1
|
Jaroniek P, Brzeziński M, Chmiela M, Gonciarz W. Doxorubicin loaded polylactide nanoparticles functionalized histamine promote apoptosis of human gastric cancer cells AGS. Sci Rep 2025; 15:14243. [PMID: 40274948 PMCID: PMC12022340 DOI: 10.1038/s41598-025-99004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
Gastric cancer is a dominating cause of cancer-related deaths in the world. The modern perspective in gastric cancer treatment is the application of nanoparticles (NPs) affecting the growth of cancer cells to increase the effectiveness of anti-tumor therapy. The use of advanced nanosystems that deliver anti-cancer drugs and biologically active substances may strongly rely on the expression of cancer-associated targets. The aim of this study was to examine the synergistic effect of doxorubicin (DOX) and histamine (His) in NPs DOX-loaded composed of poly(lactic) acid -PLA with histamine end groups (NPs-His-DOX) towards human gastric cancer cells (AGS) in vitro in conjunction with increasing oxidative stress, DNA damage, and cell apoptosis, as well as diminishing cell proliferation. The influence of studied NPs on the expression of intracellular adhesion molecule (ICAM)-1, which may facilitate the cytotoxic reaction of lymphocytes against gastric cancer cells, has also been determined. We showed a significant (p < 0.05) synergistic effect of His and DOX in the NPs His-DOX in increasing oxidative stress as demonstrated by an increased level of 4-hydroxynonenal (4HNE), DNA damage, cell apoptosis, in conjunction with a significant (p < 0.05) inhibition of cell proliferation as well as the disintegration of the cell monolayer. Furthermore, NPs His-DOX upregulated a cell deposition of ICAM-1. This study shows that NPs His-DOX facilitates the delivery of the anticancer drug DOX into the milieu of cancer cells, which results in increased cell death. Furthermore, upregulation of ICAM-1 on gastric cancer cells may increase anti-tumor cytotoxic activity of immunocompetent cells.
Collapse
Affiliation(s)
- Patrycja Jaroniek
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
- BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Matejki Street 21/23, 90-237, Lodz, Poland
| | - Marek Brzeziński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza Street 112, 90-363, Lodz, Poland
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland.
| |
Collapse
|
2
|
Liu T, Gu Y, Zhao Y, Li Y. Nanomaterials in gastric cancer: pioneering precision medicine for diagnosis, therapy, and prevention. Med Oncol 2025; 42:93. [PMID: 40050498 DOI: 10.1007/s12032-025-02650-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Gastric cancer (GC) continues to be a major health issue globally due to its high rates of both occurrence and mortality. Despite advancements in treatment, the outlook for those affected remains poor, highlighting the critical need for new diagnostic and treatment methods. Nanotechnology, especially nanoparticles, is emerging as a crucial innovation in cancer care by improving imaging, targeting drug delivery, and enhancing early detection. These nanoparticles are also enhancing the effectiveness of treatments like phototherapy, chemotherapy, and immunotherapy. Notably, they show potential in addressing infections like Helicobacter pylori (H. pylori), which is known to increase the risk of developing GC. This review underscores the pivotal role of nanotechnology in enhancing the integrated management of GC, offering a basis for future advancements in the field.
Collapse
Affiliation(s)
- Tiantian Liu
- Lanzhou University Second Clinical Medical School, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yanmei Gu
- Lanzhou University Second Clinical Medical School, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yang Zhao
- Lanzhou University Second Clinical Medical School, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yumin Li
- Lanzhou University Second Clinical Medical School, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
3
|
Sharma P, Pal D, Gill AR, Gupta M, Goyal S, Bansal P, Sharma U, Mathkor DM, Haque S, Kaur D, SinghTuli H. Baicalein, a natural flavonoid in gastrointestinal cancers treatment: recent trends and future perspectives. Med Oncol 2024; 42:35. [PMID: 39718726 DOI: 10.1007/s12032-024-02587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
Gastrointestinal cancer is a malignant condition of the gastrointestinal tract (GI) which affect multi-organs of digestive system, such as esophagus, stomach, biliary system, pancreas, small intestine, large intestine, rectum, and anus. Gastrointestinal cancer is a 5th most common malignant cancer and 4th major cause in cancer-related mortality rate. Various significant facilities are available that have reduced the radio-resistance, chemo-resistance, and their adverse side effects. However, there are serious side effects associated with chemical and radiations during the process. Baicalein is a natural flavonoid extracted from dried roots of Scutellaria baicalensis, showing anti-cancerous property. It is also participating in inhibiting metastasis, accelerating apoptosis and elevating autophagy through inhibition of inflammation and cell proliferation. In this review, we have focused on Chemistry and pharmacokinetics of Baicalein for drug designing and clinical applications majorly in gastrointestinal cancer. Moreover, various types of cancer related to gastrointestinal, role of nanotechnology, and its synergism for reducing cancer are also discussed. Thus, the review would be beneficial to explore the role of baicalein against gastrointestinal cancer treatment.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Bio-Sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, India
| | - Deeksha Pal
- Department of Bio-Sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, India.
| | - Anita Rani Gill
- Department of Biotechnology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Mahiti Gupta
- Department of Bio-Sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, India
| | - Soniya Goyal
- Department of Bio-Sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, India
| | - Poonam Bansal
- Department of Bio-Sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- Universidad Espíritu Santo, UEES, Samborondón, Ecuador
| | - Damandeep Kaur
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Punjab, India
- Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, India
| | - Hardeep SinghTuli
- Department of Bio-Sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, India.
| |
Collapse
|
4
|
Li Y, Wang Z, Gao P, Cao D, Dong R, Zhu M, Fei Y, Zuo X, Cai J. CircRHBDD1 promotes immune escape via IGF2BP2/PD-L1 signaling and acts as a nanotherapeutic target in gastric cancer. J Transl Med 2024; 22:704. [PMID: 39080693 PMCID: PMC11289934 DOI: 10.1186/s12967-024-05498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been implicated in the development and progression of gastric cancer (GC). However, it remains unclear whether dysregulated circRNA affects immune escape and the efficacy of immunotherapy in GC. Our aim is to investigate the molecular mechanism of circRNA affecting GC immunotherapy and identify effective molecular therapeutic targets. METHODS The differential expression profile of circRNAs was established through circRNA sequencing, comparing three paired GC tissues with their adjacent non-cancerous gastric tissues. The expression level of circRHBDD1 in GC tissues was then assessed using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The biological characteristics of circRHBDD1 were verified through a series of experiments, including agarose gel electrophoresis assays, RNase R treatment, and actinomycin D experiments. The prognostic value of circRHBDD1 in GC was evaluated by conducting both univariate and multivariate survival analyses. Furthermore, loss- and gain-of-function approaches were utilized to investigate the impact of circRHBDD1 on GC immune escape. RNA-sequencing, immunoprecipitation, flow cytometry, and methylated RNA immunoprecipitation (meRIP) analysis were performed to elucidate the underlying molecular mechanisms. RESULTS We discovered that circRHBDD1 exhibited remarkably high expression levels in GC tissues and cell lines. Notably, the high expression of circRHBDD1 was significantly correlated with poor overall survival and disease-free survival among GC patients. Both in vitro and in vivo experiments revealed that circRHBDD1 upregulated the expression of PD-L1 and impeded the infiltration of CD8+ T cells. Further, we found that circRHBDD1 binds to IGF2BP2, disrupting the interaction between E3 ligase TRIM25 and IGF2BP2, and ultimately inhibiting IGF2BP2 ubiquitination and degradation. Intriguingly, IGF2BP2 enhances PD-L1 mRNA stability through m6A modification. Additionally, we developed Poly (lactide-co-glycolic acid) (PLGA)-Polyethylene glycol (PEG)-based nanoparticles loaded with circRHBDD1 siRNA. In vivo experiments validated that the combination of PLGA-PEG(si-circRHBDD1) and anti-PD-1 offers a safe and efficacious nano-drug regimen for cancer immunotherapy. CONCLUSION Our results demonstrated that circRHBDD1 promoted GC immune escape by upregulating the expression of PD-L1 and reprogramming T cell-mediated immune response. Inhibition of circRHBDD1 expression could potentially enhance the response of GC patients to immunotherapy, thus improving treatment outcomes. Additionally, the development of a nanodrug delivery system provides a feasible approach for future clinical applications.
Collapse
Affiliation(s)
- Yanna Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Zhixiong Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Peng Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Danping Cao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Runyu Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Menglin Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Yao Fei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Xueliang Zuo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China.
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China.
| | - Juan Cai
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China.
- Department of Oncology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China.
| |
Collapse
|
5
|
Liu BN, Gao XL, Piao Y. Mapping the intellectual structure and emerging trends for the application of nanomaterials in gastric cancer: A bibliometric study. World J Gastrointest Oncol 2024; 16:2181-2199. [PMID: 38764848 PMCID: PMC11099444 DOI: 10.4251/wjgo.v16.i5.2181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/11/2024] [Accepted: 03/21/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Recent reviews have outlined the main nanomaterials used in relation to gastrointestinal tumors and described the basic properties of these materials. However, the research hotspots and trends in the application of nanomaterials in gastric cancer (GC) remain obscure. AIM To demonstrate the knowledge structure and evolutionary trends of research into the application of nanomaterials in GC. METHODS Publications related to the application of nanomaterials in GC were retrieved from the Web of Science Core Collection for this systematic review and bibliometric study. VOSviewer and CiteSpace were used for bibliometric and visualization analyses. RESULTS From 2000 to 2022, the application of nanomaterials in GC developed rapidly. The keyword co-occurrence analysis showed that the related research topics were divided into three clusters: (1) The application of nanomaterials in GC treatment; (2) The application and toxicity of nanomaterials in GC diagnosis; and (3) The effects of nanomaterials on the biological behavior of GC cells. Complexes, silver nanoparticles, and green synthesis are the latest high-frequency keywords that represent promising future research directions. CONCLUSION The application of nanomaterials in GC diagnosis and treatment and the mechanisms of their effects on GC cells have been major themes in this field over the past 23 years.
Collapse
Affiliation(s)
- Bo-Na Liu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang 110015, Liaoning Province, China
| | - Xiao-Li Gao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang 110015, Liaoning Province, China
| | - Ying Piao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang 110015, Liaoning Province, China
| |
Collapse
|
6
|
Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther 2024; 9:92. [PMID: 38637540 PMCID: PMC11026526 DOI: 10.1038/s41392-024-01808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Cancer, a complex and multifactorial disease, presents a significant challenge to global health. Despite significant advances in surgical, radiotherapeutic and immunological approaches, which have improved cancer treatment outcomes, drug therapy continues to serve as a key therapeutic strategy. However, the clinical efficacy of drug therapy is often constrained by drug resistance and severe toxic side effects, and thus there remains a critical need to develop novel cancer therapeutics. One promising strategy that has received widespread attention in recent years is drug repurposing: the identification of new applications for existing, clinically approved drugs. Drug repurposing possesses several inherent advantages in the context of cancer treatment since repurposed drugs are typically cost-effective, proven to be safe, and can significantly expedite the drug development process due to their already established safety profiles. In light of this, the present review offers a comprehensive overview of the various methods employed in drug repurposing, specifically focusing on the repurposing of drugs to treat cancer. We describe the antitumor properties of candidate drugs, and discuss in detail how they target both the hallmarks of cancer in tumor cells and the surrounding tumor microenvironment. In addition, we examine the innovative strategy of integrating drug repurposing with nanotechnology to enhance topical drug delivery. We also emphasize the critical role that repurposed drugs can play when used as part of a combination therapy regimen. To conclude, we outline the challenges associated with repurposing drugs and consider the future prospects of these repurposed drugs transitioning into clinical application.
Collapse
Affiliation(s)
- Ying Xia
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
- Division of Gastroenterology and Hepatology, Department of Medicine and, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ming Sun
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China.
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
7
|
Wang XY, Yao DF, Ren G. Progress in research of tumor biomarkers and molecular imaging probes for gastric cancer. Shijie Huaren Xiaohua Zazhi 2024; 32:1-7. [DOI: 10.11569/wcjd.v32.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/10/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
Gastric cancer is a malignant tumor still associated with high morbidity and mortality worldwide. Its onset is relatively insidious, and when detected, it is already at an advanced stage, lacks effective individualized treatments, and has a poor prognosis. If gastric cancer can be diagnosed at an early stage, the survival rate of patients can be greatly improved. However, traditional imaging modalities lack specificity and sensitivity. In recent years, molecular imaging technology is booming, which can non-invasively and dynamically monitor gastric cancer at the cellular and molecular levels, and provide more reference information for clinical selection of treatment options and assessment of efficacy and prognosis. This article reviews the biomarkers of gastric cancer and molecular probes in various imaging modalities.
Collapse
Affiliation(s)
- Xiao-Yu Wang
- Gang-Ren, Department of Radiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University of Medicine, Shanghai 200092, China
| | - De-Fan Yao
- Gang-Ren, Department of Radiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University of Medicine, Shanghai 200092, China
| | | |
Collapse
|
8
|
Bala VM, Lampropoulou DI, Grammatikaki S, Kouloulias V, Lagopati N, Aravantinos G, Gazouli M. Nanoparticle-Mediated Hyperthermia and Cytotoxicity Mechanisms in Cancer. Int J Mol Sci 2023; 25:296. [PMID: 38203467 PMCID: PMC10779099 DOI: 10.3390/ijms25010296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Hyperthermia has the potential to damage cancerous tissue by increasing the body temperature. However, targeting cancer cells whilst protecting the surrounding tissues is often challenging, especially when implemented in clinical practice. In this direction, there are data showing that the combination of nanotechnology and hyperthermia offers more successful penetration of nanoparticles in the tumor environment, thus allowing targeted hyperthermia in the region of interest. At the same time, unlike radiotherapy, the use of non-ionizing radiation makes hyperthermia an attractive therapeutic option. This review summarizes the existing literature regarding the use of hyperthermia and nanoparticles in cancer, with a focus on nanoparticle-induced cytotoxicity mechanisms.
Collapse
Affiliation(s)
| | | | - Stamatiki Grammatikaki
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (N.L.)
| | - Vassilios Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nefeli Lagopati
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (N.L.)
| | | | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (N.L.)
| |
Collapse
|
9
|
Xiao Q, Zhang Y, Zhao A, Duan Z, Yao J. Application and development of nanomaterials in the diagnosis and treatment of esophageal cancer. Front Bioeng Biotechnol 2023; 11:1268454. [PMID: 38026877 PMCID: PMC10657196 DOI: 10.3389/fbioe.2023.1268454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Esophageal cancer is a malignant tumor with a high incidence worldwide. Currently, there are a lack of effective early diagnosis and treatment methods for esophageal cancer. However, delivery systems based on nanoparticles (NPs) have shown ideal efficacy in real-time imaging and chemotherapy, radiotherapy, gene therapy, and phototherapy for tumors, which has led to their recent widespread design as novel treatment strategies. Compared to traditional drugs, nanomedicine has unique advantages, including strong targeting ability, high bioavailability, and minimal side effects. This article provides an overview of the application of NPs in the diagnosis and treatment of esophageal cancer and provides a reference for future research.
Collapse
Affiliation(s)
| | | | | | | | - Jun Yao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
10
|
Ling LX, Ouyang Y, Hu Y. Research trends on nanomaterials in gastric cancer: a bibliometric analysis from 2004 to 2023. J Nanobiotechnology 2023; 21:248. [PMID: 37533041 PMCID: PMC10394877 DOI: 10.1186/s12951-023-02033-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Gastric cancer is one of the leading causes of cancer-related deaths worldwide. In recent years, an increasing number of studies aimed at designing and developing nanomaterials for use in diagnosing and treating gastric cancer have been conducted. In this study, we aimed to comprehensively assess the current status and trends of the research on the application of nanomaterials in gastric cancer through a bibliometric analysis. METHODS Studies focusing on nanomaterials and gastric cancer were retrieved from the Web of Science Core Collection database and relevant articles were selected for inclusion in the study according to the inclusion criteria. Bibliometric and visual analysis of the included publications was performed using VOSviewer and CiteSpace. RESULTS A total of 793 studies were included. An increase in annual publications was observed from 2004 to 2023. China, Iran and the USA were the dominant countries in this field, accounting for 66.1%, 11.5% and 7.2% of publications, respectively. Shanghai Jiao Tong University and Cui DX were the most influential institution and author, respectively. The International Journal of Nanomedicine was the most prolific journal; Biomaterials was the most cited and most cocited journal. Nanomaterial-related drug delivery and anticancer mechanisms were found to be the most widely researched aspects, and green synthesis and anticancer mechanisms are recent research hotspots. CONCLUSION In this study, we summarized the characteristics of publications and identified the most influential countries, institutions, authors, journals, hot topics and trends regarding the application of nanomaterials in gastric cancer.
Collapse
Affiliation(s)
- Li-Xiang Ling
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, 17 Yong Waizheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, China
| | - Yaobin Ouyang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, 17 Yong Waizheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, China
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Yi Hu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, 17 Yong Waizheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, China.
- Department of Surgery at the Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China.
| |
Collapse
|
11
|
Li G, Huo D, Guo N, Li Y, Ma H, Liu L, Xie H, Zhang D, Qu B, Chen X. Integrating multiple machine learning algorithms for prognostic prediction of gastric cancer based on immune-related lncRNAs. Front Genet 2023; 14:1106724. [PMID: 37082204 PMCID: PMC10111190 DOI: 10.3389/fgene.2023.1106724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/28/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Long non-coding RNAs (lncRNAs) play an important role in the immune regulation of gastric cancer (GC). However, the clinical application value of immune-related lncRNAs has not been fully developed. It is of great significance to overcome the challenges of prognostic prediction and classification of gastric cancer patients based on the current study.Methods: In this study, the R package ImmLnc was used to obtain immune-related lncRNAs of The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD) project, and univariate Cox regression analysis was performed to find prognostic immune-related lncRNAs. A total of 117 combinations based on 10 algorithms were integrated to determine the immune-related lncRNA prognostic model (ILPM). According to the ILPM, the least absolute shrinkage and selection operator (LASSO) regression was employed to find the major lncRNAs and develop the risk model. ssGSEA, CIBERSORT algorithm, the R package maftools, pRRophetic, and clusterProfiler were employed for measuring the proportion of immune cells among risk groups, genomic mutation difference, drug sensitivity analysis, and pathway enrichment score.Results: A total of 321 immune-related lncRNAs were found, and there were 26 prognostic immune-related lncRNAs. According to the ILPM, 18 of 26 lncRNAs were selected and the risk score (RS) developed by the 18-lncRNA signature had good strength in the TCGA training set and Gene Expression Omnibus (GEO) validation datasets. Patients were divided into high- and low-risk groups according to the median RS, and the low-risk group had a better prognosis, tumor immune microenvironment, and tumor signature enrichment score and a higher metabolism, frequency of genomic mutations, proportion of immune cell infiltration, and antitumor drug resistance. Furthermore, 86 differentially expressed genes (DEGs) between high- and low-risk groups were mainly enriched in immune-related pathways.Conclusion: The ILPM developed based on 26 prognostic immune-related lncRNAs can help in predicting the prognosis of patients suffering from gastric cancer. Precision medicine can be effectively carried out by dividing patients into high- and low-risk groups according to the RS.
Collapse
Affiliation(s)
- Guoqi Li
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Diwei Huo
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Naifu Guo
- Department of Biological Science, College of Biological Science and Technology, Harbin Normal University, Harbin, China
| | - Yi Li
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongzhe Ma
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lei Liu
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongbo Xie
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Denan Zhang
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Bo Qu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Bo Qu, ; Xiujie Chen,
| | - Xiujie Chen
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- *Correspondence: Bo Qu, ; Xiujie Chen,
| |
Collapse
|
12
|
Wang Y, Yang Y, Zheng X, Shi J, Zhong L, Duan X, Zhu Y. Application of iron oxide nanoparticles in the diagnosis and treatment of leukemia. Front Pharmacol 2023; 14:1177068. [PMID: 37063276 PMCID: PMC10097929 DOI: 10.3389/fphar.2023.1177068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Leukemia is a malignancy initiated by uncontrolled proliferation of hematopoietic stem cell from the B and T lineages, resulting in destruction of hematopoietic system. The conventional leukemia treatments induce severe toxic and a long series of unwanted side-effects which are caused by lack of specificity of anti-leukemic drugs. Recently, nanotechnology have shown tremendous application and clinical impact with respect to diagnosis and treatment of leukemia. According to considerable researches in the context of finding new nanotechnological platform, iron oxide nanoparticles have been gained increasing attention for the leukemia patients use. In this review, a short introduction of leukemia is described followed by the evaluation of the current approaches of iron oxide nanoparticles applied in the leukemia detection and treatment. The enormous advantages of iron oxide nanoparticles for leukemia have been discussed, which consist of the detection of magnetic resonance imaging (MRI) as efficient contrast agents, magnetic biosensors and targeted delivery of anti-leukemia drugs by coating different targeting moieties. In addition, this paper will briefly describe the application of iron oxide nanoparticles in the combined treatment of leukemia. Finally, the shortcomings of the current applications of iron-based nanoparticles in leukemia diagnosis and treatment will be discussed in particular.
Collapse
|
13
|
The effect of using albumin-perfluorohexane/cisplatin-magnetite nanoparticles produced by hydrothermal method against gastric cancer cells through combination therapy. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
14
|
Zhang Y, Song J, Zhang Y, Li T, Peng J, Zhou H, Zong Z. Emerging Role of Neutrophil Extracellular Traps in Gastrointestinal Tumors: A Narrative Review. Int J Mol Sci 2022; 24:334. [PMID: 36613779 PMCID: PMC9820455 DOI: 10.3390/ijms24010334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular fibrous networks consisting of depolymerized chromatin DNA skeletons with a variety of antimicrobial proteins. They are secreted by activated neutrophils and play key roles in host defense and immune responses. Gastrointestinal (GI) malignancies are globally known for their high mortality and morbidity. Increasing research suggests that NETs contribute to the progression and metastasis of digestive tract tumors, among them gastric, colon, liver, and pancreatic cancers. This article explores the formation of NETs and reviews the role that NETs play in the gastrointestinal oncologic microenvironment, tumor proliferation and metastasis, tumor-related thrombosis, and surgical stress. At the same time, we analyze the qualitative and quantitative detection methods of NETs in recent years and found that NETs are specific markers of coronavirus disease 2019 (COVID-19). Then, we explore the possibility of NET inhibitors for the treatment of digestive tract tumor diseases to provide a new, efficient, and safe solution for the future therapy of gastrointestinal tumors.
Collapse
Affiliation(s)
- Yujun Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang 330006, China
- HuanKui Academy, Nanchang University, Nanchang 330006, China
| | - Jingjing Song
- Nanchang University School of Ophthalmology & Optometry, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yiwei Zhang
- Queen Marry College, Nanchang University, Nanchang 330006, China
| | - Ting Li
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jie Peng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Haonan Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang 330006, China
- Queen Marry College, Nanchang University, Nanchang 330006, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang 330006, China
| |
Collapse
|
15
|
Arnold AM, Bradley AM, Taylor KL, Kennedy ZC, Omberg KM. The Promise of Emergent Nanobiotechnologies for In Vivo Applications and Implications for Safety and Security. Health Secur 2022; 20:408-423. [PMID: 36286588 PMCID: PMC9595614 DOI: 10.1089/hs.2022.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022] Open
Abstract
Nanotechnology, the multidisciplinary field based on the exploitation of the unique physicochemical properties of nanoparticles (NPs) and nanoscale materials, has opened a new realm of possibilities for biological research and biomedical applications. The development and deployment of mRNA-NP vaccines for COVID-19, for example, may revolutionize vaccines and therapeutics. However, regulatory and ethical frameworks that protect the health and safety of the global community and environment are lagging, particularly for nanotechnology geared toward biological applications (ie, bionanotechnology). In this article, while not comprehensive, we attempt to illustrate the breadth and promise of bionanotechnology developments, and how they may present future safety and security challenges. Specifically, we address current advancements to streamline the development of engineered NPs for in vivo applications and provide discussion on nano-bio interactions, NP in vivo delivery, nanoenhancement of human performance, nanomedicine, and the impacts of NPs on human health and the environment.
Collapse
Affiliation(s)
- Anne M. Arnold
- Anne M. Arnold, PhD, is a Materials Scientist, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA
| | - Ashley M. Bradley
- Ashley M. Bradley is a Biomedical Scientist, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA
| | - Karen L. Taylor
- Karen L. Taylor, MPH, is a Senior Technical Advisor, National Security Directorate, Pacific Northwest National Laboratory, Seattle, WA
| | - Zachary C. Kennedy
- Zachary C. Kennedy, PhD, is a Materials Scientist, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA
| | - Kristin M. Omberg
- Kristin M. Omberg, PhD, is Group Leader, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA
| |
Collapse
|
16
|
Kanaoujiya R, Porwal D, Srivastava S. Applications of nanomaterials for gastrointestinal tumors: A review. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:997123. [PMID: 36119898 PMCID: PMC9475177 DOI: 10.3389/fmedt.2022.997123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
Nanotechnology is the emerging and advance field of research for the diagnosis and treatment of various diseases. With the development of nanotechnology, different nanoparticles are used in the treatment of cancer due to their unique optical properties, excellent biocompatibility, surface effects, and small size effects. Nanoparticles are the particles which have the particular size from 1 to 100 nm. These nanoparticles are zero dimension, one dimension, two dimension and three dimension etc. In present scenario a variety of research is focused on the tailored synthesis of nanoparticles for medicinal applications that can be used for cancer treatment based on the morphology, composition, interaction with target cell. The gastrointestinal (GI) tumors are found one of the deadest cancer types with highest reoccurrence rates. The diagnosis and treatment of gastrointestinal cancer is very challenging due to its deep location and complicated surgery. Nanotechnology provides fast diagnosis and immediate treatment for the gastrointestinal disease. A variety of nanomaterials are used for the diagnosis and treatment of GI disease. Nanoparticles target directly to the tumor cell as diagnostic and therapeutic tools facilitating the identification and removal of tumor cells. A number of nanoparticles are developed for the uses are quantum dots (QDs), carbon nanotubes (CNTs), metallic nanoparticles (MNPs), Dendrimers etc. This review article gives an overview of the most promising nanomaterials used for the diagnosis and treatment of GI diseases. This review attempts to incorporate numerous uses for the most current nanomaterials, which have great potential for treating gastrointestinal diseases.
Collapse
|
17
|
Circular RNA hsa_circ_0002360 Promotes Proliferation and Invasion and Inhibits Oxidative Stress in Gastric Cancer by Sponging miR-629-3p and Regulating the PDLIM4 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2775433. [PMID: 35982735 PMCID: PMC9381216 DOI: 10.1155/2022/2775433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/18/2022]
Abstract
Many studies have found that circRNA hsa_0002360 (circ0002360) plays an important role in cancer onset and progression. However, its role in gastric cancer (GC) remains uncertain. Circ0002360 was found to be upregulated in GC cells using QRT-PCR. Furthermore, miR-629-3p, a target miRNA of circ0002360, was the most suppressed miRNA following circ0002360 overexpression. RNA immunoprecipitation (RIP), dual-luciferase reporter analyses, clone formation, transwell, DCFH-DA, and ELISA assays demonstrated that circ0002360-targeted miR-629-3p promotes cell proliferation and migration while inhibiting oxidative stress. GC-related mRNA microarrays from the GEO and TCGA databases, including GSE103236, GSE79973, GSE33429, GSE22804, GSE84437, and TCGA-STAD datasets, were used to find hub biomarkers between normal and gastric cancer samples. WGCNA and uni-Cox analysis were used to identify 27 survival-related risk genes, which were then used to build a risk model for prognosis prediction. Following that, all patients from the GSE84437 and TCGA-STAD datasets with 27 survival-related genes and enough data on survival status and time were randomly assigned to train (n = 433) and test (n = 375) cohorts. Furthermore, ROC and Kaplan-Meier (KM) analyses were used to validate the risk model for both cohorts. randomForest analysis indicated that PDLIM4 was the target gene of miR-629-3p, whose level was increased by circ0002360 but reversed by miR-629-3p mimics. Finally, this study confirmed that circ0002360 sponged miR-629-3p and then upregulated PDLIM4 expression. As a result, circ0002360 may be a useful marker for predicting GC prognosis and an anti-GC treatment target.
Collapse
|
18
|
Gulla S, Reddy VC, Araveti PB, Lomada D, Srivastava A, Reddy MC, Reddy KR. Synthesis of titanium dioxide nanotubes (TNT) conjugated with quercetin and its in vivo antitumor activity against skin cancer. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Rahman MM, Islam F, Afsana Mim S, Khan MS, Islam MR, Haque MA, Mitra S, Emran TB, Rauf A. [Retracted] Multifunctional Therapeutic Approach of Nanomedicines against Inflammation in Cancer and Aging. JOURNAL OF NANOMATERIALS 2022; 2022. [DOI: 10.1155/2022/4217529] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 02/21/2022] [Indexed: 09/01/2023]
Abstract
Cancer is a fatal disorder that affects people across the globe, yet existing therapeutics are ineffective. The development of submicrometer transport for optimizing the biodistribution of systemically provided medications is the focus of nanomedicine. Nanoparticle‐ (NP‐) based treatments may enable the development of novel therapeutic approaches to combat this deadly disorder. In multifunctional, multimodal imaging, and drug delivery carriers, NPs generally play a major role. They have emerged as potential strategies for the invention of innovative therapeutic procedures in the last decade. The exponential growth of nanotechnologies in recent years has increased public awareness of the application of these innovative therapeutic approaches. Many tumor‐targeted nanomedicines have been studied in cancer therapy, and there is clear evidence for a significant improvement in the therapeutic index of antineoplastic drugs. Age‐related factors such as metabolic and physiological alterations in old age and inadequate animal models are currently understudied in nanomedicine and pharmacology. This review highlighted the most important targeting approaches, as well as public awareness, therapeutic advancements, and future prospects in age‐related metabolic variations, and tumor‐targeted nanomedicine studies.
Collapse
|
20
|
The development and progress of nanomedicine for esophageal cancer diagnosis and treatment. Semin Cancer Biol 2022; 86:873-885. [DOI: 10.1016/j.semcancer.2022.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/22/2021] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
|
21
|
Bera B, Mondal S, Gharami S, Naskar R, Das Saha K, Mondal TK. Palladium( ii) and platinum( ii) complexes with ONN donor pincer ligand: synthesis, characterization and in vitro cytotoxicity study. NEW J CHEM 2022. [DOI: 10.1039/d2nj01894b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New Pd(ii) and Pt(ii) complexes with ONN donor pincer ligand are synthesized. Antiproliferative activity of the complexes is explored towards HCT116, HepG2, MCF-7 and A549 cell lines.
Collapse
Affiliation(s)
- Biswajit Bera
- Department of Chemistry, Jadavpur University, Kolkata-700032, India
| | - Sanchaita Mondal
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata-700 032, India
| | - Saswati Gharami
- Department of Chemistry, Jadavpur University, Kolkata-700032, India
| | - Rahul Naskar
- Department of Chemistry, Jadavpur University, Kolkata-700032, India
| | - Krishna Das Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata-700 032, India
| | - Tapan K. Mondal
- Department of Chemistry, Jadavpur University, Kolkata-700032, India
| |
Collapse
|
22
|
Mei Y, Wang S, Feng T, Yan M, Yuan F, Zhu Z, Li T, Zhu Z. Nomograms Involving HER2 for Predicting Lymph Node Metastasis in Early Gastric Cancer. Front Cell Dev Biol 2021; 9:781824. [PMID: 35004681 PMCID: PMC8740268 DOI: 10.3389/fcell.2021.781824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/07/2021] [Indexed: 01/19/2023] Open
Abstract
Objective: We aimed to establish a nomogram for predicting lymph node metastasis in early gastric cancer (EGC) involving human epidermal growth factor receptor 2 (HER2). Methods: We collected clinicopathological data of patients with EGC who underwent radical gastrectomy and D2 lymphadenectomy at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine between January 2012 and August 2018. Univariate and multivariate logistic regression analysis were used to examine the relationship between lymph node metastasis and clinicopathological features. A nomogram was constructed based on a multivariate prediction model. Internal validation from the training set was performed using receiver operating characteristic (ROC) and calibration plots to evaluate discrimination and calibration, respectively. External validation from the validation set was utilized to examine the external validity of the prediction model using the ROC plot. A decision curve analysis was used to evaluate the benefit of the treatment. Results: Among 1,212 patients with EGC, 210 (17.32%) presented with lymph node metastasis. Multivariable analysis showed that age, tumor size, submucosal invasion, histological subtype, and HER2 positivity were independent risk factors for lymph node metastasis in EGC. The area under the ROC curve of the model was 0.760 (95% CI: 0.719-0.800) in the training set (n = 794) and 0.771 (95% CI: 0.714-0.828) in the validation set (n = 418). A predictive nomogram was constructed based on a multivariable prediction model. The decision curve showed that using the prediction model to guide treatment had a higher net benefit than using endoscopic submucosal dissection (ESD) absolute criteria over a range of threshold probabilities. Conclusion: A clinical prediction model and an effective nomogram with an integrated HER2 status were used to predict EGC lymph node metastasis with better accuracy and clinical performance.
Collapse
Affiliation(s)
- Yu Mei
- Department of General Surgery, Gastrointestinal Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tienan Feng
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Yan
- Department of General Surgery, Gastrointestinal Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenggang Zhu
- Department of General Surgery, Gastrointestinal Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Zhenglun Zhu
- Department of General Surgery, Gastrointestinal Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Niculescu AG, Grumezescu AM. Polymer-Based Nanosystems-A Versatile Delivery Approach. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6812. [PMID: 34832213 PMCID: PMC8619478 DOI: 10.3390/ma14226812] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023]
Abstract
Polymer-based nanoparticles of tailored size, morphology, and surface properties have attracted increasing attention as carriers for drugs, biomolecules, and genes. By protecting the payload from degradation and maintaining sustained and controlled release of the drug, polymeric nanoparticles can reduce drug clearance, increase their cargo's stability and solubility, prolong its half-life, and ensure optimal concentration at the target site. The inherent immunomodulatory properties of specific polymer nanoparticles, coupled with their drug encapsulation ability, have raised particular interest in vaccine delivery. This paper aims to review current and emerging drug delivery applications of both branched and linear, natural, and synthetic polymer nanostructures, focusing on their role in vaccine development.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov no. 3, 50044 Bucharest, Romania
| |
Collapse
|
24
|
Silva-Abreu M, Miralles E, Kamma-Lorger CS, Espina M, García ML, Calpena AC. Stabilization by Nano Spray Dryer of Pioglitazone Polymeric Nanosystems: Development, In Vivo, Ex Vivo and Synchrotron Analysis. Pharmaceutics 2021; 13:pharmaceutics13111751. [PMID: 34834165 PMCID: PMC8617923 DOI: 10.3390/pharmaceutics13111751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Pioglitazone-loaded PLGA-PEG nanoparticles (NPs) were stabilized by the spray drying technique as an alternative to the treatment of ocular inflammatory disorders. Pioglitazone-NPs were developed and characterized physiochemically. Interaction studies, biopharmaceutical behavior, ex vivo corneal and scleral permeation, and in vivo bioavailability evaluations were conducted. Fibrillar diameter and interfibrillar corneal spacing of collagen was analyzed by synchrotron X-ray scattering techniques and stability studies at 4 °C and was carried out before and after the spray drying process. NPs showed physicochemical characteristics suitable for ocular administration. The release was sustained up to 46 h after drying; ex vivo corneal and scleral permeation profiles of pioglitazone-NPs before and after drying demonstrated higher retention and permeation through cornea than sclera. These results were correlated with an in vivo bioavailability study. Small-angle X-ray scattering (SAXS) analysis did not show a significant difference in the organization of the corneal collagen after the treatment with pioglitazone-NPs before and after the drying process, regarding the negative control. The stabilization process by Nano Spray Dryer B-90 was shown to be useful in preserving the activity of pioglitazone inside the NPs, maintaining their physicochemical characteristics, in vivo bioavailability, and non-damage to corneal collagen function after SAXS analysis was observed.
Collapse
Affiliation(s)
- Marcelle Silva-Abreu
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (M.L.G.); (A.C.C.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-402-4578
| | - Esther Miralles
- CCiTUB (Scientific and Technological Centers), University of Barcelona, 08028 Barcelona, Spain;
| | | | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (M.L.G.); (A.C.C.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (M.L.G.); (A.C.C.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (M.L.G.); (A.C.C.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
25
|
Mbugua SN, Njenga LW, Odhiambo RA, Wandiga SO, Onani MO. Beyond DNA-targeting in Cancer Chemotherapy. Emerging Frontiers - A Review. Curr Top Med Chem 2021; 21:28-47. [PMID: 32814532 DOI: 10.2174/1568026620666200819160213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Modern anti-cancer drugs target DNA specifically for rapid division of malignant cells. One downside of this approach is that they also target other rapidly dividing healthy cells, such as those involved in hair growth leading to serious toxic side effects and hair loss. Therefore, it would be better to develop novel agents that address cellular signaling mechanisms unique to cancerous cells, and new research is now focussing on such approaches. Although the classical chemotherapy area involving DNA as the set target continues to produce important findings, nevertheless, a distinctly discernible emerging trend is the divergence from the cisplatin operation model that uses the metal as the primary active center of the drug. Many successful anti-cancer drugs present are associated with elevated toxicity levels. Cancers also develop immunity against most therapies and the area of cancer research can, therefore, be seen as an area with a high unaddressed need. Hence, ongoing work into cancer pathogenesis is important to create accurate preclinical tests that can contribute to the development of innovative drugs to manage and treat cancer. Some of the emergent frontiers utilizing different approaches include nanoparticles delivery, use of quantum dots, metal complexes, tumor ablation, magnetic hypothermia and hyperthermia by use of Superparamagnetic Iron oxide Nanostructures, pathomics and radiomics, laser surgery and exosomes. This review summarizes these new approaches in good detail, giving critical views with necessary comparisons. It also delves into what they carry for the future, including their advantages and disadvantages.
Collapse
Affiliation(s)
- Simon N Mbugua
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Lydia W Njenga
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Ruth A Odhiambo
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Shem O Wandiga
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Martin O Onani
- Organometallics and Nanomaterials, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| |
Collapse
|
26
|
Biopolymer and Biomaterial Conjugated Iron Oxide Nanomaterials as Prostate Cancer Theranostic Agents: A Comprehensive Review. Symmetry (Basel) 2021. [DOI: 10.3390/sym13060974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignancy in men and the leading cause of death for men all over the world. Early diagnosis is the key to start treatment at an early stage of PCa and to reduce the death toll. Generally, PCa expresses characteristic morphologic features and serum biomarkers; however, early diagnosis is challenging due to its heterogeneity and long-term indolent phase in the early stage. Following positive diagnosis, PCa patients receive conventional treatments including surgery, radiation therapy, androgen deprivation therapy, focal therapy, and chemotherapy to enhance survival time and alleviate PCa-related complications. However, these treatment strategies have both short and long-term side effects, notably impotence, urinary incontinence, erectile dysfunctions, and recurrence of cancer. These limitations warrant the quest for novel PCa theranostic agents with robust diagnostic and therapeutic potentials to lessen the burden of PCa-related suffering. Iron oxide nanoparticles (IONPs) have recently drawn attention for their symmetrical usage in the diagnosis and treatment of several cancer types. Here, we performed a systematic search in four popular online databases (PubMed, Google Scholar, Scopus, and Web of Science) for the articles regarding PCa and IONPs. Published literature confirmed that the surface modification of IONPs with biopolymers and diagnostic biomarkers improved the early diagnosis of PCa, even in the metastatic stage with reliable accuracy and sensitivity. Furthermore, fine-tuning of IONPs with biopolymers, nucleic acids, anticancer drugs, and bioactive compounds can improve the therapeutic efficacy of these anticancer agents against PCa. This review covers the symmetrical use of IONPs in the diagnosis and treatment of PCa, investigates their biocompatibility, and examines their potential as PCa theranostic agents.
Collapse
|
27
|
Drug Delivery Systems of Natural Products in Oncology. Molecules 2020; 25:molecules25194560. [PMID: 33036240 PMCID: PMC7582809 DOI: 10.3390/molecules25194560] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
In recent decades, increasing interest in the use of natural products in anticancer therapy field has been observed, mainly due to unsolved drug-resistance problems. The antitumoral effect of natural compounds involving different signaling pathways and cellular mechanisms has been largely demonstrated in in vitro and in vivo studies. The encapsulation of natural products into different delivery systems may lead to a significant enhancement of their anticancer efficacy by increasing in vivo stability and bioavailability, reducing side adverse effects and improving target-specific activity. This review will focus on research studies related to nanostructured systems containing natural compounds for new drug delivery tools in anticancer therapies.
Collapse
|
28
|
Mbugua S, Sibuyi NRS, Njenga LW, Odhiambo RA, Wandiga SO, Meyer M, Lalancette RA, Onani MO. New Palladium(II) and Platinum(II) Complexes Based on Pyrrole Schiff Bases: Synthesis, Characterization, X-ray Structure, and Anticancer Activity. ACS OMEGA 2020; 5:14942-14954. [PMID: 32637768 PMCID: PMC7330904 DOI: 10.1021/acsomega.0c00360] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/14/2020] [Indexed: 05/09/2023]
Abstract
New palladium (Pd)II and platinum (Pt)II complexes (C1-C5) from the Schiff base ligands, R-(phenyl)methanamine (L1), R-(pyridin-2-yl)methanamine (L2), and R-(furan-2-yl)methanamine (L3) (R-(E)-N-((1H-pyrrol-2-yl) methylene)) are herein reported. The complexes (C1-C5) were characterized by FTIR, 1H and 13C NMR, UV-vis, and microanalyses. Single-crystal X-ray crystallographic analysis was performed for the two ligands (L1-L2) and a Pt complex. Both L1 and L2 belong to P21/n monoclinic and P-1 triclinic space systems, respectively. The complex C5 belongs to the P21/c monoclinic space group. The investigated molar conductivity of the complexes in DMSO gave the range 4.0-8.8 μS/cm, suggesting neutrality, with log P values ≥ 1.2692 ± 0.004, suggesting lipophilicity. The anticancer activity and mechanism of the complexes were investigated against various human cancerous (Caco-2, HeLa, HepG2, MCF-7, and PC-3) and noncancerous (MCF-12A) cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Apopercentage assays, respectively. C5 demonstrated strong DNA-binding affinity for calf thymus DNA (CT-DNA) with a binding constant of 8.049 × 104 M-1. C3 reduced cell viability of all the six cell lines, which included five cancerous cell lines, by more than 80%. The C5 complex also demonstrated remarkably high selectivity with no cytotoxic activity toward the noncancerous breast cell line but reduced the viability of the five cancerous cell lines, which included one breast cancer cell line, by more than 60%. Further studies are required to evaluate the selective toxicity of these two complexes and to fully understand their mechanism of action.
Collapse
Affiliation(s)
- Simon
N. Mbugua
- Organometallics
and Nanomaterials, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
- Department
of Chemistry, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya
| | - Nicole R. S. Sibuyi
- Department
of Science and Technology/Mintek Nanotechnology Innovation Centre
(DST/Mintek NIC), Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Lydia W. Njenga
- Department
of Chemistry, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya
| | - Ruth A. Odhiambo
- Department
of Chemistry, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya
| | - Shem O. Wandiga
- Department
of Chemistry, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya
| | - Mervin Meyer
- Department
of Science and Technology/Mintek Nanotechnology Innovation Centre
(DST/Mintek NIC), Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Roger A. Lalancette
- Rutgers,
Department of Chemistry, Rutgers State University, 73 Warren St., Newark, New Jersey 07102, United States
| | - Martin O. Onani
- Organometallics
and Nanomaterials, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
29
|
Li YH, Hu YQ, Wang SC, Li Y, Chen DM. LncRNA SNHG5: A new budding star in human cancers. Gene 2020; 749:144724. [PMID: 32360843 DOI: 10.1016/j.gene.2020.144724] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/12/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
Long non-coding RNA (LncRNA) belongs to non-coding RNAs longer than 200 nucleic acids. More and more studies have revealed that lncRNA can participate in the occurrence and pathophysiology of diseases, especially in cancers. Although research on lncRNAs has doubled year by year, little is known about the specific regulatory mechanisms of lncRNAs in diseases. The main purpose of this review is to explore the molecular mechanism and clinical significance of SNHG5 in cancers. We systematically search Pubmed to obtain relevant literature on SNHG5. In this review, the functional role, molecular mechanism, and clinical significance of SNHG5 in human cancers are described in detail. Small nucleolar RNA host gene 5 (SNHG5) has been shown to be involved in the development and tumorigenesis of a variety of cancers (colorectal, bladder, gastric, endometrial, acute lymphocytic leukemia, osteosarcoma, etc.). Its disorder is closely related to metastasis, pathological staging, and prognosis. LncRNA SNHG5 might be a potential and novel diagnostic marker for cancer patients, a target for molecular targeted therapy, and a prognostic diagnostic marker.
Collapse
Affiliation(s)
- Yu-Han Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Qian Hu
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Sheng-Chan Wang
- Department of Geriatrics, The Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Dong-Ming Chen
- Department of Urology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|