1
|
Pina C. Contributions of transcriptional noise to leukaemia evolution: KAT2A as a case-study. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230052. [PMID: 38432321 PMCID: PMC10909511 DOI: 10.1098/rstb.2023.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/04/2023] [Indexed: 03/05/2024] Open
Abstract
Transcriptional noise is proposed to participate in cell fate changes, but contributions to mammalian cell differentiation systems, including cancer, remain associative. Cancer evolution is driven by genetic variability, with modulatory or contributory participation of epigenetic variants. Accumulation of epigenetic variants enhances transcriptional noise, which can facilitate cancer cell fate transitions. Acute myeloid leukaemia (AML) is an aggressive cancer with strong epigenetic dependencies, characterized by blocked differentiation. It constitutes an attractive model to probe links between transcriptional noise and malignant cell fate regulation. Gcn5/KAT2A is a classical epigenetic transcriptional noise regulator. Its loss increases transcriptional noise and modifies cell fates in stem and AML cells. By reviewing the analysis of KAT2A-depleted pre-leukaemia and leukaemia models, I discuss that the net result of transcriptional noise is diversification of cell fates secondary to alternative transcriptional programmes. Cellular diversification can enable or hinder AML progression, respectively, by differentiation of cell types responsive to mutations, or by maladaptation of leukaemia stem cells. KAT2A-dependent noise-responsive genes participate in ribosome biogenesis and KAT2A loss destabilizes translational activity. I discuss putative contributions of perturbed translation to AML biology, and propose KAT2A loss as a model for mechanistic integration of transcriptional and translational control of noise and fate decisions. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Cristina Pina
- College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, London, UB8 3PH, United Kingdom
- CenGEM – Centre for Genome Engineering and Maintenance, Brunel University London, Kingston Lane, Uxbridge, London, UB8 3PH, United Kingdom
| |
Collapse
|
2
|
Shirbhate E, Singh V, Jahoriya V, Mishra A, Veerasamy R, Tiwari AK, Rajak H. Dual inhibitors of HDAC and other epigenetic regulators: A novel strategy for cancer treatment. Eur J Med Chem 2024; 263:115938. [PMID: 37989059 DOI: 10.1016/j.ejmech.2023.115938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/23/2023]
Abstract
A significant advancement in the field of epigenetic drug discovery has been evidenced in recent years. Epigenetic alterations are hereditary, nevertheless reversible variations to DNA or histone adaptations that regulate gene function individualistically of the fundamental sequence. The design and synthesis of various drugs targeting epigenetic regulators open a new door for epigenetic-targeted therapies to parade worthwhile therapeutic potential for haematological and solid malignancies. Several ongoing clinical trials on dual targeting strategy are being conducted comprising HDAC inhibitory component and an epigenetic regulating agent. In this perspective, the review discusses the pharmacological aspects of HDAC and other epigenetic regulating factors as dual inhibitors as an emerging alternative approach for combination therapies.
Collapse
Affiliation(s)
- Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, 495 009, CG, India
| | - Vaibhav Singh
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, 495 009, CG, India
| | - Varsha Jahoriya
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, 495 009, CG, India
| | - Aditya Mishra
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, 495 009, CG, India
| | - Ravichandran Veerasamy
- Faculty of Pharmacy, AIMST University, Semeling, 08100, Bedong, Kedah Darul Aman, Malaysia
| | - Amit K Tiwari
- Cancer & System Therapeutics, UAMS College of Pharmacy, UAMS - University of Arkansas for Medical Sciences, AR, United States
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, 495 009, CG, India.
| |
Collapse
|
3
|
Andrades A, Peinado P, Alvarez-Perez JC, Sanjuan-Hidalgo J, García DJ, Arenas AM, Matia-González AM, Medina PP. SWI/SNF complexes in hematological malignancies: biological implications and therapeutic opportunities. Mol Cancer 2023; 22:39. [PMID: 36810086 PMCID: PMC9942420 DOI: 10.1186/s12943-023-01736-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
Hematological malignancies are a highly heterogeneous group of diseases with varied molecular and phenotypical characteristics. SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling complexes play significant roles in the regulation of gene expression, being essential for processes such as cell maintenance and differentiation in hematopoietic stem cells. Furthermore, alterations in SWI/SNF complex subunits, especially in ARID1A/1B/2, SMARCA2/4, and BCL7A, are highly recurrent across a wide variety of lymphoid and myeloid malignancies. Most genetic alterations cause a loss of function of the subunit, suggesting a tumor suppressor role. However, SWI/SNF subunits can also be required for tumor maintenance or even play an oncogenic role in certain disease contexts. The recurrent alterations of SWI/SNF subunits highlight not only the biological relevance of SWI/SNF complexes in hematological malignancies but also their clinical potential. In particular, increasing evidence has shown that mutations in SWI/SNF complex subunits confer resistance to several antineoplastic agents routinely used for the treatment of hematological malignancies. Furthermore, mutations in SWI/SNF subunits often create synthetic lethality relationships with other SWI/SNF or non-SWI/SNF proteins that could be exploited therapeutically. In conclusion, SWI/SNF complexes are recurrently altered in hematological malignancies and some SWI/SNF subunits may be essential for tumor maintenance. These alterations, as well as their synthetic lethal relationships with SWI/SNF and non-SWI/SNF proteins, may be pharmacologically exploited for the treatment of diverse hematological cancers.
Collapse
Affiliation(s)
- Alvaro Andrades
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Paola Peinado
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain ,grid.451388.30000 0004 1795 1830Present Address: The Francis Crick Institute, London, UK
| | - Juan Carlos Alvarez-Perez
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Juan Sanjuan-Hidalgo
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Daniel J. García
- grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.4489.10000000121678994Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Granada, Spain
| | - Alberto M. Arenas
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Ana M. Matia-González
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Pedro P. Medina
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
4
|
Wang L, Qian J, Yang Y, Gu C. Novel insights into the impact of the SUMOylation pathway in hematological malignancies (Review). Int J Oncol 2021; 59:73. [PMID: 34368858 PMCID: PMC8360622 DOI: 10.3892/ijo.2021.5253] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022] Open
Abstract
The small ubiquitin-like modifier (SUMO) system serves an important role in the regulation of protein stability and function. SUMOylation sustains the homeostatic equilibrium of protein function in normal tissues and numerous types of tumor. Accumulating evidence has revealed that SUMO enzymes participate in carcinogenesis via a series of complex cellular or extracellular processes. The present review outlines the physiological characteristics of the SUMOylation pathway and provides examples of SUMOylation participation in different cancer types, including in hematological malignancies (leukemia, lymphoma and myeloma). It has been indicated that the SUMO pathway may influence chromosomal instability, cell cycle progression, apoptosis and chemical drug resistance. The present review also discussed the possible relationship between SUMOylation and carcinogenic mechanisms, and evaluated their potential as biomarkers and therapeutic targets in the diagnosis and treatment of hematological malignancies. Developing and investigating inhibitors of SUMO conjugation in the future may offer promising potential as novel therapeutic strategies.
Collapse
Affiliation(s)
- Ling Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| | - Jinjun Qian
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Ye Yang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| |
Collapse
|
5
|
Jin N, George TL, Otterson GA, Verschraegen C, Wen H, Carbone D, Herman J, Bertino EM, He K. Advances in epigenetic therapeutics with focus on solid tumors. Clin Epigenetics 2021; 13:83. [PMID: 33879235 PMCID: PMC8056722 DOI: 10.1186/s13148-021-01069-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/04/2021] [Indexed: 02/06/2023] Open
Abstract
Epigenetic ("above genetics") modifications can alter the gene expression without altering the DNA sequence. Aberrant epigenetic regulations in cancer include DNA methylation, histone methylation, histone acetylation, non-coding RNA, and mRNA methylation. Epigenetic-targeted agents have demonstrated clinical activities in hematological malignancies and therapeutic potential in solid tumors. In this review, we describe mechanisms of various epigenetic modifications, discuss the Food and Drug Administration-approved epigenetic agents, and focus on the current clinical investigations of novel epigenetic monotherapies and combination therapies in solid tumors.
Collapse
Affiliation(s)
- Ning Jin
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Tiffany L George
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Gregory A Otterson
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Claire Verschraegen
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Haitao Wen
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - David Carbone
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - James Herman
- Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Erin M Bertino
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA.
| | - Kai He
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA.
| |
Collapse
|
6
|
Abstract
Mouse models of human myeloid malignancies support the detailed and focused investigation of selected driver mutations and represent powerful tools in the study of these diseases. Carefully developed murine models can closely recapitulate human myeloid malignancies in vivo, enabling the interrogation of a number of aspects of these diseases including their preclinical course, interactions with the microenvironment, effects of pharmacological agents, and the role of non-cell-autonomous factors, as well as the synergy between co-occurring mutations. Importantly, advances in gene-editing technologies, particularly CRISPR-Cas9, have opened new avenues for the development and study of genetically modified mice and also enable the direct modification of mouse and human hematopoietic cells. In this review we provide a concise overview of some of the important mouse models that have advanced our understanding of myeloid leukemogenesis with an emphasis on models relevant to clonal hematopoiesis, myelodysplastic syndromes, and acute myeloid leukemia with a normal karyotype.
Collapse
Affiliation(s)
- Faisal Basheer
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - George Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
7
|
Saha N, Muntean AG. Insight into the multi-faceted role of the SUV family of H3K9 methyltransferases in carcinogenesis and cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1875:188498. [PMID: 33373647 DOI: 10.1016/j.bbcan.2020.188498] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
Growing evidence implicates histone H3 lysine 9 methylation in tumorigenesis. The SUV family of H3K9 methyltransferases, which include G9a, GLP, SETDB1, SETDB2, SUV39H1 and SUV39H2 deposit H3K9me1/2/3 marks at euchromatic and heterochromatic regions, catalyzed by their conserved SET domain. In cancer, this family of enzymes can be deregulated by genomic alterations and transcriptional mis-expression leading to alteration of transcriptional programs. In solid and hematological malignancies, studies have uncovered pro-oncogenic roles for several H3K9 methyltransferases and accordingly, small molecule inhibitors are being tested as potential therapies. However, emerging evidence demonstrate onco-suppressive roles for these enzymes in cancer development as well. Here, we review the role H3K9 methyltransferases play in tumorigenesis focusing on gene targets and biological pathways affected due to misregulation of these enzymes. We also discuss molecular mechanisms regulating H3K9 methyltransferases and their influence on cancer. Finally, we describe the impact of H3K9 methylation on therapy induced resistance in carcinoma. Converging evidence point to multi-faceted roles for H3K9 methyltransferases in development and cancer that encourages a deeper understanding of these enzymes to inform novel therapy.
Collapse
Affiliation(s)
- Nirmalya Saha
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Andrew G Muntean
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America.
| |
Collapse
|
8
|
Marando L, Huntly BJP. BETs Need Greens: Folate Deficiency and Resistance to MYC-Targeted Therapies. Cancer Discov 2020; 10:1791-1793. [PMID: 33262182 DOI: 10.1158/2159-8290.cd-20-1333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, small-molecule inhibitors of general transcriptional regulators such as BET proteins and the RNA-PolII-regulating kinase CDK7 have been shown to have efficacy in multiple solid and liquid tumors. An article in this issue of Cancer Discovery identifies a nongenetic mechanism of resistance related to deficiency of folate that leads, via increased S-adenosylhomocysteine and reduced repressive histone methylation, to reactivation of a transcriptional program which promotes AML cell survival under the pressure of BET inhibition.See related article by Su et al., p. 1894.
Collapse
Affiliation(s)
- Ludovica Marando
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom. Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Brian J P Huntly
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom. Department of Haematology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
9
|
Chen SL, Dai YJ, Hu F, Wang Y, Li H, Liang Y. Effects of Alternative Splicing Events on Acute Myeloid Leukemia. DNA Cell Biol 2020; 39:2040-2051. [PMID: 32915082 DOI: 10.1089/dna.2020.5392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
As suggested by an increasing amount of evidence, there is alternative splicing (AS) modification within malignancy, which is related to cancer occurrence and development. AS within acute myeloid leukemia (AML) has not yet been systematically analyzed yet. This study analyzed the transcriptomic profiling and corresponding clinical data from AML cases based on The Cancer Genome Atlas (TCGA). In addition, the prediction model, along with the splicing network, was used to analyze the prognosis for AML patients according to the seven different AS event types. Among the 34,984 AS events across the 8830 genes, 2896 AS events were detected among 1905 genes, showing marked correlation with the overall survival of patients. The risk scoring model based on all AS event types was the most efficient in identifying the prognosis for AML patients. Meanwhile, the area under the curve at 1-, 3-, 5-year were 0.852, 0.935, 0.955, respectively. At the same time, the splicing regulating network, which was constituted by 21 splicing factor genes as well as 32 AS events related to survival, was characterized. In conclusion, our predictive model constructed based on the AS events accurately predicts the survival for AML patients. In addition, the network between AS events and splicing factor is established, which may serve as a potential mechanism.
Collapse
Affiliation(s)
- Si-Liang Chen
- Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yu-Jun Dai
- Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fang Hu
- Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yun Wang
- Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Huan Li
- Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yang Liang
- Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Emerging evidence has shown that epigenetic derangements might drive and promote tumorigenesis in various types of malignancies and is prevalent in both B cell and T cell lymphomas. The purpose of this review is to explain how the epigenetic derangements result in a chromatin-remodeled state in lymphoma and contribute to the biology and clinical features of these tumors. RECENT FINDINGS Studies have explored on the functional role of epigenetic derangements in chromatin remodeling and lymphomagenesis. For example, the haploinsufficiency of CREBBP facilitates malignant transformation in mice and directly implicates the importance to re-establish the physiologic acetylation level. New findings identified 4 prominent DLBCL subtypes, including EZB-GC-DLBCL subtype that enriched in mutations of CREBBP, EP300, KMT2D, and SWI/SNF complex genes. EZB subtype has a worse prognosis than other GCB-tumors. Moreover, the action of the histone modifiers as well as chromatin-remodeling factors (e.g., SWI/SNF complex) cooperates to influence the chromatin state resulting in transcription repression. Drugs that alter the epigenetic landscape have been approved in T cell lymphoma. In line with this finding, epigenetic lesions in histone modifiers have recently been uncovered in this disease, further confirming the vulnerability to the therapies targeting epigenetic derangements. Modulating the chromatin state by epigenetic-modifying agents provides precision-medicine opportunities to patients with lymphomas that depend on this biology.
Collapse
Affiliation(s)
- Yuxuan Liu
- Division of Hematology and Oncology, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, USA
| | - Yulissa Gonzalez
- Division of Hematology and Oncology, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, USA
| | - Jennifer E Amengual
- Division of Hematology and Oncology, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, USA.
| |
Collapse
|
11
|
Cedzyński M, Świerzko AS. Components of the Lectin Pathway of Complement in Haematologic Malignancies. Cancers (Basel) 2020; 12:E1792. [PMID: 32635486 PMCID: PMC7408476 DOI: 10.3390/cancers12071792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
The complement system is activated cascadically via three distinct major routes: classical pathway (CP), alternative pathway (AP) or lectin pathway (LP). The unique factors associated with the latter are collectins (mannose-binding lectin, collectin-10, collectin-11), ficolins (ficolin-1, ficolin-2, ficolin-3) and proteins of the mannose-binding lectin-associated serine protease (MASP) family (MASP-1, MASP-2, MASP-3, MAp19, MAp44). Collectins and ficolins are both pattern-recognising molecules (PRM), reactive against pathogen-associated molecular patterns (PAMP) or danger-associated molecular patterns (DAMP). The MASP family proteins were first discovered as complexes with mannose-binding lectin (MBL) and therefore named MBL-associated serine proteases, but later, they were found to interact with ficolins, and later still, collectin-10 and collectin-11. As well as proteolytic enzymes (MASP-1, MASP-2, MASP-3), the group includes non-enzymatic factors (MAp19, MAp44). In this review, the association-specific factors of the lectin pathway with haematologic malignancies and related infections are discussed.
Collapse
Affiliation(s)
- Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 92-232 Łódź, Poland;
| | | |
Collapse
|
12
|
Abstract
OPINION STATEMENT Epigenetic mutations are frequent and pathogenic in select subtypes of lymphoma, and agents modulating DNA and histone methylation-such as inhibitors of DNMT and EZH2, respectively-have demonstrated promise in treating these diseases. In particular, lymphomas derived from the germinal center-GC-DLBCL, FL, and AITL-are all characterized by epigenetic derangements. In an effort to target these derangements, DNMT inhibitors have been investigated as a means of improving responsiveness to chemotherapy in DLBCL patients, or as monotherapy or in combination with other epigenetic agents in the treatment of TCL. Histone methyltransferase inhibitors have demonstrated effectiveness in R/R FL patients with EZH2-activating mutations. New treatment options that target the pathogenesis of disease are needed. HDAC inhibitors have been in the clinic for over a decade for the treatment of lymphoma, and now methyltransferase inhibitors are finding their niche for this disease.
Collapse
|
13
|
Huang L, Huang J, Huang J, Xue H, Liang Z, Wu J, Chen C. Nanomedicine - a promising therapy for hematological malignancies. Biomater Sci 2020; 8:2376-2393. [PMID: 32314759 DOI: 10.1039/d0bm00129e] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hematological tumors are a group of diseases defined as the clonal proliferation of blood-forming cells. In recent years, incidences of hematological malignancies have increased. Traditional methods of diagnosing hematological tumors are primarily based on observing morphological features under light microscopy, and molecular diagnostics and immunological indicators are powerful auxiliary diagnostic methods. However, traditional methods cannot efficiently identify tumor markers and limit the efficiency and accuracy of diagnosis. Although treatment methods have been improved continuously, chemotherapy remains a primary technique for the treatment of hematological tumors. Traditional chemotherapy exhibits poor drug selectivity and lacks good biocompatibility and pharmacokinetic properties. The therapeutic effect is not ideal and the risk of toxic side effects is high. The nanosize and surface charge properties of nanodrugs are effective in improving drug delivery efficiency. The high load and rich surface modification methods of nanomaterials provide various possibilities for improving the biocompatibility and pharmacokinetics of drugs, as well as the targeting of drugs. In addition, a nanomedicine loading platform can load multiple drugs simultaneously and design the optimal proportion of combined drug schemes, which can improve the efficacy of drugs and reduce the occurrence of drug resistance. With their unique physical and chemical properties and biological characteristics, the application of nanoparticles in the diagnosis and treatment of hematological tumors has received considerable attention. In this review, we summarize recent advances in the application of various types of nanostructures for the diagnosis and treatment of hematological malignancies, investigate the advantages of nanomedicine compared with the traditional diagnosis and treatment of hematological tumors, and discuss their biological security and application prospects.
Collapse
Affiliation(s)
- Lifen Huang
- Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Shah M, Rajha E, DiNardo C, Muckey E, Wierda WG, Yeung SCJ. Adverse Events of Novel Therapies for Hematologic Malignancies: What Emergency Physicians Should Know. Ann Emerg Med 2020; 75:264-286. [PMID: 31561995 DOI: 10.1016/j.annemergmed.2019.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023]
Abstract
In the past decade, rapid advances in therapeutic target discovery in hematologic malignancies have led to many clinical studies demonstrating efficacy of novel agents. Between 2014 and 2018, Food and Drug Administration approvals of new drugs and agents have increased, with greater than 2 dozen novel agents. Rapidly identifying the risk profiles of these cancer therapeutics that may present with acute toxicities and understanding the timing, sequence, duration, and treatment of disease processes are the most important challenges faced by practitioners in emergency medicine, even in nononcologic centers. The emergency medicine literature lags behind rapid advances in oncology, and guidelines for rapid recognition and management of these emerging entities are not familiar. In this Review Article, we discuss the most recent and clinically relevant developments in the arena of hematologic malignancies, further expanding on drug toxicities and their clinical presentations and offering suggestions for management. Specifically, we discuss immune-related adverse events after immune checkpoint inhibitor therapy (including myocarditis and hemophagocytic lymphohistiocytosis), chimeric antigen receptor-T cell therapy, cytokine release syndrome, chimeric antigen receptor-T cell-related encephalopathy syndrome, differentiation syndrome, sinusoid occlusion syndrome, QT-interval prolongation, and tumor lysis syndrome. Rapid advances in hematology and oncology will bring many new challenges for emergency health care providers in the near future; thus, the urgency to raise awareness among this community.
Collapse
Affiliation(s)
- Mohsin Shah
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Eva Rajha
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Courtney DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Erin Muckey
- Department of Emergency Medicine, NYU Langone Health, Bellevue Hospital Center, New York, NY
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sai-Ching J Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
15
|
Wingelhofer B, Somervaille TCP. Emerging Epigenetic Therapeutic Targets in Acute Myeloid Leukemia. Front Oncol 2019; 9:850. [PMID: 31552175 PMCID: PMC6743337 DOI: 10.3389/fonc.2019.00850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/19/2019] [Indexed: 01/23/2023] Open
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous malignancy for which treatment options have been largely limited to cytotoxic chemotherapy for the past four decades. Next-generation sequencing and other approaches have identified a spectrum of genomic and epigenomic alterations that contribute to AML initiation and maintenance. The key role of epigenetic modifiers and the reversibility of epigenetic changes have paved the way for evaluation of a new set of drug targets, and facilitated the design of novel candidate treatment strategies. More recently, seven new targeted therapies have been FDA-approved demonstrating successful implementation of the past decades' research. In this review, we will summarize the most recent advances in targeted therapeutics designed for a focused group of key epigenetic regulators in AML, outline their mechanism of action and their current status in clinical development. Furthermore, we will discuss promising new approaches for epigenetic targeted treatment in AML which are currently being tested in pre-clinical trials.
Collapse
Affiliation(s)
| | - Tim C. P. Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
16
|
Wang W, Tse-Dinh YC. Recent Advances in Use of Topoisomerase Inhibitors in Combination Cancer Therapy. Curr Top Med Chem 2019; 19:730-740. [PMID: 30931861 DOI: 10.2174/1568026619666190401113350] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/31/2019] [Accepted: 02/28/2019] [Indexed: 01/01/2023]
Abstract
Inhibitors targeting human topoisomerase I and topoisomerase II alpha have provided a useful chemotherapy option for the treatment of many patients suffering from a variety of cancers. While the treatment can be effective in many patient cases, use of these human topoisomerase inhibitors is limited by side-effects that can be severe. A strategy of employing the topoisomerase inhibitors in combination with other treatments can potentially sensitize the cancer to increase the therapeutic efficacy and reduce resistance or adverse side effects. The combination strategies reviewed here include inhibitors of DNA repair, epigenetic modifications, signaling modulators and immunotherapy. The ongoing investigations on cellular response to topoisomerase inhibitors and newly initiated clinical trials may lead to adoption of novel cancer therapy regimens that can effectively stop the proliferation of cancer cells while limiting the development of resistance.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| |
Collapse
|
17
|
Di Pietro A, Good-Jacobson KL. Disrupting the Code: Epigenetic Dysregulation of Lymphocyte Function during Infectious Disease and Lymphoma Development. THE JOURNAL OF IMMUNOLOGY 2019; 201:1109-1118. [PMID: 30082273 DOI: 10.4049/jimmunol.1800137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/13/2018] [Indexed: 12/21/2022]
Abstract
Lymphocyte differentiation and identity are controlled by signals in the microenvironment that ultimately mediate gene expression in the nucleus. Although much focus has centered on the strategic and often unique roles transcription factors play within lymphocyte subsets, it is increasingly clear that another level of molecular regulation is crucial for regulating gene expression programs. In particular, epigenetic regulation is critical for appropriately regulated temporal and cell-type-specific gene expression during immune responses. As such, mutations in epigenetic modifiers are linked with lymphomagenesis. Furthermore, certain infections can remodel the epigenome in host cells, either through the microenvironment or by directly co-opting host epigenetic mechanisms, leading to inappropriate gene expression and/or ineffective cellular behavior. This review will focus on how histone modifications and DNA methylation, and the enzymes that regulate the epigenome, underpin lymphocyte differentiation and function in health and disease.
Collapse
Affiliation(s)
- Andrea Di Pietro
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
18
|
Role of protein arginine methyltransferase 5 in human cancers. Biomed Pharmacother 2019; 114:108790. [PMID: 30903920 DOI: 10.1016/j.biopha.2019.108790] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) play important roles in protein methylation. PRMT5 is the major type II arginine methyltransferase that catalyzes the transfer of two methyl groups symmetrically to the arginine residues of either histone or non-histone proteins. In recent years, increasing evidence has shown that PRMT5, as an oncogene, plays an indispensable regulatory role in the pathological progression of several human cancers by promoting the proliferation, invasion, and migration of cancer cells. PRMT5 is overexpressed in many malignant tumors and plays an important role in the occurrence and development of cancer, which suggests that PRMT5 may become a potential biomarker or therapeutic target of cancer. This article reviews the biological function, mechanism, and clinical significance of PRMT5 in tumorigenesis.
Collapse
|
19
|
Abstract
Hypoxia signals directly to chromatin via histone demethylases to alter gene expression
Collapse
Affiliation(s)
- Paolo Gallipoli
- Wellcome Trust-MRC Cambridge Stem Cell Institute; Department of Haematology, University of Cambridge; and Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Brian J P Huntly
- Wellcome Trust-MRC Cambridge Stem Cell Institute; Department of Haematology, University of Cambridge; and Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, UK.
| |
Collapse
|
20
|
Arama C, Quin JE, Kouriba B, Östlund Farrants AK, Troye-Blomberg M, Doumbo OK. Epigenetics and Malaria Susceptibility/Protection: A Missing Piece of the Puzzle. Front Immunol 2018; 9:1733. [PMID: 30158923 PMCID: PMC6104485 DOI: 10.3389/fimmu.2018.01733] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/12/2018] [Indexed: 12/22/2022] Open
Abstract
A better understanding of stable changes in regulation of gene expression that result from epigenetic events is of great relevance in the development of strategies to prevent and treat infectious diseases. Histone modification and DNA methylation are key epigenetic mechanisms that can be regarded as marks, which ensure an accurate transmission of the chromatin states and gene expression profiles over generations of cells. There is an increasing list of these modifications, and the complexity of their action is just beginning to be understood. It is clear that the epigenetic landscape plays a fundamental role in most biological processes that involve the manipulation and expression of DNA. Although the molecular mechanism of gene regulation is relatively well understood, the hierarchical order of events and dependencies that lead to protection against infection remain largely unknown. In this review, we propose that host epigenetics is an essential, though relatively under studied, factor in the protection or susceptibility to malaria.
Collapse
Affiliation(s)
- Charles Arama
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Jaclyn E Quin
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Bourèma Kouriba
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | | | - Marita Troye-Blomberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ogobara K Doumbo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| |
Collapse
|