1
|
Mullin SM, Kelly AJ, Ní Chathail MB, Norris S, Shannon CE, Roche HM. Macronutrient Modulation in Metabolic Dysfunction-Associated Steatotic Liver Disease-the Molecular Role of Fatty Acids compared with Sugars in Human Metabolism and Disease Progression. Adv Nutr 2025; 16:100375. [PMID: 39842721 PMCID: PMC11849631 DOI: 10.1016/j.advnut.2025.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a significant public health concern, with its progression to metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis leading to severe outcomes including cirrhosis, hepatocellular carcinoma, and liver failure. Whereas obesity and excess energy intake are well-established contributors to the development and progression of MASLD, the distinct role of specific macronutrients is less clear. This review examines the mechanistic pathways through which dietary fatty acids and sugars contribute to the development of hepatic inflammation and fibrosis, offering a nuanced understanding of their respective roles in MASLD progression. In terms of addressing potential therapeutic options, human intervention studies that investigate whether modifying the intake of dietary fats and carbohydrates affects MASLD progression are reviewed. By integrating this evidence, this review seeks to bridge the gap in the understanding between the mechanisms of macronutrient-driven MASLD progression and the effect of altering the intake of these nutrients in the clinical setting and presents a foundation for future research into targeted dietary strategies for the treatment of the disease.
Collapse
Affiliation(s)
- Sinéad M Mullin
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Aidan J Kelly
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Méabh B Ní Chathail
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Suzanne Norris
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Christopher E Shannon
- Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Helen M Roche
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; Institute for Global Food Security, Queen's University Belfast, Northern Ireland.
| |
Collapse
|
2
|
Augello G, Cusimano A, Cervello M, Cusimano A. Extracellular Vesicle-Related Non-Coding RNAs in Hepatocellular Carcinoma: An Overview. Cancers (Basel) 2024; 16:1415. [PMID: 38611093 PMCID: PMC11011022 DOI: 10.3390/cancers16071415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. It is a major public health problem worldwide, and it is often diagnosed at advanced stages, when no effective treatment options are available. Extracellular vesicles (EVs) are nanosized double-layer lipid vesicles containing various biomolecule cargoes, such as lipids, proteins, and nucleic acids. EVs are released from nearly all types of cells and have been shown to play an important role in cell-to-cell communication. In recent years, many studies have investigated the role of EVs in cancer, including HCC. Emerging studies have shown that EVs play primary roles in the development and progression of cancer, modulating tumor growth and metastasis formation. Moreover, it has been observed that non-coding RNAs (ncRNAs) carried by tumor cell-derived EVs promote tumorigenesis, regulating the tumor microenvironment (TME) and playing critical roles in the progression, angiogenesis, metastasis, immune escape, and drug resistance of HCC. EV-related ncRNAs can provide information regarding disease status, thus encompassing a role as biomarkers. In this review, we discuss the main roles of ncRNAs present in HCC-derived EVs, including micro(mi) RNAs, long non-coding (lnc) RNAs, and circular (circ) RNAs, and their potential clinical value as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (A.C.); (M.C.)
| | - Alessandra Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (A.C.); (M.C.)
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (A.C.); (M.C.)
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (A.C.); (M.C.)
| |
Collapse
|
3
|
Li Y, Sui S, Goel A. Extracellular vesicles associated microRNAs: Their biology and clinical significance as biomarkers in gastrointestinal cancers. Semin Cancer Biol 2024; 99:5-23. [PMID: 38341121 PMCID: PMC11774199 DOI: 10.1016/j.semcancer.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, esophageal, pancreatic, and liver, are associated with high mortality and morbidity rates worldwide. One of the underlying reasons for the poor survival outcomes in patients with these malignancies is late disease detection, typically when the tumor has already advanced and potentially spread to distant organs. Increasing evidence indicates that earlier detection of these cancers is associated with improved survival outcomes and, in some cases, allows curative treatments. Consequently, there is a growing interest in the development of molecular biomarkers that offer promise for screening, diagnosis, treatment selection, response assessment, and predicting the prognosis of these cancers. Extracellular vesicles (EVs) are membranous vesicles released from cells containing a repertoire of biological molecules, including nucleic acids, proteins, lipids, and carbohydrates. MicroRNAs (miRNAs) are the most extensively studied non-coding RNAs, and the deregulation of miRNA levels is a feature of cancer cells. EVs miRNAs can serve as messengers for facilitating interactions between tumor cells and the cellular milieu, including immune cells, endothelial cells, and other tumor cells. Furthermore, recent years have witnessed considerable technological advances that have permitted in-depth sequence profiling of these small non-coding RNAs within EVs for their development as promising cancer biomarkers -particularly non-invasive, liquid biopsy markers in various cancers, including GI cancers. Herein, we summarize and discuss the roles of EV-associated miRNAs as they play a seminal role in GI cancer progression, as well as their promising translational and clinical potential as cancer biomarkers as we usher into the area of precision oncology.
Collapse
Affiliation(s)
- Yuan Li
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA; Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Silei Sui
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA; Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA.
| |
Collapse
|
4
|
Kiwumulo HF, Muwonge H, Ibingira C, Lubwama M, Kirabira JB, Ssekitoleko RT. A di-electrophoretic simulation procedure of iron-oxide micro-particle drug attachment system for leukemia treatment using COMSOL software: a potential treatment reference for LMICs. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1250964. [PMID: 37901748 PMCID: PMC10602814 DOI: 10.3389/fmedt.2023.1250964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Background Leukemia encompasses various subtypes, each with unique characteristics and treatment approaches. The challenge lies in developing targeted therapies that can effectively address the specific genetic mutations or abnormalities associated with each subtype. Some leukemia cases may become resistant to existing treatments over time making them less susceptible to chemotherapy or other standard therapies. Objective Developing new treatment strategies to overcome resistance is an ongoing challenge particularly in Low and Middle Income Countries (LMICs). Computational studies using COMSOL software could provide an economical, fast and resourceful approach to the treatment of complicated cancers like leukemia. Methods Using COMSOL Multiphysics software, a continuous flow microfluidic device capable of delivering anti-leukemia drugs to early-stage leukemia cells has been computationally modeled using dielectrophoresis (DEP). Results The cell size difference enabled the micro-particle drug attachment to the leukemia cells using hydrodynamic focusing from the dielectrophoretic force. This point of care application produced a low voltage from numerically calculated electrical field and flow speed simulations. Conclusion Therefore, such a dielectrophoretic low voltage application model can be used as a computational treatment reference for early-stage leukemia cells with an approximate size of 5 μm.
Collapse
Affiliation(s)
- Henry Fenekansi Kiwumulo
- Department of Medical Physiology, Biomedical Engineering Program, Makerere University, Kampala, Uganda
| | - Haruna Muwonge
- Department of Medical Physiology, Biomedical Engineering Program, Makerere University, Kampala, Uganda
- Habib Medical School, Islamic University in Uganda (IUIU), Kampala, Uganda
| | - Charles Ibingira
- Department of Human Anatomy, Makerere University, Kampala, Uganda
| | - Michael Lubwama
- Department of Mechanical Engineering, Makerere University, Kampala, Uganda
| | | | - Robert Tamale Ssekitoleko
- Department of Medical Physiology, Biomedical Engineering Program, Makerere University, Kampala, Uganda
| |
Collapse
|
5
|
Pirisinu M. The Long Journey of Extracellular Vesicles towards Global Scientific Acclamation. Adv Pharm Bull 2023; 13:489-501. [PMID: 37646064 PMCID: PMC10460810 DOI: 10.34172/apb.2023.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/22/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous class of cell-derived vesicles that are responsible for eliciting a wide array of biological processes. After decades of intense investigation, the therapeutic potential of EVs will be finally explored in a series of upcoming clinical trials. EVs are rapidly changing the understanding of human physiology and will undoubtedly transform the field of medicine. The applicability of EVs as diagnostic biomarkers and treatment vectors has captured the attention of the scientific community and investors, facilitating the rapid progression of numerous EVs-based platforms. This mini-review provides an outline of the pioneering discoveries, and their respective significances, on progressing EVs toward clinical use. We focus the attention of the readers on several promising classes of EVs that hold major opportunities to translate in clinical practice. Market analysis and future challenges facing EVs-based therapies are also discussed.
Collapse
Affiliation(s)
- Marco Pirisinu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City, University of Hong Kong, Hong Kong
- Jotbody HK Limited, New Territories, Hong Kong
| |
Collapse
|
6
|
MicroRNAs as a possible biomarker in the treatment of multiple sclerosis. IBRO Neurosci Rep 2022; 13:492-499. [DOI: 10.1016/j.ibneur.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/11/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
|
7
|
Glass SE, Coffey RJ. Recent Advances in the Study of Extracellular Vesicles in Colorectal Cancer. Gastroenterology 2022; 163:1188-1197. [PMID: 35724732 PMCID: PMC9613516 DOI: 10.1053/j.gastro.2022.06.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 12/15/2022]
Abstract
There has been significant progress in the study of extracellular vesicles (EVs) since the 2017 American Gastroenterological Association-sponsored Freston Conference "Extracellular Vesicles: Biology, Translation and Clinical Application in GI Disorders." The burgeoning interest in this field stems from the increasing recognition that EVs represent an understudied form of cell-to-cell communication and contain cargo replete with biomarkers and therapeutic targets. This short review will highlight recent advances in the field, with an emphasis on colorectal cancer. After a brief introduction to secreted particles, we will describe how our laboratory became interested in EVs, which led to refined methods of isolation and identification of 2 secreted nanoparticles. We will then summarize the cargo found in small EVs released from colorectal cancer cells and other cells in the tumor microenvironment, as well as those found in the circulation of patients with colorectal cancer. Finally, we will consider the continuing challenges and future opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Sarah E Glass
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
8
|
Goutas D, Pergaris A, Goutas N, Theocharis S. Utilizing Exosomal-EPHs/Ephrins as Biomarkers and as a Potential Platform for Targeted Delivery of Therapeutic Exosomes. Int J Mol Sci 2022; 23:ijms23073551. [PMID: 35408909 PMCID: PMC8998366 DOI: 10.3390/ijms23073551] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Exosomes are cell-secreted nanoparticles containing various molecules including small vesicles, microRNAs (miRNAs), messenger RNAs or bioactive proteins which are thought to be of paramount importance for intercellular communication. The unique effects of exosomes in terms of cell penetration capacity, decreased immunogenicity and inherent stability, along with their key role in mediating information exchange among tumor cells and their surrounding tumor microenvironment (TME), render them a promising platform for drug targeted delivery. Compared to synthetic drugs, exosomes boast a plethora of advantages, including higher biocompatibility, lower toxicity and increased ability of tissue infiltration. Nevertheless, the use of artificial exosomes can be limited in practice, partly due to their poor targeting ability and partly due to their limited efficacy. Therefore, efforts have been made to engineer stem cell-derived exosomes in order to increase selectiveness and effectivity, which can then become loaded with various active substances depending on the therapeutic approach followed. Erythropoietin-producing human hepatocellular receptors (EPHs), along with their ligands, the EPH family receptor interacting proteins (ephrins), have been extensively investigated for their key roles in both physiology and cancer pathogenesis. EPHs/ephrins exhibit both tumorigenic and tumor suppressing properties, with their targeting representing a promising, novel therapeutic approach in cancer patients’ management. In our review, the use of ephrin-loaded exosomes as a potential therapeutic targeted delivery system in cancer will be discussed.
Collapse
Affiliation(s)
- Dimitrios Goutas
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece; (A.P.); (S.T.)
- Correspondence:
| | - Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece; (A.P.); (S.T.)
| | - Nikolaos Goutas
- Department of Forensic Medicine and Toxicology, Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Goudi, 11527 Athens, Greece;
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece; (A.P.); (S.T.)
| |
Collapse
|
9
|
Sun Z, Tong Y, Zhao L, Li J, Gao F, Wang C, Li H, Du L, Jiang Y. MoS 2@Ti 3C 2 nanohybrid-based photoelectrochemical biosensor: A platform for ultrasensitive detection of cancer biomarker exosomal miRNA. Talanta 2022; 238:123077. [PMID: 34814060 DOI: 10.1016/j.talanta.2021.123077] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022]
Abstract
As a class of newly identified biomarkers, miRNAs show enormous potential in cancer diagnosis. The sensitive detection of abnormal miRNAs concentration to realize early diagnosis of malignant tumors is a frontier in the field of biosensing. In this work, a photoelectrochemical (PEC) biosensor based on MoS2@Ti3C2 nanohybrid was fabricated for the ultrasensitive detection of miRNAs. The hybridization of Ti3C2 with excellent electron transfer capability significantly enhances the photocurrent response of the PEC biosensor. Moreover, the electrodeposition of Au nanoparticles on the surface of MoS2@Ti3C2 nanohybrid further enhances the photocurrent. The detection performance of the PEC biosensor has been tested using colorectal cancer-related exosomal miRNA (miR-92a-3p) as the target. The PEC biosensor shows a broad linear detection ranged from 1 fM to 100 nM and a calculated detection limit of 0.27 fM. In terms of selectivity, the PEC biosensor can distinguish miR-92a-3p from mismatched sequences. The 16 continuous radiation source on-off cycles test indicates the high stability of the PEC biosensor. Furthermore, the accurate detection of exosomal miR-92a-3p concentrations of patients and healthy controls demonstrates the clinical feasibility of the PEC biosensor. Based on these outcomes, the PEC biosensor exhibits the prospect of realizing the ultrasensitive point-of-care detection of miRNAs.
Collapse
Affiliation(s)
- Zhiwei Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China; Shenzhen Research Institute of Shandong University, Shenzhen, China
| | - Yao Tong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China; Shenzhen Research Institute of Shandong University, Shenzhen, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fucheng Gao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China; Shenzhen Research Institute of Shandong University, Shenzhen, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China; Shenzhen Research Institute of Shandong University, Shenzhen, China.
| |
Collapse
|
10
|
Toden S, Goel A. Non-coding RNAs as liquid biopsy biomarkers in cancer. Br J Cancer 2022; 126:351-360. [PMID: 35013579 PMCID: PMC8810986 DOI: 10.1038/s41416-021-01672-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 01/12/2023] Open
Abstract
Although non-coding RNAs have long been considered as non-functional "junk" RNAs, accumulating evidence in the past decade indicates that they play a critical role in pathogenesis of various cancers. In addition to their biological significance, the recognition that their expression levels are frequently dysregulated in multiple cancers have fueled the interest for exploiting their clinical potential as cancer biomarkers. In particular, microRNAs (miRNAs), a subclass of small non-coding RNAs that epigenetically modulate gene-transcription, have become one of the most well-studied substrates for the development of liquid biopsy biomarkers for cancer patients. The emergence of high-throughput sequencing technologies has enabled comprehensive molecular characterisation of various non-coding RNA expression profiles in multiple cancers. Furthermore, technological advances for quantifying lowly expressed RNAs in the circulation have facilitated robust identification of previously unrecognised and undetectable biomarkers in cancer patients. Here we summarise the latest progress on the utilisation of non-coding RNAs as non-invasive cancer biomarkers. We evaluated the suitability of multiple non-coding RNA types as blood-based cancer biomarkers and examined the impact of recent technological breakthroughs on the development of non-invasive molecular biomarkers in cancer.
Collapse
Affiliation(s)
- Shusuke Toden
- Molecular Stethoscope Inc., South San Francisco, CA 94080 USA
| | - Ajay Goel
- grid.410425.60000 0004 0421 8357Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA 91016 USA ,grid.410425.60000 0004 0421 8357City of Hope Comprehensive Cancer Center, Duarte, CA 91010 USA
| |
Collapse
|
11
|
Liu SY, Liao Y, Hosseinifard H, Imani S, Wen QL. Diagnostic Role of Extracellular Vesicles in Cancer: A Comprehensive Systematic Review and Meta-Analysis. Front Cell Dev Biol 2021; 9:705791. [PMID: 34722499 PMCID: PMC8555429 DOI: 10.3389/fcell.2021.705791] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Cancer-derived extracellular vesicles (EVs) are regarded to have significant function in most steps during cancer progression. This meta-analysis aims to investigate the accuracy of EVs as a biomarker in cancer diagnosis. Methods: The diagnostic efficacy of EVs for different cancers was assessed using pooled sensitivity and specificity, diagnostic odds ratio (DOR), and overall area under the curve (AUC) of the summary receiver operating characteristic (SROC). The positive likelihood ratio (PLR) and negative likelihood ratio (NLR) were verified to estimate the diagnostic efficacy of EV at a clinical level. Results: In all, 6,183 cancer patients and 2,437 healthy controls from 75 eligible studies reported in 42 publications were included in the study. The overall pooled sensitivity, specificity, PLR, NLR, and DOR were 0.62 (95% CI: 0.60–0.63), 0.76 (95% CI: 0.75–0.78), 3.07 (95% CI: 2.52–3.75), 0.34 (95% CI: 0.28–0.41), and 10.98 (95% CI: 7.53–16.00), respectively. Similarly, the AUC of the SROC was 0.88, indicating a high conservation of EVs as an early diagnostic marker. Furthermore, subgroup analysis suggested that the use of small EVs as a biomarker was more accurate in serum-based samples of nervous system cancer (p < 0.001). As a result, ultracentrifugation and quantification and size determination methods, such as Western blotting and ELISA were the most reliable identification methods for EV detection. We also indicated that increased secretion of EVs made them a capable biomarker for diagnosing cancer in elderly European individuals. Conclusions: Our study provides evidence that EVs are a promising non-invasive biomarker for cancer diagnosis. Well-designed cohort studies should be conducted to warrant the clinical diagnostic value of EVs.
Collapse
Affiliation(s)
- Shu-Ya Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, Chengdu Jinniu District People's Hospital, Chengdu, China
| | - Yin Liao
- Department of Oncology, People's Hospital of Renshou, Meishan, China
| | - Hossein Hosseinifard
- Research Center for Evidence Based Medicine (RCEBM), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qing-Lian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
12
|
Le MTN. Preface for "Extracellular vesicles in cancer, from signalling mechanisms to therapeutic potential". Semin Cancer Biol 2021; 74:1-2. [PMID: 34118404 DOI: 10.1016/j.semcancer.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|