1
|
Chen H, Yang J, Yang Q, Jia Y, Guo X. Protein prenylation in mechanotransduction: implications for disease and therapy. Trends Pharmacol Sci 2025; 46:163-179. [PMID: 39818521 DOI: 10.1016/j.tips.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
The process by which cells translate external mechanical cues into intracellular biochemical signals involves intricate mechanisms that remain unclear. In recent years, research into post-translational modifications (PTMs) has offered valuable insights into this field, spotlighting protein prenylation as a crucial mechanism in cellular mechanotransduction and various human diseases. Protein prenylation, which involves the covalent attachment of isoprenoid groups to specific substrate proteins, profoundly affects the functions of key mechanotransduction proteins such as Rho, Ras, and lamins. This review provides the first comprehensive examination of the connections between prenylation and mechanotransduction, exploring both the mechanistic details and its impact on mechanosensitive cellular behaviors. We further highlight recent evidence linking protein prenylation to diseases associated with disrupted mechanical homeostasis, and outline emerging targeted therapeutic strategies.
Collapse
Affiliation(s)
- Heng Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Yang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qingzhen Yang
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China; MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuanbo Jia
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China; Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an 710004, P.R. China; TFX Group-Xi'an Jiaotong University Institute of Life Health, Xi'an 710049, P.R. China.
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
2
|
Lei ZN, Teng QX, Koya J, Liu Y, Chen Z, Zeng L, Chen ZS, Fang S, Wang J, Liu Y, Pan Y. The correlation between cancer stem cells and epithelial-mesenchymal transition: molecular mechanisms and significance in cancer theragnosis. Front Immunol 2024; 15:1417201. [PMID: 39403386 PMCID: PMC11471544 DOI: 10.3389/fimmu.2024.1417201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/06/2024] [Indexed: 01/03/2025] Open
Abstract
The connections between cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) is critical in cancer initiation, progression, metastasis, and therapy resistance, making it a focal point in cancer theragnosis. This review provides a panorama of associations and regulation pathways between CSCs and EMT, highlighting their significance in cancer. The molecular mechanisms underlined EMT are thoroughly explored, including the involvement of key transcription factors and signaling pathways. In addition, the roles of CSCs and EMT in tumor biology and therapy resistance, is further examined in this review. The clinical implications of CSCs-EMT interplay are explored, including identifying mesenchymal-state CSC subpopulations using advanced research methods and developing targeted therapies such as inhibitors and combination treatments. Overall, understanding the reciprocal relationship between EMT and CSCs holds excellent potential for informing the development of personalized therapies and ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Jagadish Koya
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Yangruiyu Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zizhou Chen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Leli Zeng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Shuo Fang
- Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jinxiang Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuchen Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Yang Q, Xue B, Liu F, Lu Y, Tang J, Yan M, Wu Q, Chen R, Zhou A, Liu L, Liu J, Qu C, Wu Q, Fu M, Zhong J, Dong J, Chen S, Wang F, Zhou Y, Zheng J, Peng W, Shang J, Chen X. Farnesyltransferase inhibitor lonafarnib suppresses respiratory syncytial virus infection by blocking conformational change of fusion glycoprotein. Signal Transduct Target Ther 2024; 9:144. [PMID: 38853183 PMCID: PMC11163014 DOI: 10.1038/s41392-024-01858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Respiratory syncytial virus (RSV) is the major cause of bronchiolitis and pneumonia in young children and the elderly. There are currently no approved RSV-specific therapeutic small molecules available. Using high-throughput antiviral screening, we identified an oral drug, the prenylation inhibitor lonafarnib, which showed potent inhibition of the RSV fusion process. Lonafarnib exhibited antiviral activity against both the RSV A and B genotypes and showed low cytotoxicity in HEp-2 and human primary bronchial epithelial cells (HBEC). Time-of-addition and pseudovirus assays demonstrated that lonafarnib inhibits RSV entry, but has farnesyltransferase-independent antiviral efficacy. Cryo-electron microscopy revealed that lonafarnib binds to a triple-symmetric pocket within the central cavity of the RSV F metastable pre-fusion conformation. Mutants at the RSV F sites interacting with lonafarnib showed resistance to lonafarnib but remained fully sensitive to the neutralizing monoclonal antibody palivizumab. Furthermore, lonafarnib dose-dependently reduced the replication of RSV in BALB/c mice. Collectively, lonafarnib could be a potential fusion inhibitor for RSV infection.
Collapse
Affiliation(s)
- Qi Yang
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Bao Xue
- Guangzhou National Laboratory, Guangzhou, 510005, China
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fengjiang Liu
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yongzhi Lu
- Guangzhou National Laboratory, Guangzhou, 510005, China
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jielin Tang
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mengrong Yan
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qiong Wu
- Guangzhou National Laboratory, Guangzhou, 510005, China
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ruyi Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Anqi Zhou
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lijie Liu
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Junjun Liu
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Changbin Qu
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Qingxin Wu
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Muqing Fu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jiayi Zhong
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jianwei Dong
- Guangzhou National Laboratory, Guangzhou, 510005, China
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Sijie Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Fan Wang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuan Zhou
- Guangzhou National Laboratory, Guangzhou, 510005, China
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jie Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou lnstitute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Wei Peng
- Guangzhou National Laboratory, Guangzhou, 510005, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Jinsai Shang
- Guangzhou National Laboratory, Guangzhou, 510005, China.
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
4
|
Miyashita H, Kato S, Hong DS. KRAS G12C inhibitor combination therapies: current evidence and challenge. Front Oncol 2024; 14:1380584. [PMID: 38756650 PMCID: PMC11097198 DOI: 10.3389/fonc.2024.1380584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Although KRAS G12C inhibitors have proven that KRAS is a "druggable" target of cancer, KRAS G12C inhibitor monotherapies have demonstrated limited clinical efficacy due to primary and acquired resistance mechanisms. Multiple combinations of KRAS G12C inhibitors with other targeted therapies, such as RTK, SHP2, and MEK inhibitors, have been investigated in clinical trials to overcome the resistance. They have demonstrated promising efficacy especially by combining KRAS G12C and EGFR inhibitors for KRAS G12C-mutated colorectal cancer. Many clinical trials of combinations of KRAS G12C inhibitors with other targeted therapies, such as SOS1, ERK, CDK4/6, and wild-type RAS, are ongoing. Furthermore, preclinical data have suggested additional promising KRAS G12C combinations with YAP/TAZ-TEAD inhibitors, FAK inhibitors, and farnesyltransferase inhibitors. The combinations of KRAS G12C inhibitors with immunotherapies and chemotherapies have also been investigated, and the preliminary results were reported. More recently, KRAS-targeted therapies not limited to KRAS G12C are being developed, potentially broadening the treatment landscape of KRAS-mutated cancers. Rationally combining KRAS inhibitors with other therapeutics is likely to play a significant role in future treatment for KRAS-mutated solid tumors.
Collapse
Affiliation(s)
- Hirotaka Miyashita
- Hematology and Oncology, Dartmouth Cancer Center, Lebanon, NH, United States
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego Moores Cancer Center, La Jolla, CA, United States
| | - David S. Hong
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
5
|
Pasdaran A, Grice ID, Hamedi A. A review of natural products and small-molecule therapeutics acting on central nervous system malignancies: Approaches for drug development, targeting pathways, clinical trials, and challenges. Drug Dev Res 2024; 85:e22180. [PMID: 38680103 DOI: 10.1002/ddr.22180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
In 2021, the World Health Organization released the fifth edition of the central nervous system (CNS) tumor classification. This classification uses histopathology and molecular pathogenesis to group tumors into more biologically and molecularly defined entities. The prognosis of brain cancer, particularly malignant tumors, has remained poor worldwide, approximately 308,102 new cases of brain and other CNS tumors were diagnosed in the year 2020, with an estimated 251,329 deaths. The cost and time-consuming nature of studies to find new anticancer agents makes it necessary to have well-designed studies. In the present study, the pathways that can be targeted for drug development are discussed in detail. Some of the important cellular origins, signaling, and pathways involved in the efficacy of bioactive molecules against CNS tumorigenesis or progression, as well as prognosis and common approaches for treatment of different types of brain tumors, are reviewed. Moreover, different study tools, including cell lines, in vitro, in vivo, and clinical trial challenges, are discussed. In addition, in this article, natural products as one of the most important sources for finding new chemotherapeutics were reviewed and over 700 reported molecules with efficacy against CNS cancer cells are gathered and classified according to their structure. Based on the clinical trials that have been registered, very few of these natural or semi-synthetic derivatives have been studied in humans. The review can help researchers understand the involved mechanisms and design new goal-oriented studies for drug development against CNS malignancies.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Irwin Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
- School of Medical Science, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Pekel H, Guzel M, Sensoy O. Mechanistic insight into impact of phosphorylation on the enzymatic steps of farnesyltransferase. Protein Sci 2022; 31:e4414. [PMID: 36173156 PMCID: PMC9601885 DOI: 10.1002/pro.4414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/27/2022] [Accepted: 06/21/2022] [Indexed: 11/08/2022]
Abstract
Farnesyltransferase (FTase) is a heterodimeric enzyme, which catalyzes covalent attachment of the farnesyl group to target proteins, thus coordinating their trafficking in the cell. FTase has been demonstrated to be highly expressed in cancer and neurological diseases; hence considered as a hot target for therapeutic purposes. However, due to the nonspecific inhibition, there has been only one inhibitor that could be translated into the clinic. Importantly, it has been shown that phosphorylation of the α-subunit of FTase increases the activity of the enzyme in certain diseases. As such, understanding the impact of phosphorylation on dynamics of FTase provides a basis for targeting a specific state of the enzyme that emerges under pathological conditions. To this end, we performed 18 μs molecular dynamics (MD) simulations using complexes of (non)-phosphorylated FTase that are representatives of the farnesylation reaction. We demonstrated that phosphorylation modulated the catalytic site by rearranging interactions between farnesyl pyrophosphate (FPP)/peptide substrate, catalytic Zn2+ ion/coordinating residues and hot-spot residues at the interface of the subunits, all of which led to the stabilization of the substrate and facilitation of the release of the product, thus collectively expediting the reaction rate. Importantly, we also identified a likely allosteric pocket on the phosphorylated FTase, which might be used for specific targeting of the enzyme. To the best of our knowledge, this is the first study that systematically examines the impact of phosphorylation on the enzymatic reaction steps, hence opens up new avenues for drug discovery studies that focus on targeting phosphorylated FTase.
Collapse
Affiliation(s)
- Hanife Pekel
- Department of Pharmacy ServicesVocational School of Health Services, Istanbul Medipol UniversityIstanbulTurkey
- Regenerative and Restorative Medicine Research Center (REMER)Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol UniversityIstanbulTurkey
| | - Mustafa Guzel
- Department of Medical Pharmacology/International School of MedicineIstanbul Medipol UniversityIstanbulTurkey
- Center of Drug Discovery and DevelopmentResearch Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol UniversityIstanbulTurkey
| | - Ozge Sensoy
- Regenerative and Restorative Medicine Research Center (REMER)Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol UniversityIstanbulTurkey
- Department of Computer Engineering/School of Engineering and Natural SciencesIstanbul Medipol UniversityIstanbulTurkey
| |
Collapse
|
7
|
Huang L, Chen W, Wei L, Su Y, Liang J, Lian H, Wang H, Long F, Yang F, Gao S, Tan Z, Xu J, Zhao J, Liu Q. Lonafarnib Inhibits Farnesyltransferase via Suppressing ERK Signaling Pathway to Prevent Osteoclastogenesis in Titanium Particle-Induced Osteolysis. Front Pharmacol 2022; 13:848152. [PMID: 35300293 PMCID: PMC8921770 DOI: 10.3389/fphar.2022.848152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
Wear debris after total joint arthroplasty can attract the recruitment of macrophages, which release pro-inflammatory substances, triggering the activation of osteoclasts, thereby leading to periprosthetic osteolysis (PPOL) and aseptic loosening. However, the development of pharmacological strategies targeting osteoclasts to prevent periprosthetic osteolysis has not been fruitful. In this study, we worked toward researching the effects and mechanisms of a farnesyltransferase (FTase) inhibitor Lonafarnib (Lon) on receptor activator of nuclear factor κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis and bone resorption, as well as the impacts of Lon on titanium particle-induced osteolysis. To investigate the impacts of Lon on bone resorption and osteoclastogenesis in vitro, bone marrow macrophages were incubated and stimulated with RANKL and macrophage colony-stimulating factor (M-CSF). The influence of Lon on osteolysis prevention in vivo was examined utilizing a titanium particle-induced mouse calvarial osteolysis model. The osteoclast-relevant genes expression was explored by real-time quantitative PCR. Immunofluorescence was used to detect intracellular localization of nuclear factor of activated T cells 1 (NFATc1). SiRNA silence assay was applied to examine the influence of FTase on osteoclasts activation. Related signaling pathways, including NFATc1 signaling, NF-κB, mitogen-activated protein kinases pathways were identified by western blot assay. Lon was illustrated to suppress bone resorptive function and osteoclastogenesis in vitro, and it also reduced the production of pro-inflammatory substances and prevented titanium particle-induced osteolysis in vivo. Lon decreased the expression of osteoclast-relevant genes and suppressed NFATc1 nuclear translocation and auto-amplification. Mechanistically, Lon dampened FTase, and inhibition of FTase reduced osteoclast formation by suppressing ERK signaling. Lon is a promising treatment option for osteoclast-related osteolysis diseases including periprosthetic osteolysis by targeted inhibition of FTase through suppressing ERK signaling.
Collapse
Affiliation(s)
- Linke Huang
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Orthopaedics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Weiwei Chen
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Linhua Wei
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China.,The Affiliated Nanning Infectious Disease Hospital of Guangxi Medical University, The Fourth People's Hospital of Nanning, Nanning, China
| | - Yuangang Su
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Jiamin Liang
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Haoyu Lian
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Hui Wang
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Feng Long
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Fan Yang
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Shiyao Gao
- Department of Orthopaedics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhen Tan
- Department of Orthopaedics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Qian Liu
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Li Y, Hu L, Xu C. Kirsten rat sarcoma inhibitors in clinical development against nonsmall cell lung cancer. Curr Opin Oncol 2022; 34:66-76. [PMID: 34690284 DOI: 10.1097/cco.0000000000000808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW The unique structure made Kirsten rat sarcoma (KRAS) 'undruggable' for quite an extended period. The functional mechanism of this small protein is well illustrated. However, there is no precision medicine for nonsmall cell lung cancer (NSCLC) patients burden with KRAS mutation. The attempts made by scientists to make challenge history against KRAS mutation and their druggable targets are worth elucidating. RECENT FINDINGS The appearance of orphan drug AMG510 in the market specifically targeting KRASG12C is a tremendous breakthrough. Several KRAS inhibitors are under development now. More studies focus on combo treatment of KRAS inhibition and immune checkpoint inhibitors (ICIs). Recent preclinical and clinical investigations have been reported that NSCLC patients with KRAS mutation can benefit from ICIs. SUMMARY The current review elucidates the development of KRAS inhibitors from basic research to clinical precision medicines. We retrospectively analyze the development of KRAS mutation targeting drugs and discuss the investigations for future development of KRAS inhibitors.
Collapse
Affiliation(s)
- Yunchang Li
- Integrative Cancer Center and Cancer Clinical Research Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | | | | |
Collapse
|
9
|
Neganova M, Liu J, Aleksandrova Y, Klochkov S, Fan R. Therapeutic Influence on Important Targets Associated with Chronic Inflammation and Oxidative Stress in Cancer Treatment. Cancers (Basel) 2021; 13:6062. [PMID: 34885171 PMCID: PMC8657135 DOI: 10.3390/cancers13236062] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 01/17/2023] Open
Abstract
Chronic inflammation and oxidative stress are the interconnected pathological processes, which lead to cancer initiation and progression. The growing level of oxidative and inflammatory damage was shown to increase cancer severity and contribute to tumor spread. The overproduction of reactive oxygen species (ROS), which is associated with the reduced capacity of the endogenous cell defense mechanisms and/or metabolic imbalance, is the main contributor to oxidative stress. An abnormal level of ROS was defined as a predisposing factor for the cell transformation that could trigger pro-oncogenic signaling pathways, induce changes in gene expression, and facilitate accumulation of mutations, DNA damage, and genomic instability. Additionally, the activation of transcription factors caused by a prolonged oxidative stress, including NF-κB, p53, HIF1α, etc., leads to the expression of several genes responsible for inflammation. The resulting hyperactivation of inflammatory mediators, including TNFα, TGF-β, interleukins, and prostaglandins can contribute to the development of neoplasia. Pro-inflammatory cytokines were shown to trigger adaptive reactions and the acquisition of resistance by tumor cells to apoptosis, while promoting proliferation, invasion, and angiogenesis. Moreover, the chronic inflammatory response leads to the excessive production of free radicals, which further aggravate the initiated reactions. This review summarizes the recent data and progress in the discovery of mechanisms that associate oxidative stress and chronic inflammation with cancer onset and metastasis. In addition, the review provides insights for the development of therapeutic approaches and the discovery of natural substances that will be able to simultaneously inhibit several key oncological and inflammation-related targets.
Collapse
Affiliation(s)
- Margarita Neganova
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Sergey Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
10
|
Schirer A, Rouch A, Marcheteau E, Stojko J, Sophie Landron, Jeantet E, Fould B, Ferry G, Boutin JA. Further assessments of ligase LplA-mediated modifications of proteins in vitro and in cellulo. Mol Biol Rep 2021; 49:149-161. [PMID: 34718939 DOI: 10.1007/s11033-021-06853-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/23/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Posttranslational modifications of proteins are catalyzed by a large family of enzymes catalyzing many chemical modifications. One can hijack the natural use of those enzymes to modify targeted proteins with synthetic chemical moieties. The lipoic acid ligase LplA mutants can be used to introduce onto the lysine sidechain lipoic acid moiety synthetic analogues. Substrate protein candidates of the ligase must obey a few a priori rules. METHODS AND RESULTS In the present report, we technically detailed the use of a cell line stably expressing both the ligase and a model protein (thioredoxin). Although the goal can be reach, and the protein visualized in situ, many experimental difficulties must be fixed. The sequence of events comprises (i) in cellulo labeling of the target protein with a N3-lipoic acid derivative catalyzed by the mutant ligase, (ii) the further introduction by click chemistry onto this lysine sidechain of a fluorophore and (iii) the following of the labeled protein in living cells. One of the main difficulties was to assess the click chemistry step onto the living cells, because images from both control and experimental cells were similar. Alternatively, we describe at that stage, the preferred use of another technique: the Halo-Tag one that led to the obtention of clear images of the targeted protein in its cellular context. Although the ligase-mediated labeling of protein in situ is a rich domain for which many cellular tools must be developed, many difficulties must be considered before entering a systematic use of this approach. CONCLUSIONS In the present contribution, we added several steps of analytical characterization, both in vitro and in cellulo that were previously lacking. Furthermore, we show that the use of the click chemistry should be manipulated with care, as the claimed specificity might be not complete whenever living cells are used. Finally, we added another approach-the Halo Tag-to complete the previously suggested approaches for labelling proteins in cells, as we found difficult to strictly apply the previously reported methodology.
Collapse
Affiliation(s)
- Alicia Schirer
- PEX Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France.,, Techno Parc de Thudinie 2, 6536, Thuin, Belgium
| | - Anne Rouch
- PEX Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Estelle Marcheteau
- PEX Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Johann Stojko
- PEX Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Sophie Landron
- PEX Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Elodie Jeantet
- PEX Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Benjamin Fould
- PEX Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Gilles Ferry
- PEX Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Jean A Boutin
- PEX Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France. .,Institut de Recherches Internationales Servier, 50 rue Carnot, 92284, Suresnes, France. .,Faculté de Pharmacie, PHARMADEV (Pharmacochimie et Biologie Pour le Développement), Université Toulouse 3 Paul Sabatier, 35 chemin des maraîchers, 31062, Toulouse Cedex 9, France.
| |
Collapse
|
11
|
Safavi A, Ghodousi ES, Ghavamizadeh M, Sabaghan M, Azadbakht O, veisi A, Babaei H, Nazeri Z, Darabi MK, Zarezade V. Computational investigation of novel farnesyltransferase inhibitors using 3D-QSAR pharmacophore modeling, virtual screening, molecular docking and molecular dynamics simulation studies: A new insight into cancer treatment. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Sharma B. Meet the Editorial Board Member. CURRENT DRUG THERAPY 2021. [DOI: 10.2174/157488551602210604092815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Bechan Sharma
- Department of Biochemistry University of Allahabad, Allahabad-UP, India
| |
Collapse
|
13
|
Gendaszewska-Darmach E, Garstka MA, Błażewska KM. Targeting Small GTPases and Their Prenylation in Diabetes Mellitus. J Med Chem 2021; 64:9677-9710. [PMID: 34236862 PMCID: PMC8389838 DOI: 10.1021/acs.jmedchem.1c00410] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
A fundamental role
of pancreatic β-cells to maintain proper
blood glucose level is controlled by the Ras superfamily of small
GTPases that undergo post-translational modifications, including prenylation.
This covalent attachment with either a farnesyl or a geranylgeranyl
group controls their localization, activity, and protein–protein
interactions. Small GTPases are critical in maintaining glucose homeostasis
acting in the pancreas and metabolically active tissues such as skeletal
muscles, liver, or adipocytes. Hyperglycemia-induced upregulation
of small GTPases suggests that inhibition of these pathways deserves
to be considered as a potential therapeutic approach in treating T2D.
This Perspective presents how inhibition of various points in the
mevalonate pathway might affect protein prenylation and functioning
of diabetes-affected tissues and contribute to chronic inflammation
involved in diabetes mellitus (T2D) development. We also demonstrate
the currently available molecular tools to decipher the mechanisms
linking the mevalonate pathway’s enzymes and GTPases with diabetes.
Collapse
Affiliation(s)
- Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 4/10, 90-924 Łódź, Poland
| | - Malgorzata A Garstka
- Core Research Laboratory, Department of Endocrinology, Department of Tumor and Immunology, Precision Medical Institute, Western China Science and Technology Innovation Port, School of Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, DaMingGong, Jian Qiang Road, Wei Yang district, Xi'an 710016, China
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| |
Collapse
|
14
|
Khojasteh Poor F, Keivan M, Ramazii M, Ghaedrahmati F, Anbiyaiee A, Panahandeh S, Khoshnam SE, Farzaneh M. Mini review: The FDA-approved prescription drugs that target the MAPK signaling pathway in women with breast cancer. Breast Dis 2021; 40:51-62. [PMID: 33896802 DOI: 10.3233/bd-201063] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) is the most common cancer and the prevalent type of malignancy among women. Multiple risk factors, including genetic changes, biological age, dense breast tissue, and obesity are associated with BC. The mitogen-activated protein kinases (MAPK) signaling pathway has a pivotal role in regulating biological functions such as cell proliferation, differentiation, apoptosis, and survival. It has become evident that the MAPK pathway is associated with tumorigenesis and may promote breast cancer development. The MAPK/RAS/RAF cascade is closely associated with breast cancer. RAS signaling can enhance BC cell growth and progression. B-Raf is an important kinase and a potent RAF isoform involved in breast tumor initiation and differentiation. Depending on the reasons for cancer, there are different strategies for treatment of women with BC. Till now, several FDA-approved treatments have been investigated that inhibit the MAPK pathway and reduce metastatic progression in breast cancer. The most common breast cancer drugs that regulate or inhibit the MAPK pathway may include Farnesyltransferase inhibitors (FTIs), Sorafenib, Vemurafenib, PLX8394, Dabrafenib, Ulixertinib, Simvastatin, Alisertib, and Teriflunomide. In this review, we will discuss the roles of the MAPK/RAS/RAF/MEK/ERK pathway in BC and summarize the FDA-approved prescription drugs that target the MAPK signaling pathway in women with BC.
Collapse
Affiliation(s)
- Fatemeh Khojasteh Poor
- Department of Obstetrics and Gynecology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mona Keivan
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Ramazii
- Kerman University of Medical Sciences, University of Kerman, Kerman, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samira Panahandeh
- School of Health, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
15
|
Chubarev VN, Beeraka NM, Sinelnikov MY, Bulygin KV, Nikolenko VN, Mihaylenko E, Tarasov VV, Mikhaleva LM, Poltronieri P, Viswanadha VP, Somasundaram SG, Kirkland CE, Chen K, Liu J, Fan R, Kamal MA, Mironov AA, Madhunapantula SV, Pretorius E, Dindyaev SV, Muresanu C, Sukocheva OA. Health Science Community Will Miss This Bright and Uniting Star: In Memory of Professor Gjumrakch Aliev, M.D, Ph.D. Cancers (Basel) 2021; 13:1965. [PMID: 33921833 PMCID: PMC8072812 DOI: 10.3390/cancers13081965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/15/2021] [Indexed: 02/05/2023] Open
Abstract
It is with deep sadness that we offer our memorial on the unexpected demise of our dear colleague, Professor Gjumrakch Aliev [...].
Collapse
Affiliation(s)
- Vladimir N. Chubarev
- Faculty of Pharmacology, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia; (V.N.C.); (N.M.B.); (M.Y.S.); (K.V.B.); (V.N.N.); (E.M.); (V.V.T.)
| | - Narasimha M. Beeraka
- Faculty of Pharmacology, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia; (V.N.C.); (N.M.B.); (M.Y.S.); (K.V.B.); (V.N.N.); (E.M.); (V.V.T.)
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Bannimantapa, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka 570 015, India;
| | - Mikhail Y. Sinelnikov
- Faculty of Pharmacology, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia; (V.N.C.); (N.M.B.); (M.Y.S.); (K.V.B.); (V.N.N.); (E.M.); (V.V.T.)
| | - Kirill V. Bulygin
- Faculty of Pharmacology, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia; (V.N.C.); (N.M.B.); (M.Y.S.); (K.V.B.); (V.N.N.); (E.M.); (V.V.T.)
- Faculty of Medicine, M.V. Lomonosov Moscow State University, 117192 Moscow, Russia
| | - Vladimir N. Nikolenko
- Faculty of Pharmacology, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia; (V.N.C.); (N.M.B.); (M.Y.S.); (K.V.B.); (V.N.N.); (E.M.); (V.V.T.)
- Faculty of Medicine, M.V. Lomonosov Moscow State University, 117192 Moscow, Russia
| | - Elizaveta Mihaylenko
- Faculty of Pharmacology, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia; (V.N.C.); (N.M.B.); (M.Y.S.); (K.V.B.); (V.N.N.); (E.M.); (V.V.T.)
| | - Vadim V. Tarasov
- Faculty of Pharmacology, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia; (V.N.C.); (N.M.B.); (M.Y.S.); (K.V.B.); (V.N.N.); (E.M.); (V.V.T.)
| | | | - Palmiro Poltronieri
- Institute of Sciences of Food Productions, National Research Council of Italy, via Monteroni km 7, 73100 Lecce, Italy;
| | | | - Siva G. Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV 26426, USA; (S.G.S.); (C.E.K.)
| | - Cecil E. Kirkland
- Department of Biological Sciences, Salem University, Salem, WV 26426, USA; (S.G.S.); (C.E.K.)
| | - Kuo Chen
- Cancer Center, Department of Radiation Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China; (K.C.); (J.L.); (R.F.)
| | - Junqi Liu
- Cancer Center, Department of Radiation Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China; (K.C.); (J.L.); (R.F.)
| | - Ruitai Fan
- Cancer Center, Department of Radiation Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China; (K.C.); (J.L.); (R.F.)
| | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, The Frontier Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China;
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Alexander A. Mironov
- Laboratory of Electron Microscopy, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy;
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Bannimantapa, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka 570 015, India;
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa;
| | - Sergey V. Dindyaev
- Department of Histology, Embryology & Cytology, Pediatric Faculty, Federal State Budgetary Educational Institution of Higher Education “Ivanovo State Medical Academy” of the Ministry of Healthcare of the Russian Federation (FSBEI HE IvSMA MOH Russia), 8 Sheremetyevsky Ave., 153012 Ivanovo, Russia;
| | - Cristian Muresanu
- Research Center for Applied Biotechnology in Diagnosis and Molecular Therapies, Str. Trifoiului nr. 12 G, 400478 Cluj-Napoca, Romania;
| | - Olga A. Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University of South Australia, Adelaide 5001, Australia
| |
Collapse
|
16
|
Klochkov SG, Neganova ME, Aleksandrova YR. Promising Molecular Targets for Design of Antitumor Drugs Based on Ras Protein Signaling Cascades. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020050118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Chang HY, Cheng TH, Wang AHJ. Structure, catalysis, and inhibition mechanism of prenyltransferase. IUBMB Life 2020; 73:40-63. [PMID: 33246356 PMCID: PMC7839719 DOI: 10.1002/iub.2418] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/02/2020] [Accepted: 11/14/2020] [Indexed: 12/31/2022]
Abstract
Isoprenoids, also known as terpenes or terpenoids, represent a large family of natural products composed of five‐carbon isopentenyl diphosphate or its isomer dimethylallyl diphosphate as the building blocks. Isoprenoids are structurally and functionally diverse and include dolichols, steroid hormones, carotenoids, retinoids, aromatic metabolites, the isoprenoid side‐chain of ubiquinone, and isoprenoid attached signaling proteins. Productions of isoprenoids are catalyzed by a group of enzymes known as prenyltransferases, such as farnesyltransferases, geranylgeranyltransferases, terpenoid cyclase, squalene synthase, aromatic prenyltransferase, and cis‐ and trans‐prenyltransferases. Because these enzymes are key in cellular processes and metabolic pathways, they are expected to be potential targets in new drug discovery. In this review, six distinct subsets of characterized prenyltransferases are structurally and mechanistically classified, including (1) head‐to‐tail prenyl synthase, (2) head‐to‐head prenyl synthase, (3) head‐to‐middle prenyl synthase, (4) terpenoid cyclase, (5) aromatic prenyltransferase, and (6) protein prenylation. Inhibitors of those enzymes for potential therapies against several diseases are discussed. Lastly, recent results on the structures of integral membrane enzyme, undecaprenyl pyrophosphate phosphatase, are also discussed.
Collapse
Affiliation(s)
- Hsin-Yang Chang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Tien-Hsing Cheng
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
18
|
Targeting KRAS mutant cancers by preventing signaling transduction in the MAPK pathway. Eur J Med Chem 2020; 211:113006. [PMID: 33228976 DOI: 10.1016/j.ejmech.2020.113006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/06/2023]
Abstract
KRAS genes are the most commonly mutated oncogenes in cancer. Unfortunately, effective therapeutic strategies for targeting KRAS mutant cancers have proven to be difficult to obtain. A key reason for this setback is due to the lack of success direct KRAS mutant inhibitors have received. Researchers have turned their efforts away from targeting the KRAS nucleotide-binding site directly and towards targeting other areas of the MAPK signaling pathway to block KRAS function. Researchers found that inhibiting enzymes and protein-protein interactions involved in the MAPK signaling pathway inhibit the activation of KRAS mutant therefore can lead to a potential therapeutic for KRAS mutated cancers. Throughout the past two decades, various indirect inhibitors have been designed and tested. EGFR and MEK inhibitors have presented with less success; however, significant advances have been made when targeting the plasma membrane localization process and the allosteric site of KRAS mutant. Farnesyltransferase and allosteric inhibitors have both advanced to human clinical trials. This comprehensive review presents the most recent developments of direct and indirect KRAS mutant inhibitors. This review summarizes published data on the inhibitory and anti-cancer activity of compounds that target KRAS activation as well as highlights the most promising strategies for targeting KRAS mutant cancers.
Collapse
|
19
|
CRISPR/Cas9 genome-wide loss-of-function screening identifies druggable cellular factors involved in sunitinib resistance in renal cell carcinoma. Br J Cancer 2020; 123:1749-1756. [PMID: 32968206 PMCID: PMC7723036 DOI: 10.1038/s41416-020-01087-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Multi-targeted tyrosine kinase inhibitors (TKIs) are the standard of care for patients with advanced clear cell renal cell carcinoma (ccRCC). However, a significant number of ccRCC patients are primarily refractory to targeted therapeutics, showing neither disease stabilisation nor clinical benefits. METHODS We used CRISPR/Cas9-based high-throughput loss of function (LOF) screening to identify cellular factors involved in the resistance to sunitinib. Next, we validated druggable molecular factors that are synthetically lethal with sunitinib treatment using cell and animal models of ccRCC. RESULTS Our screening identified farnesyltransferase among the top hits contributing to sunitinib resistance in ccRCC. Combined treatment with farnesyltransferase inhibitor lonafarnib potently augmented the anti-tumour efficacy of sunitinib both in vitro and in vivo. CONCLUSION CRISPR/Cas9 LOF screening presents a promising approach to identify and target cellular factors involved in the resistance to anti-cancer therapeutics.
Collapse
|
20
|
Neganova ME, Klochkov SG, Aleksandrova YR, Aliev G. Histone modifications in epigenetic regulation of cancer: Perspectives and achieved progress. Semin Cancer Biol 2020; 83:452-471. [PMID: 32814115 DOI: 10.1016/j.semcancer.2020.07.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Epigenetic changes associated with histone modifications play an important role in the emergence and maintenance of the phenotype of various cancer types. In contrast to direct mutations in the main DNA sequence, these changes are reversible, which makes the development of inhibitors of enzymes of post-translational histone modifications one of the most promising strategies for the creation of anticancer drugs. To date, a wide variety of histone modifications have been found that play an important role in the regulation of chromatin state, gene expression, and other nuclear events. This review examines the main features of the most common and studied epigenetic histone modifications with a proven role in the pathogenesis of a wide range of malignant neoplasms: acetylation / deacetylation and methylation / demethylation of histone proteins, as well as the role of enzymes of the HAT / HDAC and HMT / HDMT families in the development of oncological pathologies. The data on the relationship between histone modifications and certain types of cancer are presented and discussed. Special attention is devoted to the consideration of various strategies for the development of epigenetic inhibitors. The main directions of the development of inhibitors of histone modifications are analyzed and effective strategies for their creation are identified and discussed. The most promising strategy is the use of multitarget drugs, which will affect multiple molecular targets of cancer. A critical analysis of the current status of approved epigenetic anticancer drugs has also been performed.
Collapse
Affiliation(s)
- Margarita E Neganova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation.,I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russian Federation.,Laboratory of Cellular Pathology, Federal State Budgetary Institution «Research Institute of Human Morphology», 3, Tsyurupy Str., Moscow, 117418, Russian Federation.,GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA.
| |
Collapse
|
21
|
Synthesis, structure analysis and activity against breast and cervix cancer cells of a triterpenoid thiazole derived from ochraceolide A. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Klochkov SG, Neganova ME, Nikolenko VN, Chen K, Somasundaram SG, Kirkland CE, Aliev G. Implications of nanotechnology for the treatment of cancer: Recent advances. Semin Cancer Biol 2019; 69:190-199. [PMID: 31446004 DOI: 10.1016/j.semcancer.2019.08.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022]
Abstract
The use of nanoparticles dramatically increases the safety and efficacy of the most common anticancer drugs. The main advantages of nano-drugs and delivery systems based on nano-technology are effective targeting, delayed release, increased half-life, and less systemic toxicity. The use of nano-carriers has led to significant improvements in drug delivery to targets compared with traditional administration of these drugs. In this review, the main tendencies in nano-drug formulations as well as factors limiting their use in clinical settings are discussed. Additionally, the current status of approved nano-drugs for cancer treatment is reviewed.
Collapse
Affiliation(s)
- Sergey G Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Vladimir N Nikolenko
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow, 119991, Russia
| | - Kuo Chen
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow, 119991, Russia
| | | | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, USA
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia; Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow, 119991, Russia; GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA.
| |
Collapse
|
23
|
Pesquet A, Marzag H, Knorr M, Strohmann C, Lawson AM, Ghinet A, Dubois J, Amaury F, Daïch A, Othman M. Access to 3-spiroindolizines containing an isoindole ring through intra-molecular arylation of spiro-N-acyliminium species: a new family of potent farnesyltransferase inhibitors. Org Biomol Chem 2019; 17:2798-2808. [PMID: 30793727 DOI: 10.1039/c8ob02612b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Based on N-acyliminium species, two efficient and rapid approaches to diversify spirocyclic systems connected by two different carbon centers to the isoindole ring have been developed. The imide reduction and the tandem oxidative cleavage of olefin/formyl-amide equilibration were at first selected as the key steps for these strategies. Ultimately the intramolecular α-amidoalkylation reaction was achieved through the arylation of α-acetoxy lactams or α-hydroxy lactams using, respectively, a Lewis acid or a Brønsted acid depending on the nature of N-acyliminium precursors. The latter led, in addition to the spiro-6-membered aza-heterocycles, to the formation of scarce spiro-5-membered analogues which show promising inhibitory activities on human farnesyltransferase in the nanomolar range demonstrating improved IC50 values of up to 1.5 nM.
Collapse
Affiliation(s)
- Anthony Pesquet
- Normandie Univ, UNILEHAVRE, CNRS, URCOM, 76600 Le Havre, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cho H, Shin I, Ju E, Choi S, Hur W, Kim H, Hong E, Kim ND, Choi HG, Gray NS, Sim T. First SAR Study for Overriding NRAS Mutant Driven Acute Myeloid Leukemia. J Med Chem 2018; 61:8353-8373. [PMID: 30153003 DOI: 10.1021/acs.jmedchem.8b00882] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
GNF-7, a multitargeted kinase inhibitor, served as a dual kinase inhibitor of ACK1 and GCK, which provided a novel therapeutic strategy for overriding AML expressing NRAS mutation. This SAR study with GNF-7 derivatives, designed to target NRAS mutant-driven AML, led to identification of the extremely potent inhibitors, 10d, 10g, and 11i, which possess single-digit nanomolar inhibitory activity against both ACK1 and GCK. These substances strongly suppress proliferation of mutant NRAS expressing AML cells via apoptosis and AKT/mTOR signaling blockade. Compound 11i is superior to GNF-7 in terms of kinase inhibitory activity, cellular activity, and differential cytotoxicity. Moreover, 10k possessing a favorable mouse pharmacokinetic profile prolonged life-span of Ba/F3-NRAS-G12D injected mice and significantly delayed tumor growth of OCI-AML3 xenograft model without causing the prominent level of toxicity found with GNF-7. Taken together, this study provides insight into the design of novel ACK1 and GCK dual inhibitors for overriding NRAS mutant-driven AML.
Collapse
Affiliation(s)
- Hanna Cho
- KU-KIST Graduate School of Converging Science and Technology , Korea University , 145 Anam-ro, Seongbuk-gu , Seoul 02841 , Republic of Korea
| | - Injae Shin
- KU-KIST Graduate School of Converging Science and Technology , Korea University , 145 Anam-ro, Seongbuk-gu , Seoul 02841 , Republic of Korea
| | - Eunhye Ju
- KU-KIST Graduate School of Converging Science and Technology , Korea University , 145 Anam-ro, Seongbuk-gu , Seoul 02841 , Republic of Korea
| | - Seunghye Choi
- KU-KIST Graduate School of Converging Science and Technology , Korea University , 145 Anam-ro, Seongbuk-gu , Seoul 02841 , Republic of Korea
| | - Wooyoung Hur
- Chemical Kinomics Research Center , Korea Institute of Science and Technology (KIST) , 5 Hwarangro 14-gil, Seongbuk-gu , Seoul 02792 , Republic of Korea
| | - Haelee Kim
- Daegu-Gyeongbuk Medical Innovation Foundation , 2387 dalgubeol-daero, Suseong-gu , Daegu 42019 , Republic of Korea
| | - Eunmi Hong
- Daegu-Gyeongbuk Medical Innovation Foundation , 2387 dalgubeol-daero, Suseong-gu , Daegu 42019 , Republic of Korea
| | - Nam Doo Kim
- Daegu-Gyeongbuk Medical Innovation Foundation , 2387 dalgubeol-daero, Suseong-gu , Daegu 42019 , Republic of Korea.,NDBio Therapeutics Inc. , 32 Songdogwahak-ro, Yeonsu-gu , Incheon 21984 , Republic of Korea
| | - Hwan Geun Choi
- Daegu-Gyeongbuk Medical Innovation Foundation , 2387 dalgubeol-daero, Suseong-gu , Daegu 42019 , Republic of Korea
| | - Nathanael S Gray
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry & Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology , Korea University , 145 Anam-ro, Seongbuk-gu , Seoul 02841 , Republic of Korea.,Chemical Kinomics Research Center , Korea Institute of Science and Technology (KIST) , 5 Hwarangro 14-gil, Seongbuk-gu , Seoul 02792 , Republic of Korea
| |
Collapse
|
25
|
Small GTPase RAS in multiple sclerosis - exploring the role of RAS GTPase in the etiology of multiple sclerosis. Small GTPases 2018; 11:312-319. [PMID: 30043672 DOI: 10.1080/21541248.2018.1502591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
RAS signaling is involved in the development of autoimmunity in general. Multiple sclerosis (MS) is a T cell-mediated autoimmune disease of the central nervous system. It is widely recognized that a reduction of Foxp3+ regulatory T (Treg) cells is an immunological hallmark of MS, but the underlying mechanisms are unclear. In experimental autoimmune models, N-Ras and K-Ras inhibition triggers an anti-inflammatory effect up-regulating, via foxp3 elevation, the numbers and the functional suppressive properties of Tregs. Similarly, an increase in natural Tregs number during Experimental Autoimmune Encephalomyelitis (EAE) in R-RAS -/- mice results in attenuated disease. In humans, only KRAS GTPase isoform is involved in mechanism causing tolerance defects in rheumatoid arthritis (RA). T cells from these patients have increased transcription of KRAS (but not NRAS). RAS genes are major drivers in human cancers. Consequently, there has been considerable interest in developing anti-RAS inhibitors for cancer treatment. Despite efforts, no anti-RAS therapy has succeeded in the clinic. The major strategy that has so far reached the clinic aimed to inhibit activated Ras indirectly through blocking its post-translational modification and inducing its mis-localization. The disappointing clinical outcome of Farnesyl Transferase Inhibitors (FTIs) in cancers has decreased interest in these drugs. However, FTIs suppress EAE by downregulation of myelin-reactive activated T-lymphocytes and statins are currently studied in clinical trials for MS. However, no pharmacologic approaches to targeting Ras proteins directly have yet succeeded. The therapeutic strategy to recover immune function through the restoration of impaired Tregs function with the mounting evidences regarding KRAS in autoimmune mediated disorder (MS, SLE, RA, T1D) suggest as working hypothesis the direct targeting KRAS activation using cancer-derived small molecules may be clinically relevant. ABBREVIATIONS FTIs: Farnesyl Transferase Inhibitors; MS: Multiple Sclerosis; RRMS: Relapsing Remitting Multiple Sclerosis; PPMS: Primary Progressive Multiple Sclerosis; Tregs: regulatory T-cells; Foxp3: Forkhead box P3; EAE: Experimental Autoimmune Encephalomyelitis; T1D: Type 1 Diabete; SLE: Systemic Lupus Erythematosus; RA: Rheumatoid Arthritis; CNS: Central Nervous System; TMEV: Theiler's murine encephalomyelitis virus; FTS: farnesyl thiosalicylic acid; TCR: T-Cell Receptor; AIA: Adjuvant-induced Arthritis; EAN: experimental autoimmune neuritis; HVR: hypervariable region; HMG-CoA: 3-hydroxy-3-methylglutaryl coenzyme A reductase; PBMC: Peripheral Blood Mononuclear Cells.
Collapse
|
26
|
Facchinetti F, Tiseo M. No room for statins in the quest for survival benefits in small cell lung cancer. Transl Lung Cancer Res 2018; 7:S131-S133. [PMID: 29780705 DOI: 10.21037/tlcr.2018.03.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| |
Collapse
|
27
|
Abstract
INTRODUCTION Neurofibromatosis type 1 (NF1) is an autosomal dominantly inherited tumor predisposition syndrome with an incidence of one in 3000-4000 individuals with no currently effective therapies. The NF1 gene encodes neurofibromin, which functions as a negative regulator of RAS. NF1 is a chronic multisystem disorder affecting many different tissues. Due to cell-specific complexities of RAS signaling, therapeutic approaches for NF1 will likely have to focus on a particular tissue and manifestation of the disease. Areas covered: We discuss the multisystem nature of NF1 and the signaling pathways affected due to neurofibromin deficiency. We explore the cell-/tissue-specific molecular and cellular consequences of aberrant RAS signaling in NF1 and speculate on their potential as therapeutic targets for the disease. We discuss recent genomic, transcriptomic, and proteomic studies combined with molecular, cellular, and biochemical analyses which have identified several targets for specific NF1 manifestations. We also consider the possibility of patient-specific gene therapy approaches for NF1. Expert opinion: The emergence of NF1 genotype-phenotype correlations, characterization of cell-specific signaling pathways affected in NF1, identification of novel biomarkers, and the development of sophisticated animal models accurately reflecting human pathology will continue to provide opportunities to develop therapeutic approaches to combat this multisystem disorder.
Collapse
Affiliation(s)
- James A Walker
- a Center for Genomic Medicine , Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Meena Upadhyaya
- b Division of Cancer and Genetics , Cardiff University , Cardiff , UK
| |
Collapse
|