild-type Eca109 cells (P<0.05). Conclusions EC Eca109 cell spheres have strong stem cell characteristics such as multidrug resistance and may contain a high proportion of EC stem cells. Further, EC Eca109 cell spheres have a high expression level of EpCAM, and EpCAM may be one of the markers of EC stem cells. Therefore, EpCAM could be used as a potential molecular target of immunotherapy for EC, and solitomab may become an effective immunotherapeutic drug for chemotherapy-resistant EC cells.
Collapse
Affiliation(s)
- Lan Yu
- Department of Stereotactic Radiotherapy, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Qing-Ming Guo
- Biotherapy Center, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Yu Wang
- Department of Stereotactic Radiotherapy, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Yan Xu
- Department of Stereotactic Radiotherapy, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Li Liu
- Department of Stereotactic Radiotherapy, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Xiao-Tao Zhang
- Department of Stereotactic Radiotherapy, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
24
|
Zhang H, Si J, Yue J, Ma S. The mechanisms and reversal strategies of tumor radioresistance in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol 2021; 147:1275-1286. [PMID: 33687564 DOI: 10.1007/s00432-020-03493-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/02/2020] [Indexed: 01/16/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of most lethal malignancies with high aggressive potential in the world. Radiotherapy is used as one curative treatment modality for ESCC patients. Due to radioresistance, the 5-year survival rates of patients after radiotherapy is less than 20%. Tumor radioresistance is very complex and heterogeneous. Cancer-associated fibroblasts (CAFs), as one major component of tumor microenvironment (TME), play critical roles in regulating tumor radioresponse through multiple mechanisms and are increasingly considered as important anti-cancer targets. Cancer stemness, which renders cancer cells to be extremely resistant to conventional therapies, is involved in ESCC radioresistance due to the activation of Wnt/β-catenin, Notch, Hedgehog and Hippo (HH) pathways, or the induction of epithelial-mesenchymal transition (EMT), hypoxia and autophagy. Non-protein-coding RNAs (ncRNAs), which account for more than 90% of the genome, are involved in esophageal cancer initiation and progression through regulating the activation or inactivation of downstream signaling pathways and the expressions of target genes. Herein, we mainly reviewed the role of CAFs, cancer stemness, non-coding RNAs as well as others in the development of radioresistance and clarify the involved mechanisms. Furthermore, we summarized the potential strategies which were reported to reverse radioresistance in ESCC. Together, this review gives a systematic coverage of radioresistance mechanisms and reversal strategies and contributes to better understanding of tumor radioresistance for the exploitation of novel intervention strategies in ESCC.
Collapse
Affiliation(s)
- Hongfang Zhang
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jingxing Si
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Jing Yue
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Shenglin Ma
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China.
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
- Zhejiang University Cancer Center, Hangzhou, 310058, China.
| |
Collapse
|
25
|
Chen Z, Che D, Gu X, Lin J, Deng J, Jiang P, Xu K, Xu B, Zhang T. Upregulation of PEDF Predicts a Poor Prognosis and Promotes Esophageal Squamous Cell Carcinoma Progression by Modulating the MAPK/ERK Signaling Pathway. Front Oncol 2021; 11:625612. [PMID: 33718190 PMCID: PMC7953146 DOI: 10.3389/fonc.2021.625612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/18/2021] [Indexed: 02/05/2023] Open
Abstract
Invasion and metastasis represent the primary causes of therapeutic failure in patients diagnosed with esophageal squamous cell carcinoma (ESCC). The lack of effective treatment strategies for metastatic ESCC is the major cause of the low survival rate. Therefore, it is crucial to understand the molecular mechanisms underlying ESCC metastasis and identify potential biomarkers for targeted therapy. Herein, we reported that PEDF is significantly correlated with tumor cell invasion and metastasis in ESCC. The high expression of PEDF is an independent unfavorable prognostic factor for ESCC patients’ overall survival (OS). We successfully developed and verified a nomogram to predict the preoperative OS of ESCC patients, and the actual and nomogram-predicted 1-, 3-, and 5-year survival rates had good consistency. The receiver operating characteristic (ROC) curve showed that the area under the curve (AUC) values for 1-, 3- and 5- survival were 0.764, 0.871, and 0.91, respectively. Overexpression of PEDF significantly promoted the migration and invasion of ESCC cells in vitro, while silencing PEDF yielded the opposite effects. Elevated levels of PEDF altered the expression of proteins involved in epithelial–mesenchymal transition (EMT), as indicated by the upregulation of N-cadherin and the downregulation of α-catenin and E-cadherin in ESCC cells. Mechanistically, PEDF promoted tumor cell motility and EMT by activating the MAPK/ERK signaling pathway. In conclusion, our results reveal that PEDF is involved in ESCC metastasis and could act as a prognostic factor for ESCC. Our research provides a fresh perspective into the mechanism of ESCC metastasis.
Collapse
Affiliation(s)
- Zui Chen
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiamin Lin
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jing Deng
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ping Jiang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Kaixiong Xu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Banglao Xu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ting Zhang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
26
|
Das PK, Islam F, Smith RA, Lam AK. Therapeutic Strategies Against Cancer Stem Cells in Esophageal Carcinomas. Front Oncol 2021; 10:598957. [PMID: 33665161 PMCID: PMC7921694 DOI: 10.3389/fonc.2020.598957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer stem cells (CSCs) in esophageal cancer have a key role in tumor initiation, progression and therapy resistance. Novel therapeutic strategies to target CSCs are being tested, however, more in-depth research is necessary. Eradication of CSCs can result in successful therapeutic approaches against esophageal cancer. Recent evidence suggests that targeting signaling pathways, miRNA expression profiles and other properties of CSCs are important strategies for cancer therapy. Wnt/β-catenin, Notch, Hedgehog, Hippo and other pathways play crucial roles in proliferation, differentiation, and self-renewal of stem cells as well as of CSCs. All of these pathways have been implicated in the regulation of esophageal CSCs and are potential therapeutic targets. Interference with these pathways or their components using small molecules could have therapeutic benefits. Similarly, miRNAs are able to regulate gene expression in esophageal CSCs, so targeting self-renewal pathways with miRNA could be utilized to as a potential therapeutic option. Moreover, hypoxia plays critical roles in esophageal cancer metabolism, stem cell proliferation, maintaining aggressiveness and in regulating the metastatic potential of cancer cells, therefore, targeting hypoxia factors could also provide effective therapeutic modalities against esophageal CSCs. To conclude, additional study of CSCs in esophageal carcinoma could open promising therapeutic options in esophageal carcinomas by targeting hyper-activated signaling pathways, manipulating miRNA expression and hypoxia mechanisms in esophageal CSCs.
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh.,Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Robert A Smith
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia.,Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, QLD, Australia
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
27
|
Li MY, Fan LN, Han DH, Yu Z, Ma J, Liu YX, Li PF, Zhao DH, Chai J, Jiang L, Li SL, Xiao JJ, Duan QH, Ye J, Shi M, Nie YZ, Wu KC, Liao DJ, Shi Y, Wang Y, Yan QG, Guo SP, Bian XW, Zhu F, Zhang J, Wang Z. Ribosomal S6 protein kinase 4 promotes radioresistance in esophageal squamous cell carcinoma. J Clin Invest 2021; 130:4301-4319. [PMID: 32396532 DOI: 10.1172/jci134930] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/06/2020] [Indexed: 12/31/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive cancers and is highly resistant to current treatments. ESCC harbors a subpopulation of cells exhibiting cancer stem-like cell (CSC) properties that contribute to therapeutic resistance including radioresistance, but the molecular mechanisms in ESCC CSCs are currently unknown. Here, we report that ribosomal S6 protein kinase 4 (RSK4) plays a pivotal role in promoting CSC properties and radioresistance in ESCC. RSK4 was highly expressed in ESCC CSCs and associated with radioresistance and poor survival in patients with ESCC. RSK4 was found to be a direct downstream transcriptional target of ΔNp63α, the main p63 isoform, which is frequently amplified in ESCC. RSK4 activated the β-catenin signaling pathway through direct phosphorylation of GSK-3β at Ser9. Pharmacologic inhibition of RSK4 effectively reduced CSC properties and improved radiosensitivity in both nude mouse and patient-derived xenograft models. Collectively, our results strongly suggest that the ΔNp63α/RSK4/GSK-3β axis plays a key role in driving CSC properties and radioresistance in ESCC, indicating that RSK4 is a promising therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Ming-Yang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Lin-Ni Fan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Dong-Hui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhou Yu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jing Ma
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yi-Xiong Liu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Pei-Feng Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Dan-Hui Zhao
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jia Chai
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Lei Jiang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Shi-Liang Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Juan-Juan Xiao
- Cancer Research Institute, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Qiu-Hong Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Ye
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Mei Shi
- Department of Radiation Oncology and
| | - Yong-Zhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kai-Chun Wu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dezhong Joshua Liao
- Department of Pathology, Second Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qing-Guo Yan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Shuang-Ping Guo
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Feng Zhu
- Cancer Research Institute, Affiliated Hospital of Guilin Medical University, Guilin, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, School of Basic Medicine, and.,Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Zhe Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
28
|
Zheng QX, Wang J, Gu XY, Huang CH, Chen C, Hong M, Chen Z. TTN-AS1 as a potential diagnostic and prognostic biomarker for multiple cancers. Biomed Pharmacother 2021; 135:111169. [PMID: 33433359 DOI: 10.1016/j.biopha.2020.111169] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/01/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
The long noncoding RNAs (lncRNAs) are non-coding RNAs that are more than 200 nucleotides in length, and one of several types of non-coding RNAs (ncRNAs). The lncRNAs function in diverse biological processes in normal cells, such as cellular differentiation and cell cycle regulation. There is also evidence that some aberrantly regulated lncRNAs function as oncogenes or tumor suppressor genes in various cancers. For example, TTN-AS1 is a lncRNA that binds to titin mRNA (TTN) and has pro-oncogenic effects in many cancers. Overexpression of TTN-AS1 correlates with poor prognosis in breast cancer, lung cancer, digestive system neoplasms, reproductive system cancers, and other cancers. Furthermore, increased TTN-AS1 expression correlates with more advanced pathology and tumor malignancy. In this review, we comprehensively summarize recent studies on the molecular mechanisms of TTN-AS1 regulation and the role of TTN-AS1 in the carcinogenesis and progression of numerous tumors.
Collapse
Affiliation(s)
- Qiu-Xian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xin-Yu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chun-Hong Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Meng Hong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
29
|
β-Elemene enhances radiosensitivity in non-small-cell lung cancer by inhibiting epithelial-mesenchymal transition and cancer stem cell traits via Prx-1/NF-kB/iNOS signaling pathway. Aging (Albany NY) 2020; 13:2575-2592. [PMID: 33316778 PMCID: PMC7880315 DOI: 10.18632/aging.202291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
Radiation therapy is widely used to treat a variety of malignant tumors, including non-small-cell lung cancer (NSCLC). However, ionizing radiation (IR) paradoxically promotes radioresistance, metastasis and recurrence by inducing epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs). Here, we developed two NSCLC radioresistant (RR) cell lines (A549-RR and H1299-RR) and characterized their motility, cell cycle distribution, DNA damage, and CSC production using migration/invasion assays, flow cytometry, comet assays, and sphere formation, respectively. We also evaluated their tumorigenicity in vivo using a mouse xenograft model. We found that invasion and spheroid formation by A549-RR and H1299-RR cells were increased as compared to their parental cells. Furthermore, as compared to radiation alone, the combination of β-elemene administration with radiation increased the radiosensitivity of A549 cells and reduced expression of EMT/CSC markers while inhibiting the Prx-1/NF-kB /iNOS signaling pathway. Our findings suggest that NSCLC radioresistance is associated with EMT, enhanced CSC phenotypes, and activation of the Prx-1/NF-kB/iNOS signaling pathway. They also suggest that combining β-elemene with radiation may be an effective means of overcoming radioresistance in NSCLC.
Collapse
|
30
|
Current and Future Perspectives of the Use of Organoids in Radiobiology. Cells 2020; 9:cells9122649. [PMID: 33317153 PMCID: PMC7764598 DOI: 10.3390/cells9122649] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
The majority of cancer patients will be treated with radiotherapy, either alone or together with chemotherapy and/or surgery. Optimising the balance between tumour control and the probability of normal tissue side effects is the primary goal of radiation treatment. Therefore, it is imperative to understand the effects that irradiation will have on both normal and cancer tissue. The more classical lab models of immortal cell lines and in vivo animal models have been fundamental to radiobiological studies to date. However, each of these comes with their own limitations and new complementary models are required to fill the gaps left by these traditional models. In this review, we discuss how organoids, three-dimensional tissue-resembling structures derived from tissue-resident, embryonic or induced pluripotent stem cells, overcome the limitations of these models and thus have a growing importance in the field of radiation biology research. The roles of organoids in understanding radiation-induced tissue responses and in moving towards precision medicine are examined. Finally, the limitations of organoids in radiobiology and the steps being made to overcome these limitations are considered.
Collapse
|
31
|
Zhang S, Liao W, Wu Q, Huang X, Pan Z, Chen W, Gu S, Huang Z, Wang Y, Tang X, Liang S, Zhang X, Chen Y, Chen S, Chen W, Jiang Y, Chen C, Qiu G. LINC00152 upregulates ZEB1 expression and enhances epithelial-mesenchymal transition and oxaliplatin resistance in esophageal cancer by interacting with EZH2. Cancer Cell Int 2020; 20:569. [PMID: 33292221 PMCID: PMC7690072 DOI: 10.1186/s12935-020-01620-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/26/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Expression of the long non-coding mRNA LINC00152 has been reported to correlate with cancer cell resistance to oxaliplatin (L-OHP). However, little is known regarding the molecular mechanism of LINC00152 in esophageal cancer (EC). Hence, we intended to characterize the role of LINC00152 in EC, with a special focus on epithelial-mesenchymal transition (EMT) and L-OHP resistance. METHODS We collected EC tissues and identified EC cell lines with higher L-OHP resistance, and then characterized expression patterns of LINC00152, Zeste Homologue 2 (EZH2), Zinc finger e-box binding homeobox (ZEB1) and EMT-related genes using RT-qPCR and Western blot analysis. Furthermore, their functional significance was identified by gain and loss-of-function experiments. The relationship among LINC00152, EZH2 and ZEB1 was examined using RIP, RNA pull-down and ChIP assays. Additionally, resistance of EC cells to L-OHP was reflected by CCK-8 assay to detect cell viability. Animal experiments were also conducted to detect the effects of the LINC00152/EZH2/ZEB1 on EMT and L-OHP resistance. RESULTS LINC00152, EZH2 and ZEB1 were highly expressed in EC tissues and Kyse-150/TE-1 cells. As revealed by assays in vitro and in vivo, LINC00152 positively regulated ZEB1 expression through interaction with EZH2 to enhance EMT and L-OHP resistance in EC cells. In contrast, silencing of LINC00152 contributed to attenuated EMT and drug resistance of EC cells to L-OHP. CONCLUSIONS Our study demonstrates that LINC00152/EZH2/ZEB1 axis can regulate EMT and resistance of EC cells to L-OHP, thus presenting a potential therapeutic target for EC treatment.
Collapse
Affiliation(s)
- Shuyao Zhang
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
- Department of Pharmacology, Shantou University Medical College, Shantou, 515000, P.R. China
| | - Wei Liao
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
| | - Qinshui Wu
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
| | - Xiaoshan Huang
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
| | - Zhen Pan
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
| | - Wang Chen
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
| | - Shuyi Gu
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
| | - Zuojun Huang
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
| | - Yiwen Wang
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
| | - Xu Tang
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
| | - Shanshan Liang
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
| | - Xiaoyan Zhang
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
| | - Yun Chen
- Guangzhou Red Cross Hospital Affiliated of Ji-Nan University, Guangzhou, 510220, P.R. China
| | - Shuang Chen
- Department of Pharmacology, Shantou University Medical College, Shantou, 515000, P.R. China
| | - Wanying Chen
- Department of Pharmacology, Shantou University Medical College, Shantou, 515000, P.R. China
| | - Yi Jiang
- Digestive Oncology, Cancer Hospital of Shantou University Medical College, Shantou, 515000, P.R. China
| | - Chen Chen
- Department of Pharmacology, Shantou University Medical College, Shantou, 515000, P.R. China.
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou, 515000, P.R. China.
| | - Guodong Qiu
- Department of Pharmacology, Shantou University Medical College, Shantou, 515000, P.R. China.
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou, 515000, P.R. China.
| |
Collapse
|
32
|
Dzobo K, Ganz C, Thomford NE, Senthebane DA. Cancer Stem Cell Markers in Relation to Patient Survival Outcomes: Lessons for Integrative Diagnostics and Next-Generation Anticancer Drug Development. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 25:81-92. [PMID: 33170084 DOI: 10.1089/omi.2020.0185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Solid tumors display a complex biology that requires a multipronged treatment strategy. Most anticancer interventions, including chemotherapy, are currently unable to prevent treatment resistance and relapse. In general, therapeutics target cancer cells and overlook the tumor microenvironment (TME) and the presence of cancer stem cells (CSCs) with self-renewal and tumorigenic abilities. CSCs have been postulated to play key roles in tumor initiation, progression, therapy resistance, and metastasis. Hence, CSC markers have been suggested as diagnostics to forecast cancer prognosis as well as molecular targets for new-generation cancer treatments, especially in resistant disease. We report here original findings on expression and prognostic significance of CSC markers in several cancers. We examined and compared the transcriptional expression of CSC markers (ABCB1, ABCG2, ALDH1A1, CD24, CD44, CD90, CD133, CXCR4, EPCAM, ICAM1, and NES) in tumor tissues versus the adjacent normal tissues using publicly available databases, The Cancer Genome Atlas and Gene Expression Profiling Interactive Analysis. We found that CSC transcriptional markers were, to a large extent, expressed in higher abundance in solid tumors such as colon, lung, pancreatic, and esophageal cancers. On the other hand, no CSC marker in our analysis was expressed in the same pattern in all cancers, while individual CSC marker expression, alone, was not significantly associated with overall patient survival. Innovation in next-generation cancer therapeutics and diagnostics ought to combine CSC markers as well as integrative diagnostics that pool knowledge from CSCs and other TME components and cancer cells.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Chelene Ganz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nicholas Ekow Thomford
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medical Biochemistry, School of Medical Sciences, College of Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Dimakatso Alice Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
33
|
Beukinga RJ, Wang D, Karrenbeld A, Dijksterhuis WPM, Faber H, Burgerhof JGM, Mul VEM, Slart RHJA, Coppes RP, Plukker JTM. Addition of HER2 and CD44 to 18F-FDG PET-based clinico-radiomic models enhances prediction of neoadjuvant chemoradiotherapy response in esophageal cancer. Eur Radiol 2020; 31:3306-3314. [PMID: 33151397 PMCID: PMC8043921 DOI: 10.1007/s00330-020-07439-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/21/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To assess the complementary value of human epidermal growth factor receptor 2 (HER2)-related biological tumor markers to clinico-radiomic models in predicting complete response to neoadjuvant chemoradiotherapy (NCRT) in esophageal cancer patients. METHODS Expression of HER2 was assessed by immunohistochemistry in pre-treatment tumor biopsies of 96 patients with locally advanced esophageal cancer. Five other potentially active HER2-related biological tumor markers in esophageal cancer were examined in a sub-analysis on 43 patients. Patients received at least four of the five cycles of chemotherapy and full radiotherapy regimen followed by esophagectomy. Three reference clinico-radiomic models based on 18F-FDG PET were constructed to predict pathologic response, which was categorized into complete versus incomplete (Mandard tumor regression grade 1 vs. 2-5). The complementary value of the biological tumor markers was evaluated by internal validation through bootstrapping. RESULTS Pathologic examination revealed 21 (22%) complete and 75 (78%) incomplete responders. HER2 and cluster of differentiation 44 (CD44), analyzed in the sub-analysis, were univariably associated with pathologic response. Incorporation of HER2 and CD44 into the reference models improved the overall performance (R2s of 0.221, 0.270, and 0.225) and discrimination AUCs of 0.759, 0.857, and 0.816. All models exhibited moderate to good calibration. The remaining studied biological tumor markers did not yield model improvement. CONCLUSIONS Incorporation of HER2 and CD44 into clinico-radiomic prediction models improved NCRT response prediction in esophageal cancer. These biological tumor markers are promising in initial response evaluation. KEY POINTS • A multimodality approach, integrating independent genomic and radiomic information, is promising to improve prediction of γpCR in patients with esophageal cancer. • HER2 and CD44 are potential biological tumor markers in the initial work-up of patients with esophageal cancer. • Prediction models combining 18F-FDG PET radiomic features with HER2 and CD44 may be useful in the decision to omit surgery after neoadjuvant chemoradiotherapy in patients with esophageal cancer.
Collapse
Affiliation(s)
- Roelof J Beukinga
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands.
| | - Da Wang
- Department of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arend Karrenbeld
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Willemieke P M Dijksterhuis
- Department of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hette Faber
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johannes G M Burgerhof
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Véronique E M Mul
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Riemer H J A Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands.,Faculty of Science and Technology, Department of Biomedical Photonic Imaging, University of Twente, Enschede, The Netherlands
| | - Robert P Coppes
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - John Th M Plukker
- Department of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
34
|
Khosravi A, Jafari SM, Asadi J. Knockdown of TAZ decrease the cancer stem properties of ESCC cell line YM-1 by modulation of Nanog, OCT-4 and SOX2. Gene 2020; 769:145207. [PMID: 33031893 DOI: 10.1016/j.gene.2020.145207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/07/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022]
Abstract
Cancer stem cells are a rare population in tumors with high metastatic potential and resistance to treatment. Recent strategies in cancer treatment have focused on targeting important signaling pathways that have an important role in maintaining CSC populations. TAZ (transcriptional co-activator with PDZ-binding motif) is a key downstream of the Hippo pathway which plays a fundamental role in the survival of CSCs from different origins, however, no data on the role of TAZ in esophageal cancer are available. Our findings showed that esophageal CSCs enriched from the YM-1 cell line have stemness properties. We found that TAZ was strongly expressed in esophageal CSCs and knockdown of TAZ in esophageal CSCs results in reduced colony formation and cell migration. Moreover, this data indicated that TAZ knockdown reduces the expression of SOX-2, OCT-4, and Nanong in esophageal CSCs. Taken together, the results of the current study suggested that TAZ has a crucial role in the biology of esophageal CSCs.
Collapse
Affiliation(s)
- Ayyoob Khosravi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Biochemistry and Biophysics, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
35
|
Chen Y, Wang H, Zhu S, Lan X. miR-483-5p promotes esophageal cancer progression by targeting KCNQ1. Biochem Biophys Res Commun 2020; 531:615-621. [PMID: 32819715 DOI: 10.1016/j.bbrc.2020.07.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES miR-483-5p has been reported to be an oncogene of various cancers, but its functional and regulatory mechanisms in esophageal cancer (EC) remain unclear. This study aimed to investigate the functional and molecular mechanisms of miR-483-5p in EC so as to provide a theoretical basis for exploring the therapeutic target for EC. METHODS miRNA expression profiles were downloaded from the TCGA-ESCA dataset to screen the target miRNA. Real-time quantitative PCR was performed to detect the transcriptional levels of miR-483-5p and KCNQ1 in EC cells. Western blot was conducted to determine the protein expression of KCNQ1. Cell Counting Kit-8 assay was carried out to assess cell proliferation. Transwell assay was performed to evaluate cell migration and invasion. Dual-luciferase reporter assay was conducted to verify the targeting relationship between miR-483-5p and KCNQ1. RESULTS miR-483-5p was up-regulated in EC cells and could bind to the 3'-untranslational region of KCNQ1. Over-expressing miR-483-5p suppressed KCNQ1 expression. Besides, miR-483-5p over-expression facilitated EC cell proliferation, migration and invasion, while its down-regulation triggered opposite result. Over-expressing miR-483-5p and KCNQ1 simultaneously could weaken the promoting effect of miR-483-5p over-expression on EC cell proliferation, migration and invasion. CONCLUSION miR-483-5p as an oncogene facilitated EC cell proliferation, migration and invasion by targeted silencing KCNQ1, which is likely to provide a basis for further exploring the molecular mechanism of EC progression.
Collapse
Affiliation(s)
- Yong Chen
- Department of Radiation Oncology, Lishui People's Hospital, China
| | - Hanying Wang
- Department of Radiation Oncology, Lishui People's Hospital, China
| | - Shuangmei Zhu
- Department of Radiation Oncology, Lishui People's Hospital, China
| | - Xiang Lan
- Department of Radiation Oncology, Lishui People's Hospital, China.
| |
Collapse
|
36
|
Cellular Mechanisms of Rejection of Optic and Sciatic Nerve Transplants: An Observational Study. Transplant Direct 2020; 6:e589. [PMID: 32766437 PMCID: PMC7382554 DOI: 10.1097/txd.0000000000001012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Background. Organ transplantation is a standard therapeutic strategy for irreversible organ damage, but the utility of nerve transplantation remains generally unexplored, despite its potential benefit to a large patient population. Here, we aimed to establish a feasible preclinical mouse model for understanding the cellular mechanisms behind the rejection of peripheral and optic nerves. Methods. We performed syngenic and allogenic transplantation of optic and sciatic nerves in mice by inserting the nerve grafts inside the kidney capsule, and we assessed the allografts for signs of rejection through 14 d following transplantation. Then, we assessed the efficacy of CTLA4 Ig, Rapamycin, and anti-CD3 antibody in suppressing immune cell infiltration of the nerve allografts. Results. By 3 d posttransplantation, both sciatic and optic nerves transplanted from BALB/c mice into C57BL/6J recipients contained immune cell infiltrates, which included more CD11b+ macrophages than CD3+ T cells or B220+ B cells. Ex vivo immunogenicity assays demonstrated that sciatic nerves demonstrated higher alloreactivity in comparison with optic nerves. Interestingly, optic nerves contained higher populations of anti-inflammatory PD-L1+ cells than sciatic nerves. Treatment with anti-CD3 antibody reduced immune cell infiltrates in the optic nerve allograft, but exerted no significant effect in the sciatic nerve allograft. Conclusions. These findings establish the feasibility of a preclinical allogenic nerve transplantation model and provide the basis for future testing of directed, high-intensity immunosuppression in these mice.
Collapse
|
37
|
El-Gowily AH, Abosheasha MA. Differential mechanisms of autophagy in cancer stem cells: Emphasizing gastrointestinal cancers. Cell Biochem Funct 2020; 39:162-173. [PMID: 32468609 DOI: 10.1002/cbf.3552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 05/03/2020] [Indexed: 12/15/2022]
Abstract
Gastrointestinal (GI) cancers are one of the most common forms of malignancies and still are the most important cause of cancer-related mortality worldwide. Autophagy is a conserved catabolic pathway involving lysosomal degradation and recycling of whole cellular components, which is essential for cellular homeostasis. For instance, it acts as a pivotal intracellular quality control and repair mechanism but also implicated in cell reformation during cell differentiation and development. Indeed, GI cancer stem cells (CSCs) are thought to be responsible for tumour initiation, traditional therapies resistance, metastasis and tumour recurrence. Molecular mechanisms of autophagy in normal vs CSCs gain great interest worldwide. Here, we shed light on the role of autophagy in normal stem cells differentiation for embryonic progression and its role in maintaining the activity and self-renewal capacity of CSCs which offer novel viewpoints on promising cancer therapeutic strategies based on the differential roles of autophagy in CSCs.
Collapse
Affiliation(s)
- Afnan H El-Gowily
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.,Organ and Cell physiology Department, Juntendo University, Tokyo, Japan
| | - Mohammed A Abosheasha
- Cellular Genetics Laboratory, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
38
|
Chen L, Cheng MM, Li YP, Lin SF, Zheng QH, Liu QY. 4,4'‑Bond secalonic acid D targets SP cells and inhibits metastasis in hepatocellular carcinoma. Mol Med Rep 2020; 21:2624-2632. [PMID: 32323850 DOI: 10.3892/mmr.2020.11055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/06/2020] [Indexed: 12/24/2022] Open
Abstract
The existence of cancer stem cells (CSCs) is considered to be the main reason for chemoresistance, metastasis and the ultimate failure of treatment in hepatocellular carcinoma (HCC). However, there are a few chemical agents that may inhibit CSCs. The present study identified that 4,4'‑bond secalonic acid D (4,4'‑SAD), a compound isolated from the marine‑derived fungus Penicillium oxalicum, inhibited the growth of side population (SP) cells isolated from human liver cancer cell lines PLC/PRF/5 and HuH‑7 by attenuating the expression of ATP‑binding cassette superfamily G member 2. Furthermore, the results of wound healing, Transwell, western blotting and reverse transcription‑quantitative PCR assays demonstrated that 4,4'‑SAD suppressed the invasion and migration of SP cells by downregulating matrix metallopeptidase 9 (MMP‑9) and upregulating the antagonist tissue inhibitor of metalloproteinases 1 in vitro. Moreover, in vivo study results found that 4,4'‑SAD had anti‑lung metastasis efficacy via the decrease of MMP‑9 expression in the H22 HCC model of Kunming mice. Therefore, the present study identified the potential of 4,4'‑SAD as a promising candidate for the treatment of advanced liver cancer.
Collapse
Affiliation(s)
- Li Chen
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Miao-Miao Cheng
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, Fujian 350002, P.R. China
| | - Ya-Ping Li
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, Fujian 350002, P.R. China
| | - Shao-Feng Lin
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Qiu-Hong Zheng
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Qin-Ying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| |
Collapse
|
39
|
Zhang X, Yuan A, Zhao X, Li Z, Cui G. Tumoral Expression of CD166 in Human Esophageal Squamous Cell Carcinoma: Implications for Cancer Progression and Prognosis. Cancer Biother Radiopharm 2020; 35:214-222. [PMID: 32196367 DOI: 10.1089/cbr.2019.3089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Accumulating data showed that cancer stem cells (CSCs) identified by cell surface markers contribute to the initiation, progression, and prognosis of human cancers. In this study, the expression of CSC candidates CD166, CD44, and Lgr5 in 65 cases of esophageal squamous cell carcinoma (ESCC) and 16 cases of control esophageal tissues were examined with immunohistochemistry (IHC). The correlation between tumoral expression levels of these CSC candidates and clinicopathological variables was analyzed. IHC results showed that the expression of CD166 in esophageal control tissues was completely negative, but it was in 87.69% (57/65) ESCC tissues. The expression of CD44 and Lgr5 did not differ between esophageal control tissues and ESCC tissues (p > 0.05). In addition, there were not correlations found among the expression levels of CD166, CD44, and Lgr5 in ESCC tissues. Clinicopathological analysis revealed that the tumoral expression level of CD166 correlated with lymph node involvement and TNM staging in patients with ESCC, and lower tumoral expression of CD44 was found in patients with advanced TNM staging. Kaplan-Meier survival curves suggested that expression level of CD166 appeared to have a negative impact on overall survival rate after surgery in patients with ESCC. Such impact was not found in other two CSC candidates. The authors therefore conclude that CD166 is a potential prognostic biomarker and correlates with advanced progression features in patients with ESCC.
Collapse
Affiliation(s)
- Xiaoshan Zhang
- Research Group of Gastrointestinal Diseases, the Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,The Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Aping Yuan
- Research Group of Gastrointestinal Diseases, the Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Xueru Zhao
- Research Group of Gastrointestinal Diseases, the Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Zhenfeng Li
- Research Group of Gastrointestinal Diseases, the Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Guanglin Cui
- Research Group of Gastrointestinal Diseases, the Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,Faculty of Health Science, Nord University, Campus Levanger, Levanger, Norway
| |
Collapse
|
40
|
Xiang X, Xiong R, Yu C, Deng L, Bie J, Xiao D, Chen Z, Zhou Y, Li X, Liu K, Feng G. Tex10 promotes stemness and EMT phenotypes in esophageal squamous cell carcinoma via the Wnt/β‑catenin pathway. Oncol Rep 2019; 42:2600-2610. [PMID: 31638260 PMCID: PMC6859441 DOI: 10.3892/or.2019.7376] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/25/2019] [Indexed: 12/29/2022] Open
Abstract
A previous study by our group suggested that testis expressed 10 (Tex10) contributes to tumor progression by promoting stem cell-like features in hepatocellular carcinoma. However, the relevance of pluripotency factor Tex10 in esophageal squamous cell carcinoma (ESCC) has remained elusive. The objective of the present study was to investigate the role of Tex10 in ESCC. For this purpose, the mRNA and protein expression of Tex10 was detected by reverse transcription-quantitative PCR, western blot analysis and immunohistochemistry. In a loss-of-function experiment, EC109 cells were transfected with lentiviral vectors containing Tex10 short hairpin RNA or negative control. Cell proliferation was assessed using a Cell Counting kit-8, and flow cytometry was used to analyze apoptosis and the cell cycle. Transwell assays were employed to examine the migratory and invasive capacity, and a sphere formation assay was performed to assess the clonogenicity of the EC109 cells. The results revealed that the elevated expression of Tex10 was positively associated with malignancy and with epithelial-mesenchymal transition (EMT)-associated mesenchymal markers in human ESCC specimens. The knockdown of Tex10 led to the inhibition of cell proliferation, the induction of apoptosis and cell cycle arrest, and decreased the stemness, migratory and invasive capacity of the EC109 cells. Furthermore, the silencing of Tex10 enhanced the sensitivity of the ESCC cells to 5-fluorouracil. In addition, the present study revealed that Tex10 plays an essential role in regulating EMT via the activation of Wnt/β-catenin signaling. On the whole, the findings of the present study suggest that the downregulation of Tex10 in ESCC specimens is significantly associated with tumor malignancy, and that Tex10 promotes stem cell-like features and induces the EMT of ESCC cells through the enhancement of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Xiaocong Xiang
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Rong Xiong
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Chunlei Yu
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Li Deng
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jun Bie
- Department of Oncology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Dongqin Xiao
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Zhu Chen
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yuchuan Zhou
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaolei Li
- Department of Thoracic Surgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Kang Liu
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Gang Feng
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
41
|
Wu Q, Wu Z, Bao C, Li W, He H, Sun Y, Chen Z, Zhang H, Ning Z. Cancer stem cells in esophageal squamous cell cancer. Oncol Lett 2019; 18:5022-5032. [PMID: 31612013 PMCID: PMC6781610 DOI: 10.3892/ol.2019.10900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) are hypothesized to govern the origin, progression, drug resistance, recurrence and metastasis of human cancer. CSCs have been identified in nearly all types of human cancer, including esophageal squamous cell cancer (ESCC). Four major methods are typically used to isolate or enrich CSCs, including: i) fluorescence-activated cell sorting or magnetic-activated cell sorting using cell-specific surface markers; ii) stem cell markers, including aldehyde dehydrogenase 1 family member A1; iii) side population cell phenotype markers; and iv) microsphere culture methods. ESCC stem cells have been identified using a number of these methods. An increasing number of stem cell signatures and pathways have been identified, which have assisted in the clarification of molecular mechanisms that regulate the stemness of ESCC stem cells. Certain viruses, such as human papillomavirus and hepatitis B virus, are also considered to be important in the formation of CSCs, and there is a crosstalk between stemness and viruses-associated genes/pathways, which may suggest a potential therapeutic strategy for the eradication of CSCs. In the present review, findings are summarized along these lines of inquiry.
Collapse
Affiliation(s)
- Qian Wu
- Basic Medical School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China.,Nurse School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhe Wu
- Basic Medical School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Cuiyu Bao
- Nurse School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Wenjing Li
- Basic Medical School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Hui He
- Basic Medical School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yanling Sun
- Basic Medical School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zimin Chen
- Basic Medical School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Hao Zhang
- Basic Medical School, Ji'nan University Medical School, Guangzhou, Guangdong 510632, P.R. China
| | - Zhifeng Ning
- Basic Medical School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
42
|
Shi L, Wu Z, Miao J, Du S, Ai S, Xu E, Feng M, Song J, Guan W. Adenosine interaction with adenosine receptor A2a promotes gastric cancer metastasis by enhancing PI3K-AKT-mTOR signaling. Mol Biol Cell 2019; 30:2527-2534. [PMID: 31339445 PMCID: PMC6743355 DOI: 10.1091/mbc.e19-03-0136] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The accumulation of adenosine in the tumor microenvironment is associated with tumor progression in many cancers. However, whether adenosine is involved in gastric cancer (GC) metastasis and progression, and the underlying molecular mechanism, is largely unclear. In this study, we find that GC tissues and cell lines had higher A2aR levels than nontumor gastric tissues and cell lines. A2aR expression correlated positively with TNMstage, and associated with poor outcomes. Adenosine enhanced the expression of the stemness and epithelial-mesenchymal transition-associated genes by binding to A2aR. A2aR expression on GC cells promoted metastasis in vivo. The PI3K-AKT-mTOR signaling pathway was involved in adenosine-stimulated GC cell migration and invasion. Our results indicate that adenosine promotes GC cell invasion and metastasis by interacting with A2aR to enhance PI3K-AKT-mTOR pathway signaling.
Collapse
Affiliation(s)
- Linsen Shi
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, People's Republic of China.,The Affiliated Nanjing Drum Tower Clinical College of Nanjing Medical University, Nanjing 210002, People's Republic of China
| | - Zhaoying Wu
- Xuzhou Medical University, Xuzhou 221006, People's Republic of China
| | - Ji Miao
- Department of Gastrointestinal Surgery, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing 210000, People's Republic of China
| | - Shangce Du
- The Affiliated Nanjing Drum Tower Clinical College of Nanjing Medical University, Nanjing 210002, People's Republic of China
| | - Shichao Ai
- Nanjing University, Nanjing 21000, People's Republic of China
| | - En Xu
- Nanjing University, Nanjing 21000, People's Republic of China
| | - Min Feng
- Department of Gastrointestinal Surgery, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing 210000, People's Republic of China
| | - Jun Song
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, People's Republic of China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou 221006, People's Republic of China
| | - Wenxian Guan
- The Affiliated Nanjing Drum Tower Clinical College of Nanjing Medical University, Nanjing 210002, People's Republic of China.,Department of Gastrointestinal Surgery, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing 210000, People's Republic of China
| |
Collapse
|
43
|
Gao Z, Liu H, Shi Y, Yin L, Zhu Y, Liu R. Identification of Cancer Stem Cell Molecular Markers and Effects of hsa-miR-21-3p on Stemness in Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2019; 11:cancers11040518. [PMID: 30979011 PMCID: PMC6521292 DOI: 10.3390/cancers11040518] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 12/25/2022] Open
Abstract
Cancer stem cells (CSCs) are closely related to tumor resistance and tumor recurrence in esophageal squamous cell carcinoma (ESCC). The lack of specific biomarkers to identify and isolate CSCs has led to the slow progression of research on CSCs in ESCC. Here, we established a method to identify and isolate CSCs in ESCC using fluorescence-activated cell sorting with combined surface biomarkers including CD71, CD271, and CD338. CD71−/CD271+/CD338+ subpopulation cells possessed more stem cell properties in proliferation, self-renewal, differentiation, metastasis, drug resistance, and tumorigenesis. We further explored possible roles that microRNAs played in stem cells. Using microarrays, we identified that has-miR-21-3p was highly expressed in positive sorted cells, and further functional and Luciferase reporter assays verified that has-miR-21-3p promoted proliferation and anti-apoptosis by regulating TRAF4. We further analyzed the relationship between hsa-miR-21-3p and ESCC in 137 patients with ESCC. Statistical analysis showed that up-regulation of hsa-miR-21-3p was associated with a high risk of ESCC. Collectively, we identified surface biomarkers of stem cells in esophageal squamous cell carcinoma, and discovered thathsa-miR-21-3p may be involved in stemness maintenance by regulating TRAF4.
Collapse
Affiliation(s)
- Zhikui Gao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210000, China.
| | - Hui Liu
- Chengdu Center for Disease Control and Prevention, Chengdu 610000, China.
| | - Yajuan Shi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210000, China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210000, China.
| | - Yong Zhu
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510, USA.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210000, China.
| |
Collapse
|
44
|
Petpiroon N, Bhummaphan N, Soonnarong R, Chantarawong W, Maluangnont T, Pongrakhananon V, Chanvorachote P. Ti 0.8O 2 Nanosheets Inhibit Lung Cancer Stem Cells by Inducing Production of Superoxide Anion. Mol Pharmacol 2019; 95:418-432. [PMID: 30737252 DOI: 10.1124/mol.118.114447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/02/2019] [Indexed: 02/14/2025] Open
Abstract
Recent research into the cancer stem cell (CSC) concept has driven progress in the understanding of cancer biology and has revealed promising CSC-specific targets for drug discovery efforts. As malignancies of lung cancer have been shown to be strongly associated with activities of CSCs, we examined the effects of Ti0.8O2 nanosheets on these cells. Here we show that the nanosheets target lung CSCs but not normal primary dermal papilla (DP) stem cells. Whereas Ti0.8O2 caused a dramatic apoptosis along with a decrease in CSC phenotypes, in primary human DP cells such effects of nanosheets have been minimal. Nanosheets reduced the ability of lung cancer cells to generate three-dimensional tumor spheroids, lung CSC markers (CD133 and ALDH1A1), and CSC transcription factors (Nanog and Oct-4). Ti0.8O2 nanosheets reduced CSC signaling through mechanisms involving suppression of protein kinase B (AKT) and Notch-1 pathways. In addition, the nanosheets inhibited the migration and invasive activities of lung cancer cells and reduced epithelial-to-mesenchymal transition (EMT) markers as N-cadherin, vimentin, and Slug, as well as metastasis-related integrins (integrin-αv and integrin-β1). Importantly, we found that the selectivity of the Ti0.8O2 nanosheets in targeting cancer cells was mediated by induction of cellular superoxide anion in cancerous but not normal cells. Inhibition of nanosheet-induced superoxide anion restored the suppression of CSC and EMT in cancer cells. These findings demonstrate a promising distinctive effect of Ti0.8O2 nanosheets on lung CSC that may lead to opportunities to use such a nanomaterial in cancer therapy.
Collapse
Affiliation(s)
- Nalinrat Petpiroon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences (N.P., W.C., V.P., P.C.), Interdisciplinary Program of Biomedical Sciences, Faculty of Graduate School (N.B.), Interdisciplinary Program of Pharmacology Graduate School (R.S.), and Cell-based Drug and Health Products Development Research Unit (N.P., N.B., R.S., W.C., V.P., P.C.), Chulalongkorn, University, Bangkok, Thailand; and College of Nanotechnology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand (T.M.)
| | - Narumol Bhummaphan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences (N.P., W.C., V.P., P.C.), Interdisciplinary Program of Biomedical Sciences, Faculty of Graduate School (N.B.), Interdisciplinary Program of Pharmacology Graduate School (R.S.), and Cell-based Drug and Health Products Development Research Unit (N.P., N.B., R.S., W.C., V.P., P.C.), Chulalongkorn, University, Bangkok, Thailand; and College of Nanotechnology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand (T.M.)
| | - Rapeepun Soonnarong
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences (N.P., W.C., V.P., P.C.), Interdisciplinary Program of Biomedical Sciences, Faculty of Graduate School (N.B.), Interdisciplinary Program of Pharmacology Graduate School (R.S.), and Cell-based Drug and Health Products Development Research Unit (N.P., N.B., R.S., W.C., V.P., P.C.), Chulalongkorn, University, Bangkok, Thailand; and College of Nanotechnology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand (T.M.)
| | - Wipa Chantarawong
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences (N.P., W.C., V.P., P.C.), Interdisciplinary Program of Biomedical Sciences, Faculty of Graduate School (N.B.), Interdisciplinary Program of Pharmacology Graduate School (R.S.), and Cell-based Drug and Health Products Development Research Unit (N.P., N.B., R.S., W.C., V.P., P.C.), Chulalongkorn, University, Bangkok, Thailand; and College of Nanotechnology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand (T.M.)
| | - Tosapol Maluangnont
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences (N.P., W.C., V.P., P.C.), Interdisciplinary Program of Biomedical Sciences, Faculty of Graduate School (N.B.), Interdisciplinary Program of Pharmacology Graduate School (R.S.), and Cell-based Drug and Health Products Development Research Unit (N.P., N.B., R.S., W.C., V.P., P.C.), Chulalongkorn, University, Bangkok, Thailand; and College of Nanotechnology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand (T.M.)
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences (N.P., W.C., V.P., P.C.), Interdisciplinary Program of Biomedical Sciences, Faculty of Graduate School (N.B.), Interdisciplinary Program of Pharmacology Graduate School (R.S.), and Cell-based Drug and Health Products Development Research Unit (N.P., N.B., R.S., W.C., V.P., P.C.), Chulalongkorn, University, Bangkok, Thailand; and College of Nanotechnology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand (T.M.)
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences (N.P., W.C., V.P., P.C.), Interdisciplinary Program of Biomedical Sciences, Faculty of Graduate School (N.B.), Interdisciplinary Program of Pharmacology Graduate School (R.S.), and Cell-based Drug and Health Products Development Research Unit (N.P., N.B., R.S., W.C., V.P., P.C.), Chulalongkorn, University, Bangkok, Thailand; and College of Nanotechnology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand (T.M.)
| |
Collapse
|
45
|
Jing L, Ruan Z, Sun H, Li Q, Han L, Huang L, Yu S, Wang Y, Guo H, Jiao M. Epithelial-mesenchymal transition induced cancer-stem-cell-like characteristics in hepatocellular carcinoma. J Cell Physiol 2019; 234:18448-18458. [PMID: 30908631 DOI: 10.1002/jcp.28480] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma in China accounts for half of the world's incidence. Both epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) are thought to be involved in tumor malignant progression. However, the relationship between EMT and CSCs is still unclear. Bioinformatics analysis was performed to evaluate the relationship between EMT and CSCs. The EMT and CSC regulatory mechanism was investigated through Transwell, wound-healing, sphere formation, colony-forming, and western blotting assays. Immunofluorescence and immunoprecipitation were used to study the interaction of hypoxia inducible factor 1α (HIF-1α) /Notch1. Immunohistochemical study was applied to investigate the expression pattern in the process of hepatocellular carcinogenesis and development. In our present study, bioinformatics results indicate that the expression of EMT-related molecules is correlated with CSCs. In vitro studies indicated that EMT activation could induce CSC characteristics. Notch1 was confirmed to mediate the process of EMT-induced CSCs through the interaction with HIF-1α directly. Our findings indicate that EMT could induce CSC-like characteristics, which is mediated by HIF-1α-upregulated Notch intracellular domain expression.
Collapse
Affiliation(s)
- Li Jing
- Department of Medical Oncology, he First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhiping Ruan
- Department of Medical Oncology, he First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haifeng Sun
- The Third Department of Medical Oncology, Shaanxi Provincial Tumor Hospital, Xi'an, China
| | - Qing Li
- Department of Medical Oncology, he First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lili Han
- Department of Oncology, he Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lanxuan Huang
- Department of Medical Oncology, he First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sizhe Yu
- Department of Medical Oncology, he First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yu Wang
- Department of Medical Oncology, he First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Guo
- Department of Medical Oncology, he First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Min Jiao
- Department of Medical Oncology, he First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
46
|
Ng HY, Li J, Tao L, Lam AKY, Chan KW, Ko JMY, Yu VZ, Wong M, Li B, Lung ML. Chemotherapeutic Treatments Increase PD-L1 Expression in Esophageal Squamous Cell Carcinoma through EGFR/ERK Activation. Transl Oncol 2018; 11:1323-1333. [PMID: 30172884 PMCID: PMC6122398 DOI: 10.1016/j.tranon.2018.08.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 12/14/2022] Open
Abstract
The current study reveals the clinicopathological association of PD-L1 in Hong Kong esophageal squamous cell carcinoma (ESCC) patients and the differential regulation of PD-L1 by standard first-line chemotherapy in ESCC. Immunohistochemical analysis of tissue microarray data from 84 Hong Kong ESCC patients shows that PD-L1 was expressed in 21% of the tumors. Positive PD-L1 staining was significantly associated with later disease stage (stages III and IV) (P value = .0379) and lymph node metastasis (P value = .0466) in the Hong Kong cohort. Furthermore, PD-L1 expression was significantly induced in ESCC cell lines after standard chemotherapy treatments, along with EGFR and ERK activation in both in vitro studies and the in vivo esophageal orthotopic model. The endogenous expression of PD-L1 was reduced by treatment with an EGFR inhibitor (erlotinib) or by the knockdown of EGFR. Moreover, the upregulation of PD-L1 by chemotherapy was also attenuated by the treatment with erlotinib and a MAPK/MEK inhibitor (AZD6244), suggesting that PD-L1 is regulated by the EGFR/ERK pathway in ESCC. The regulation of PD-L1 by the EGFR pathway was further supported by the correlation of PD-L1 and EGFR expression observed in the commercially available tissue microarray set (P value = .028). Taken together, the current study was the first to demonstrate the upregulation of PD-L1 by chemotherapy in ESCC and its regulation through the EGFR/ERK pathway. The results suggest the potential usefulness of combined conventional chemotherapy together with anti-PD-L1 immunotherapy to achieve better treatment outcome.
Collapse
Affiliation(s)
- Hoi Yan Ng
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong SAR
| | - Jian Li
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong SAR
| | - Lihua Tao
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong SAR
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, Griffith Medical School, Griffith University, Gold Coast, QLD 4222, Australia
| | - Kwok Wah Chan
- Department of Pathology, University of Hong Kong, Hong Kong, Hong Kong SAR
| | | | - Valen Zhuoyou Yu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong SAR
| | - Michael Wong
- Lee's Pharmaceutical (Hong Kong) Limited, Hong Kong SAR
| | - Benjamin Li
- Lee's Pharmaceutical (Hong Kong) Limited, Hong Kong SAR
| | - Maria Li Lung
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
47
|
Zhao Y, Dong Q, Li J, Zhang K, Qin J, Zhao J, Sun Q, Wang Z, Wartmann T, Jauch KW, Nelson PJ, Qin L, Bruns C. Targeting cancer stem cells and their niche: perspectives for future therapeutic targets and strategies. Semin Cancer Biol 2018; 53:139-155. [PMID: 30081228 DOI: 10.1016/j.semcancer.2018.08.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
A small subpopulation of cells within the bulk of tumors share features with somatic stem cells, in that, they are capable of self-renewal, they differentiate, and are highly resistant to conventional therapy. These cells have been referred to as cancer stem cells (CSCs). Recent reports support the central importance of a cancer stem cell-like niche that appears to help foster the generation and maintenance of CSCs. In response to signals provided by this microenvironment, CSCs express the tumorigenic characteristics that can drive tumor metastasis by the induction of epithelial-mesenchymal-transition (EMT) that in turn fosters the migration and recolonization of the cells as secondary tumors within metastatic niches. We summarize here recent advances in cancer stem cell research including the characterization of their genetic and epigenetic features, metabolic specialities, and crosstalk with aging-associated processes. Potential strategies for targeting CSCs, and their niche, by regulating CSCs plasticity, or therapeutic sensitivity is discussed. Finally, it is hoped that new strategies and related therapeutic approaches as outlined here may help prevent the formation of the metastatic niche, as well as counter tumor progression and metastatic growth.
Collapse
Affiliation(s)
- Yue Zhao
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany; Department of Surgery, Otto-von-Guericke University, Magdeburg, Germany.
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiahui Li
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Kaili Zhang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jie Qin
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Jiangang Zhao
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany; Department of General, Visceral und Vascular Surgery, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Qiye Sun
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Zhefang Wang
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Thomas Wartmann
- Department of Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Karl Walter Jauch
- Department of General, Visceral und Vascular Surgery, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Peter J Nelson
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - LunXiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Christiane Bruns
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
48
|
Chen L, You C, Jin X, Zhou L, Huang L, Wang Y. Cytoskeleton-associated protein 4 is a novel serodiagnostic marker for esophageal squamous-cell carcinoma. Onco Targets Ther 2018; 11:8221-8226. [PMID: 30538491 PMCID: PMC6251352 DOI: 10.2147/ott.s183790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Recent years have witnessed significant progress in the treatment of esophageal squamous-cell carcinoma (ESCC); however, the prognosis of ESCC is still unsatisfactory. Bio-markers are required to improve identification of high-risk populations and help management of ESCC. This study was to evaluate the role of serum CKAP4 in ESCC. Methods This longitudinal study recruited 207 ESCC patients and age-/sex-matched healthy controls. Circulating levels of CKAP4 were measured using ELISA kits, while the expression of CKAP4 in esophageal tissue was evaluated using Western blotting. Results Serum CKAP4 levels were higher in ESCC patients (380.2±171.3 pg/mL) than healthy controls (271.8±97.4 pg/mL; P<0.001). The area under the receiver-operating characteristic curve of serum CKAP4 levels to identify the presence of ESCC was 0.675 (95% CI 0.622–0.728; P<0.001). According to Youden’s index, the best cutoff value was 429.1 pg/mL (sensitivity 0.415 and specificity 0.995). Furthermore, after follow-up, multivariate analyses identified that pathological lymph node metastases were the poorest prognostic factor (HR 1.862, 95% CI 1.093–3.173; P=0.022), followed by serum CKAP4 (HR 1.437, 95% CI 1.025–2.014; P=0.035). When stratified by tertiles of serum CKAP4, subjects in the first tertile presented a mean survival time of 75.4 months (95% CI 68.0–81.9), which decreased significantly in the second tertile (73.8 months, 95% CI 61.4–86.3) and the third tertile (59.9 months, 95% CI 49.8–70.0, log-rank χ2=8.235; P=0.016). Conclusion These results suggested that serum CKAP4 could be a potential biomarker for clinical management of ESCC.
Collapse
Affiliation(s)
- Lei Chen
- Department of Oncology, Suqian People's Hospital, Nanjing Drum Tower Hospital Group, Suqian, China, .,Department of Oncology, Suqian Affiliated Hospital of Xuzhou Medical University, Suqian, China,
| | - Chuanwen You
- Department of Oncology, Suqian People's Hospital, Nanjing Drum Tower Hospital Group, Suqian, China, .,Department of Oncology, Suqian Affiliated Hospital of Xuzhou Medical University, Suqian, China,
| | - Xiaowei Jin
- Department of Oncology, Suqian People's Hospital, Nanjing Drum Tower Hospital Group, Suqian, China, .,Department of Oncology, Suqian Affiliated Hospital of Xuzhou Medical University, Suqian, China,
| | - Lei Zhou
- Department of Oncology, Suqian People's Hospital, Nanjing Drum Tower Hospital Group, Suqian, China, .,Department of Oncology, Suqian Affiliated Hospital of Xuzhou Medical University, Suqian, China,
| | - Liyou Huang
- Department of Oncology, Suqian People's Hospital, Nanjing Drum Tower Hospital Group, Suqian, China, .,Department of Oncology, Suqian Affiliated Hospital of Xuzhou Medical University, Suqian, China,
| | - Yanhua Wang
- Department of Oncology, Suqian People's Hospital, Nanjing Drum Tower Hospital Group, Suqian, China, .,Department of Oncology, Suqian Affiliated Hospital of Xuzhou Medical University, Suqian, China,
| |
Collapse
|
49
|
Harada K, Pool Pizzi M, Baba H, Shanbhag ND, Song S, Ajani JA. Cancer stem cells in esophageal cancer and response to therapy. Cancer 2018; 124:3962-3964. [PMID: 30368777 DOI: 10.1002/cncr.31697] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/27/2018] [Accepted: 06/08/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Kazuto Harada
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melissa Pool Pizzi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Honjo, Japan
| | - Namita D Shanbhag
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
50
|
Enrichment of cancer stem cells by agarose multi-well dishes and 3D spheroid culture. Cell Tissue Res 2018; 375:397-408. [PMID: 30244317 DOI: 10.1007/s00441-018-2920-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 09/05/2018] [Indexed: 01/03/2023]
Abstract
As the theory of cancer stem cells (CSCs) is maturing, CSC-targeted therapy is emerging as an important therapeutic strategy and seeking the ideal method for rapid enrichment and purification of CSCs has become crucial. So far, based on the known CSC phenotypes and biological characteristics, the methods for enrichment CSCs mainly include low adhesion culture, low oxygen culture, chemotherapy drug stimulation and side population (SP) sorting but these methods cannot realize quick enrichment of the desired CSCs. Herein, we adopt a novel method that efficiently enriches a certain amount of CSCs through agarose multi-well dishes using rubber micro-molds to make cancer cells into cell spheroids (3D). These 3D cancer cell spheroids in the proportions of expression of CSC biomarkers (single stain of CD44, CD44v6 and CD133 or double stain of both CD44 and CD133) were significantly higher than those of the conventional adherent culture (2D) using flow cytometry analysis. In addition, the expression levels of stemness transcription factors such as OCT4, NANOG and SOX2 in 3D were also significantly higher than that in 2D through Western blot (WB) and quantitative polymerase chain reaction (qPCR) assays. In addition, the CSCs in 3D could form colonies with different sizes in soft agar. In conclusion, we developed a new method to enrich some kinds of CSCs, which might be a benefit for future CSC-targeted therapy studies and anti-CSC drug screening applications.
Collapse
|