1
|
Sabatini PJB, Bridgers J, Huang S, Downs G, Zhang T, Sheen C, Park N, Kridel R, Marra MA, Steidl C, Scott DW, Karsan A. Multisite clinical cross-validation and variant interpretation of a next generation sequencing panel for lymphoid cancer prognostication. J Clin Pathol 2025; 78:187-194. [PMID: 38182402 PMCID: PMC11874376 DOI: 10.1136/jcp-2023-209262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024]
Abstract
AIMS Genomic sequencing of lymphomas is under-represented in routine clinical testing despite having prognostic and predictive value. Clinical implementation is challenging due to a lack of consensus on reportable targets and a paucity of reference samples. We organised a cross-validation study of a lymphoma-tailored next-generation sequencing panel between two College of American Pathologists (CAP)-accredited clinical laboratories to mitigate these challenges. METHODS A consensus for the genomic targets was discussed between the two institutes based on recurrence in diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, chronic lymphocytic leukaemia and T-cell lymphomas. Using the same genomic targets, each laboratory ordered libraries independently and a cross-validation study was designed to exchange samples (8 cell lines and 22 clinical samples) and their FASTQ files. RESULTS The sensitivity of the panel when comparing different library preparation and bioinformatic workflows was between 97% and 99% and specificity was 100% when a 5% limit of detection cut-off was applied. To evaluate how the current standards for variant classification of tumours apply to lymphomas, the Association for Molecular Pathology/American Society of Clinical Oncology/CAP and OncoKB classification systems were applied to the panel. The majority of variants were assigned a possibly actionable class or likely pathogenic due to more limited evidence in the literature. CONCLUSIONS The cross-validation study highlights the benefits of sample and data exchange for clinical validation and provided a framework for reporting the findings in lymphoid malignancies.
Collapse
Affiliation(s)
- Peter J B Sabatini
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Advanced Molecular Diagnostic Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Josh Bridgers
- BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Shujun Huang
- BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Gregory Downs
- Advanced Molecular Diagnostic Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tong Zhang
- Advanced Molecular Diagnostic Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Clare Sheen
- Advanced Molecular Diagnostic Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nicole Park
- Advanced Molecular Diagnostic Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Robert Kridel
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Marco A Marra
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | | | - David W Scott
- Centre for Lymphoid Cancer, Vancouver, British Columbia, Canada
| | - Aly Karsan
- BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Brahimllari O, Eloranta S, Georgii-Hemming P, Haider Z, Koch S, Krstic A, Skarp FP, Rosenquist R, Smedby KE, Taylan F, Thorvaldsdottir B, Wirta V, Wästerlid T, Boman M. Smart variant filtering - A blueprint solution for massively parallel sequencing-based variant analysis. Health Informatics J 2024; 30:14604582241290725. [PMID: 39394057 DOI: 10.1177/14604582241290725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Massively parallel sequencing helps create new knowledge on genes, variants and their association with disease phenotype. This important technological advancement simultaneously makes clinical decision making, using genomic information for cancer patients, more complex. Currently, identifying actionable pathogenic variants with diagnostic, prognostic, or predictive impact requires substantial manual effort. Objective: The purpose is to design a solution for clinical diagnostics of lymphoma, specifically for systematic variant filtering and interpretation. Methods: A scoping review and demonstrations from specialists serve as a basis for a blueprint of a solution for massively parallel sequencing-based genetic diagnostics. Results: The solution uses machine learning methods to facilitate decision making in the diagnostic process. A validation round of interviews with specialists consolidated the blueprint and anchored it across all relevant expert disciplines. The scoping review identified four components of variant filtering solutions: algorithms and Artificial Intelligence (AI) applications, software, bioinformatics pipelines and variant filtering strategies. The blueprint describes the input, the AI model and the interface for dynamic browsing. Conclusion: An AI-augmented system is designed for predicting pathogenic variants. While such a system can be used to classify identified variants, diagnosticians should still evaluate the classification's accuracy, make corrections when necessary, and ultimately decide which variants are truly pathogenic.
Collapse
Affiliation(s)
- Orlinda Brahimllari
- MedTechLabs, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Eloranta
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | | | - Zahra Haider
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sabine Koch
- Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Stockholm, Sweden
| | - Aleksandra Krstic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Karin E Smedby
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Birna Thorvaldsdottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Valtteri Wirta
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, 17177, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Division of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Tove Wästerlid
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Boman
- MedTechLabs, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Rosenquist R, Bernard E, Erkers T, Scott DW, Itzykson R, Rousselot P, Soulier J, Hutchings M, Östling P, Cavelier L, Fioretos T, Smedby KE. Novel precision medicine approaches and treatment strategies in hematological malignancies. J Intern Med 2023; 294:413-436. [PMID: 37424223 DOI: 10.1111/joim.13697] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Genetic testing has been applied for decades in clinical routine diagnostics of hematological malignancies to improve disease (sub)classification, prognostication, patient management, and survival. In recent classifications of hematological malignancies, disease subtypes are defined by key recurrent genetic alterations detected by conventional methods (i.e., cytogenetics, fluorescence in situ hybridization, and targeted sequencing). Hematological malignancies were also one of the first disease areas in which targeted therapies were introduced, the prime example being BCR::ABL1 inhibitors, followed by an increasing number of targeted inhibitors hitting the Achilles' heel of each disease, resulting in a clear patient benefit. Owing to the technical advances in high-throughput sequencing, we can now apply broad genomic tests, including comprehensive gene panels or whole-genome and whole-transcriptome sequencing, to identify clinically important diagnostic, prognostic, and predictive markers. In this review, we give examples of how precision diagnostics has been implemented to guide treatment selection and improve survival in myeloid (myelodysplastic syndromes and acute myeloid leukemia) and lymphoid malignancies (acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and chronic lymphocytic leukemia). We discuss the relevance and potential of monitoring measurable residual disease using ultra-sensitive techniques to assess therapy response and detect early relapses. Finally, we bring up the promising avenue of functional precision medicine, combining ex vivo drug screening with various omics technologies, to provide novel treatment options for patients with advanced disease. Although we are only in the beginning of the field of precision hematology, we foresee rapid development with new types of diagnostics and treatment strategies becoming available to the benefit of our patients.
Collapse
Affiliation(s)
- Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Elsa Bernard
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA
- PRISM Center for Personalized Medicine, Gustave Roussy, Villejuif, France
| | - Tom Erkers
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - David W Scott
- BC Cancer's Centre for Lymphoid Cancer, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Raphael Itzykson
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Rousselot
- Department of Hematology, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Jean Soulier
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Hématologie Biologique, APHP, Hôpital Saint-Louis, Paris, France
| | - Martin Hutchings
- Department of Haematology and Phase 1 Unit, Rigshospitalet, Copenhagen, Denmark
| | - Päivi Östling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - Lucia Cavelier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Thoas Fioretos
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Karin E Smedby
- Department of Hematology, Karolinska University Hospital, Solna, Stockholm, Sweden
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Chamba C, Mawalla W. The future of lymphoma diagnosis, prognosis, and treatment monitoring in countries with limited access to pathology services. Semin Hematol 2023; 60:215-219. [PMID: 37596119 DOI: 10.1053/j.seminhematol.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023]
Abstract
The world is moving towards precision medicine for cancer. This movement goes hand in hand with the development of newer advanced technologies for early, precise diagnosis of cancer and personalized treatment plans with fewer adverse effects for the patient. Liquid biopsy is one such advancement. At the same time, it has the advantage of minimal invasion and avoids serial invasive biopsies. In countries with limited access to pathology services, such as sub-Saharan Africa, liquid biopsy may provide an opportunity for early detection and prognostication of lymphoma. We discuss the current diagnostic modalities for lymphoma, highlighting the existing challenges with tissue biopsy, and how feasible it is for countries with limited pathology resources to leverage advancements made in the clinical application of liquid biopsy to improve lymphoma care.
Collapse
Affiliation(s)
- Clara Chamba
- Department of Hematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| | - William Mawalla
- Department of Hematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
5
|
Bonfiglio S, Sutton LA, Ljungström V, Capasso A, Pandzic T, Weström S, Foroughi-Asl H, Skaftason A, Gellerbring A, Lyander A, Gandini F, Gaidano G, Trentin L, Bonello L, Reda G, Bödör C, Stavroyianni N, Tam CS, Marasca R, Forconi F, Panayiotidis P, Ringshausen I, Jaksic O, Frustaci AM, Iyengar S, Coscia M, Mulligan SP, Ysebaert L, Strugov V, Pavlovsky C, Walewska R, Österborg A, Cortese D, Ranghetti P, Baliakas P, Stamatopoulos K, Scarfò L, Rosenquist R, Ghia P. BTK and PLCG2 remain unmutated in one-third of patients with CLL relapsing on ibrutinib. Blood Adv 2023; 7:2794-2806. [PMID: 36696464 PMCID: PMC10279547 DOI: 10.1182/bloodadvances.2022008821] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/07/2022] [Accepted: 01/01/2023] [Indexed: 01/26/2023] Open
Abstract
Patients with chronic lymphocytic leukemia (CLL) progressing on ibrutinib constitute an unmet need. Though Bruton tyrosine kinase (BTK) and PLCG2 mutations are associated with ibrutinib resistance, their frequency and relevance to progression are not fully understood. In this multicenter retrospective observational study, we analyzed 98 patients with CLL on ibrutinib (49 relapsing after an initial response and 49 still responding after ≥1 year of continuous treatment) using a next-generation sequencing (NGS) panel (1% sensitivity) comprising 13 CLL-relevant genes including BTK and PLCG2. BTK hotspot mutations were validated by droplet digital polymerase chain reaction (ddPCR) (0.1% sensitivity). By integrating NGS and ddPCR results, 32 of 49 relapsing cases (65%) carried at least 1 hotspot BTK and/or PLCG2 mutation(s); in 6 of 32, BTK mutations were only detected by ddPCR (variant allele frequency [VAF] 0.1% to 1.2%). BTK/PLCG2 mutations were also identified in 6 of 49 responding patients (12%; 5/6 VAF <10%), of whom 2 progressed later. Among the relapsing patients, the BTK-mutated (BTKmut) group was enriched for EGR2 mutations, whereas BTK-wildtype (BTKwt) cases more frequently displayed BIRC3 and NFKBIE mutations. Using an extended capture-based panel, only BRAF and IKZF3 mutations showed a predominance in relapsing cases, who were enriched for del(8p) (n = 11; 3 BTKwt). Finally, no difference in TP53 mutation burden was observed between BTKmut and BTKwt relapsing cases, and ibrutinib treatment did not favor selection of TP53-aberrant clones. In conclusion, we show that BTK/PLCG2 mutations were absent in a substantial fraction (35%) of a real-world cohort failing ibrutinib, and propose additional mechanisms contributing to resistance.
Collapse
MESH Headings
- Humans
- Agammaglobulinaemia Tyrosine Kinase/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Drug Resistance, Neoplasm/genetics
- Piperidines
- Recurrence
Collapse
Affiliation(s)
- Silvia Bonfiglio
- Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Milan, Italy
- Division of Experimental Oncology, B cell Neoplasia Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Lesley-Ann Sutton
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Viktor Ljungström
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Antonella Capasso
- Strategic Research Program on CLL, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Tatjana Pandzic
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Simone Weström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Hassan Foroughi-Asl
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Aron Skaftason
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anna Gellerbring
- Clinical Genomics Stockholm, Science for Life Laboratory, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Lyander
- Clinical Genomics Stockholm, Science for Life Laboratory, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Francesca Gandini
- Division of Experimental Oncology, B cell Neoplasia Unit, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Livio Trentin
- Department of Medicine, Hematology and Clinical Immunology, University of Padua, Italy
| | - Lisa Bonello
- Molecular Pathology Unit, A.O.U Città della Salute e della Scienza, Torino, Italy
- Department of Molecular Biotechnologies and Health Sciences, Università di Torino, Italy
| | - Gianluigi Reda
- Department of Hematology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Csaba Bödör
- HCEMM-SU Molecular Oncohematology Research Group, Budapest, Hungary
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Niki Stavroyianni
- Department of Hematology and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | - Constantine S. Tam
- Department of Hematology, Alfred Health, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Roberto Marasca
- Department of Medical and Surgical Sciences, Hematology Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Forconi
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Department of Hematology, University Hospital National Health Service Trust, Southampton, United Kingdom
| | - Panayiotis Panayiotidis
- Department of Propaedeutic Internal Medicine, Laiko Hospital, University of Athens, Athens, Greece
| | - Ingo Ringshausen
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
| | | | - Anna Maria Frustaci
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Sunil Iyengar
- Department of Haemato-Oncology, Royal Marsden Hospital, London, United Kingdom
| | - Marta Coscia
- Department of Molecular Biotechnologies and Health Sciences, Università di Torino, Italy
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Stephen P. Mulligan
- Department of Haematology, Royal North Shore Hospital, University of Sydney, Sydney, Australia
| | - Loïc Ysebaert
- Département d'Hématologie, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| | | | | | - Renata Walewska
- Department of Molecular Pathology, University Hospitals Dorset, Bournemouth, United Kingdom
| | - Anders Österborg
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Diego Cortese
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Pamela Ranghetti
- Division of Experimental Oncology, B cell Neoplasia Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Lydia Scarfò
- Division of Experimental Oncology, B cell Neoplasia Unit, IRCCS Ospedale San Raffaele, Milan, Italy
- Strategic Research Program on CLL, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Paolo Ghia
- Division of Experimental Oncology, B cell Neoplasia Unit, IRCCS Ospedale San Raffaele, Milan, Italy
- Strategic Research Program on CLL, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
6
|
Haider Z, Wästerlid T, Spångberg LD, Rabbani L, Jylhä C, Thorvaldsdottir B, Skaftason A, Awier HN, Krstic A, Gellerbring A, Lyander A, Hägglund M, Jeggari A, Rassidakis G, Sonnevi K, Sander B, Rosenquist R, Tham E, Smedby KE. Whole-genome informed circulating tumor DNA analysis by multiplex digital PCR for disease monitoring in B-cell lymphomas: a proof-of-concept study. Front Oncol 2023; 13:1176698. [PMID: 37333831 PMCID: PMC10272573 DOI: 10.3389/fonc.2023.1176698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Analyzing liquid biopsies for tumor-specific aberrations can facilitate detection of measurable residual disease (MRD) during treatment and at follow-up. In this study, we assessed the clinical potential of using whole-genome sequencing (WGS) of lymphomas at diagnosis to identify patient-specific structural (SVs) and single nucleotide variants (SNVs) to enable longitudinal, multi-targeted droplet digital PCR analysis (ddPCR) of cell-free DNA (cfDNA). Methods In 9 patients with B-cell lymphoma (diffuse large B-cell lymphoma and follicular lymphoma), comprehensive genomic profiling at diagnosis was performed by 30X WGS of paired tumor and normal specimens. Patient-specific multiplex ddPCR (m-ddPCR) assays were designed for simultaneous detection of multiple SNVs, indels and/or SVs, with a detection sensitivity of 0.0025% for SV assays and 0.02% for SNVs/indel assays. M-ddPCR was applied to analyze cfDNA isolated from serially collected plasma at clinically critical timepoints during primary and/or relapse treatment and at follow-up. Results A total of 164 SNVs/indels were identified by WGS including 30 variants known to be functionally relevant in lymphoma pathogenesis. The most frequently mutated genes included KMT2D, PIM1, SOCS1 and BCL2. WGS analysis further identified recurrent SVs including t(14;18)(q32;q21) (IGH::BCL2), and t(6;14)(p25;q32) (IGH::IRF4). Plasma analysis at diagnosis showed positive circulating tumor DNA (ctDNA) levels in 88% of patients and the ctDNA burden correlated with baseline clinical parameters (LDH and sedimentation rate, p-value <0.01). While clearance of ctDNA levels after primary treatment cycle 1 was observed in 3/6 patients, all patients analyzed at final evaluation of primary treatment showed negative ctDNA, hence correlating with PET-CT imaging. One patient with positive ctDNA at interim also displayed detectable ctDNA (average variant allele frequency (VAF) 6.9%) in the follow-up plasma sample collected 2 years after final evaluation of primary treatment and 25 weeks before clinical manifestation of relapse. Conclusion In summary, we demonstrate that multi-targeted cfDNA analysis, using a combination of SNVs/indels and SVs candidates identified by WGS analysis, provides a sensitive tool for MRD monitoring and can detect lymphoma relapse earlier than clinical manifestation.
Collapse
Affiliation(s)
- Zahra Haider
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Tove Wästerlid
- Department of Medicine, Division of Clinical Epidemiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Linn Deleskog Spångberg
- Department of Medicine, Division of Clinical Epidemiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Leily Rabbani
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Jylhä
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Birna Thorvaldsdottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Aron Skaftason
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Hero Nikdin Awier
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Aleksandra Krstic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Gellerbring
- Clinical Genomics Stockholm, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Anna Lyander
- Clinical Genomics Stockholm, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Moa Hägglund
- Clinical Genomics Stockholm, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Ashwini Jeggari
- Clinical Genomics Stockholm, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Georgios Rassidakis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Laboratory, Stockholm, Sweden
| | - Kristina Sonnevi
- Department of Medicine, Division of Clinical Epidemiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine, Division of Pathology and Cancer Diagnostics, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Karin E. Smedby
- Department of Medicine, Division of Clinical Epidemiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Smedby KE, Wästerlid T, Tham E, Haider Z, Joelsson J, Thorvaldsdottir B, Krstic A, Wahlin BE, Foroughi-Asl H, Karlsson C, Eloranta S, Saft L, Palma M, Kwiecinska A, Hansson L, Österborg A, Wirta V, Rassidakis G, Sander B, Sonnevi K, Rosenquist R. The BioLymph study - implementing precision medicine approaches in lymphoma diagnostics, treatment and follow-up: feasibility and first results. Acta Oncol 2023; 62:560-564. [PMID: 37415362 DOI: 10.1080/0284186x.2023.2218556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 07/08/2023]
Affiliation(s)
- K E Smedby
- Dept of Hematology, Karolinska University Hospital Solna, Sweden
- Dept of Medicine Solna, div of Clinical Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | - T Wästerlid
- Dept of Hematology, Karolinska University Hospital Solna, Sweden
- Dept of Medicine Solna, div of Clinical Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | - E Tham
- Dept of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Dept of Clinical Genetics, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Z Haider
- Dept of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - J Joelsson
- Dept of Hematology, Karolinska University Hospital Solna, Sweden
- Dept of Medicine Solna, div of Clinical Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | - B Thorvaldsdottir
- Dept of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - A Krstic
- Dept of Clinical Genetics, Karolinska University Hospital Solna, Stockholm, Sweden
| | - B E Wahlin
- Dept of Hematology, Karolinska University Hospital Solna, Sweden
- Dept of Medicine Huddinge, Karolinska Institutet
| | | | - C Karlsson
- Dept of Hematology, Karolinska University Hospital Solna, Sweden
- Dept of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - S Eloranta
- Dept of Medicine Solna, div of Clinical Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | - L Saft
- Dept of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - M Palma
- Dept of Hematology, Karolinska University Hospital Solna, Sweden
- Dept of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - A Kwiecinska
- Dept of Clinical Pathology and Cancer Diagnostics, Karolinska University Laboratory, Solna and Huddinge, Sweden
| | - L Hansson
- Dept of Hematology, Karolinska University Hospital Solna, Sweden
- Dept of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - A Österborg
- Dept of Hematology, Karolinska University Hospital Solna, Sweden
- Dept of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - V Wirta
- Science for Life Laboratory, Dept of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Royal Insititute of Technology, Stockholm, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - G Rassidakis
- Dept of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Dept of Clinical Pathology and Cancer Diagnostics, Karolinska University Laboratory, Solna and Huddinge, Sweden
| | - B Sander
- Dept of Clinical Pathology and Cancer Diagnostics, Karolinska University Laboratory, Solna and Huddinge, Sweden
- Dept of Laboratory Medicine, Karolinska Institutet Stockholm, Sweden
| | - K Sonnevi
- Dept of Hematology, Karolinska University Hospital Solna, Sweden
- Dept of Medicine Huddinge, Karolinska Institutet
| | - R Rosenquist
- Dept of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Dept of Clinical Genetics, Karolinska University Hospital Solna, Stockholm, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Oder B, Chatzidimitriou A, Langerak AW, Rosenquist R, Österholm C. Recent revelations and future directions using single-cell technologies in chronic lymphocytic leukemia. Front Oncol 2023; 13:1143811. [PMID: 37091144 PMCID: PMC10117666 DOI: 10.3389/fonc.2023.1143811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a clinically and biologically heterogeneous disease with varying outcomes. In the last decade, the application of next-generation sequencing technologies has allowed extensive mapping of disease-specific genomic, epigenomic, immunogenetic, and transcriptomic signatures linked to CLL pathogenesis. These technologies have improved our understanding of the impact of tumor heterogeneity and evolution on disease outcome, although they have mostly been performed on bulk preparations of nucleic acids. As a further development, new technologies have emerged in recent years that allow high-resolution mapping at the single-cell level. These include single-cell RNA sequencing for assessment of the transcriptome, both of leukemic and non-malignant cells in the tumor microenvironment; immunogenetic profiling of B and T cell receptor rearrangements; single-cell sequencing methods for investigation of methylation and chromatin accessibility across the genome; and targeted single-cell DNA sequencing for analysis of copy-number alterations and single nucleotide variants. In addition, concomitant profiling of cellular subpopulations, based on protein expression, can also be obtained by various antibody-based approaches. In this review, we discuss different single-cell sequencing technologies and how they have been applied so far to study CLL onset and progression, also in response to treatment. This latter aspect is particularly relevant considering that we are moving away from chemoimmunotherapy to targeted therapies, with a potentially distinct impact on clonal dynamics. We also discuss new possibilities, such as integrative multi-omics analysis, as well as inherent limitations of the different single-cell technologies, from sample preparation to data interpretation using available bioinformatic pipelines. Finally, we discuss future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Blaž Oder
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anastasia Chatzidimitriou
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Anton W. Langerak
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia Österholm
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Shimkus G, Nonaka T. Molecular classification and therapeutics in diffuse large B-cell lymphoma. Front Mol Biosci 2023; 10:1124360. [PMID: 36818048 PMCID: PMC9936827 DOI: 10.3389/fmolb.2023.1124360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) encompasses a wide variety of disease states that have to date been subgrouped and characterized based on immunohistochemical methods, which provide limited prognostic value to clinicians and no alteration in treatment regimen. The addition of rituximab to CHOP therapy was the last leap forward in terms of treatment, but regimens currently follow a standardized course when disease becomes refractory with no individualization based on genotype. Research groups are tentatively proposing new strategies for categorizing DLBCL based on genetic abnormalities that are frequently found together to better predict disease course following dysregulation of specific pathways and to deliver targeted treatment. Novel algorithms in combination with next-generation sequencing techniques have identified between 4 and 7 subgroups of DLBCL, depending on the research team, with potentially significant and actionable genetic alterations. Various drugs aimed at pathways including BCR signaling, NF-κB dysfunction, and epigenetic regulation have shown promise in their respective groups and may show initial utility as second or third line therapies to patients with recurrent DLBCL. Implementation of subgroups will allow collection of necessary data to determine which groups are significant, which treatments may be indicated, and will provide better insight to clinicians and patients on specific disease course.
Collapse
Affiliation(s)
- Gaelen Shimkus
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Taichiro Nonaka
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States,Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, LA, United States,*Correspondence: Taichiro Nonaka,
| |
Collapse
|
10
|
Mansouri L, Thorvaldsdottir B, Sutton LA, Karakatsoulis G, Meggendorfer M, Parker H, Nadeu F, Brieghel C, Laidou S, Moia R, Rossi D, Catherwood M, Kotaskova J, Delgado J, Rodríguez-Vicente AE, Benito R, Rigolin GM, Bonfiglio S, Scarfo L, Mattsson M, Davis Z, Gogia A, Rani L, Baliakas P, Foroughi-Asl H, Jylhä C, Skaftason A, Rapado I, Miras F, Martinez-Lopez J, de la Serna J, Rivas JMH, Thornton P, Larráyoz MJ, Calasanz MJ, Fésüs V, Mátrai Z, Bödör C, Smedby KE, Espinet B, Puiggros A, Gupta R, Bullinger L, Bosch F, Tazón-Vega B, Baran-Marszak F, Oscier D, Nguyen-Khac F, Zenz T, Terol MJ, Cuneo A, Hernández-Sánchez M, Pospisilova S, Mills K, Gaidano G, Niemann CU, Campo E, Strefford JC, Ghia P, Stamatopoulos K, Rosenquist R. Different prognostic impact of recurrent gene mutations in chronic lymphocytic leukemia depending on IGHV gene somatic hypermutation status: a study by ERIC in HARMONY. Leukemia 2023; 37:339-347. [PMID: 36566271 PMCID: PMC9898037 DOI: 10.1038/s41375-022-01802-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022]
Abstract
Recent evidence suggests that the prognostic impact of gene mutations in patients with chronic lymphocytic leukemia (CLL) may differ depending on the immunoglobulin heavy variable (IGHV) gene somatic hypermutation (SHM) status. In this study, we assessed the impact of nine recurrently mutated genes (BIRC3, EGR2, MYD88, NFKBIE, NOTCH1, POT1, SF3B1, TP53, and XPO1) in pre-treatment samples from 4580 patients with CLL, using time-to-first-treatment (TTFT) as the primary end-point in relation to IGHV gene SHM status. Mutations were detected in 1588 (34.7%) patients at frequencies ranging from 2.3-9.8% with mutations in NOTCH1 being the most frequent. In both univariate and multivariate analyses, mutations in all genes except MYD88 were associated with a significantly shorter TTFT. In multivariate analysis of Binet stage A patients, performed separately for IGHV-mutated (M-CLL) and unmutated CLL (U-CLL), a different spectrum of gene alterations independently predicted short TTFT within the two subgroups. While SF3B1 and XPO1 mutations were independent prognostic variables in both U-CLL and M-CLL, TP53, BIRC3 and EGR2 aberrations were significant predictors only in U-CLL, and NOTCH1 and NFKBIE only in M-CLL. Our findings underscore the need for a compartmentalized approach to identify high-risk patients, particularly among M-CLL patients, with potential implications for stratified management.
Collapse
Affiliation(s)
- Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Birna Thorvaldsdottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Lesley-Ann Sutton
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Georgios Karakatsoulis
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece
- Department of Mathematics, University of Ioannina, Ioannina, Greece
| | | | - Helen Parker
- Cancer Genomics, School for Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Christian Brieghel
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Stamatia Laidou
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece
| | - Riccardo Moia
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Davide Rossi
- Division of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Mark Catherwood
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Jana Kotaskova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Julio Delgado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hospital Clínic of Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Ana E Rodríguez-Vicente
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica (IBSAL), Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - Rocío Benito
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica (IBSAL), Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - Gian Matteo Rigolin
- Hematology-Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Silvia Bonfiglio
- Università Vita Salute San Raffaele and IRCCS Ospedale San Raffaele, Milano, Italy
| | - Lydia Scarfo
- Università Vita Salute San Raffaele and IRCCS Ospedale San Raffaele, Milano, Italy
| | - Mattias Mattsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Zadie Davis
- Molecular Pathology Department, University Hospitals Dorset, Bournemouth, UK
| | - Ajay Gogia
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Lata Rani
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hassan Foroughi-Asl
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Jylhä
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Aron Skaftason
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Inmaculada Rapado
- Hospital Universitario 12 Octubre, Madrid, Spain
- Spanish National Cancer Research (CNIO), Madrid, Spain
| | - Fatima Miras
- Hospital Universitario 12 Octubre, Madrid, Spain
| | - Joaquín Martinez-Lopez
- Hospital Universitario 12 Octubre, Madrid, Spain
- Spanish National Cancer Research (CNIO), Madrid, Spain
| | - Javier de la Serna
- Hospital Universitario 12 Octubre, Madrid, Spain
- Spanish National Cancer Research (CNIO), Madrid, Spain
| | - Jesús María Hernández Rivas
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica (IBSAL), Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | | | - María José Larráyoz
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María José Calasanz
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Viktória Fésüs
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zoltán Mátrai
- Central Hospital of Southern Pest-National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Karin E Smedby
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Blanca Espinet
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar and Translational Research on Hematological Neoplasms Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Anna Puiggros
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar and Translational Research on Hematological Neoplasms Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Ritu Gupta
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Lars Bullinger
- Department of Hematology, Oncology and Cancer Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Francesc Bosch
- Department of Hematology, Hospital Universitari Vall d'Hebron (HUVH), Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bárbara Tazón-Vega
- Department of Hematology, Hospital Universitari Vall d'Hebron (HUVH), Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fanny Baran-Marszak
- Service d'hématologie Biologique Hôpital Avicenne Assistance Publique des Hôpitaux de Paris, Bobigny, France
| | - David Oscier
- Molecular Pathology Department, University Hospitals Dorset, Bournemouth, UK
| | - Florence Nguyen-Khac
- Sorbonne Université, Service d'Hématologie Clinique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Thorsten Zenz
- Department of Oncology and Haematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Maria Jose Terol
- Department of Hematology, INCLIVA Research Insitute, University of Valencia, Valencia, Spain
| | - Antonio Cuneo
- Hematology-Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - María Hernández-Sánchez
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica (IBSAL), Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - Sarka Pospisilova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ken Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Carsten U Niemann
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hospital Clínic of Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Jonathan C Strefford
- Cancer Genomics, School for Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Paolo Ghia
- Università Vita Salute San Raffaele and IRCCS Ospedale San Raffaele, Milano, Italy
| | - Kostas Stamatopoulos
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden.
| |
Collapse
|
11
|
de Leval L, Alizadeh AA, Bergsagel PL, Campo E, Davies A, Dogan A, Fitzgibbon J, Horwitz SM, Melnick AM, Morice WG, Morin RD, Nadel B, Pileri SA, Rosenquist R, Rossi D, Salaverria I, Steidl C, Treon SP, Zelenetz AD, Advani RH, Allen CE, Ansell SM, Chan WC, Cook JR, Cook LB, d’Amore F, Dirnhofer S, Dreyling M, Dunleavy K, Feldman AL, Fend F, Gaulard P, Ghia P, Gribben JG, Hermine O, Hodson DJ, Hsi ED, Inghirami G, Jaffe ES, Karube K, Kataoka K, Klapper W, Kim WS, King RL, Ko YH, LaCasce AS, Lenz G, Martin-Subero JI, Piris MA, Pittaluga S, Pasqualucci L, Quintanilla-Martinez L, Rodig SJ, Rosenwald A, Salles GA, San-Miguel J, Savage KJ, Sehn LH, Semenzato G, Staudt LM, Swerdlow SH, Tam CS, Trotman J, Vose JM, Weigert O, Wilson WH, Winter JN, Wu CJ, Zinzani PL, Zucca E, Bagg A, Scott DW. Genomic profiling for clinical decision making in lymphoid neoplasms. Blood 2022; 140:2193-2227. [PMID: 36001803 PMCID: PMC9837456 DOI: 10.1182/blood.2022015854] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/15/2022] [Indexed: 01/28/2023] Open
Abstract
With the introduction of large-scale molecular profiling methods and high-throughput sequencing technologies, the genomic features of most lymphoid neoplasms have been characterized at an unprecedented scale. Although the principles for the classification and diagnosis of these disorders, founded on a multidimensional definition of disease entities, have been consolidated over the past 25 years, novel genomic data have markedly enhanced our understanding of lymphomagenesis and enriched the description of disease entities at the molecular level. Yet, the current diagnosis of lymphoid tumors is largely based on morphological assessment and immunophenotyping, with only few entities being defined by genomic criteria. This paper, which accompanies the International Consensus Classification of mature lymphoid neoplasms, will address how established assays and newly developed technologies for molecular testing already complement clinical diagnoses and provide a novel lens on disease classification. More specifically, their contributions to diagnosis refinement, risk stratification, and therapy prediction will be considered for the main categories of lymphoid neoplasms. The potential of whole-genome sequencing, circulating tumor DNA analyses, single-cell analyses, and epigenetic profiling will be discussed because these will likely become important future tools for implementing precision medicine approaches in clinical decision making for patients with lymphoid malignancies.
Collapse
Affiliation(s)
- Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Ash A. Alizadeh
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
- Stanford Cancer Institute, Stanford University, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA
| | - P. Leif Bergsagel
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Phoenix, AZ
| | - Elias Campo
- Haematopathology Section, Hospital Clínic, Institut d'Investigaciones Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Andrew Davies
- Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jude Fitzgibbon
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Steven M. Horwitz
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ari M. Melnick
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - William G. Morice
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Ryan D. Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada
| | - Bertrand Nadel
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Stefano A. Pileri
- Haematopathology Division, IRCCS, Istituto Europeo di Oncologia, IEO, Milan, Italy
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden
| | - Davide Rossi
- Institute of Oncology Research and Oncology Institute of Southern Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | | | - Andrew D. Zelenetz
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Ranjana H. Advani
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
| | - Carl E. Allen
- Division of Pediatric Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | | | - Wing C. Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - James R. Cook
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Lucy B. Cook
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Francesco d’Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Kieron Dunleavy
- Division of Hematology and Oncology, Georgetown Lombardi Comprehensive Cancer Centre, Georgetown University Hospital, Washington, DC
| | - Andrew L. Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Falko Fend
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Philippe Gaulard
- Department of Pathology, University Hospital Henri Mondor, AP-HP, Créteil, France
- Faculty of Medicine, IMRB, INSERM U955, University of Paris-Est Créteil, Créteil, France
| | - Paolo Ghia
- Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy
| | - John G. Gribben
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Olivier Hermine
- Service D’hématologie, Hôpital Universitaire Necker, Université René Descartes, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Daniel J. Hodson
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Eric D. Hsi
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Elaine S. Jaffe
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Toyko, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Wolfram Klapper
- Hematopathology Section and Lymph Node Registry, Department of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Won Seog Kim
- Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
| | - Rebecca L. King
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Young H. Ko
- Department of Pathology, Cheju Halla General Hospital, Jeju, Korea
| | | | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - José I. Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Miguel A. Piris
- Department of Pathology, Jiménez Díaz Foundation University Hospital, CIBERONC, Madrid, Spain
| | - Stefania Pittaluga
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY
- Department of Pathology & Cell Biology, Columbia University, New York, NY
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Scott J. Rodig
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | | | - Gilles A. Salles
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jesus San-Miguel
- Clínica Universidad de Navarra, Navarra, Cancer Center of University of Navarra, Cima Universidad de NavarraI, Instituto de Investigacion Sanitaria de Navarra, Centro de Investigación Biomédica en Red de Céncer, Pamplona, Spain
| | - Kerry J. Savage
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | - Laurie H. Sehn
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | - Gianpietro Semenzato
- Department of Medicine, University of Padua and Veneto Institute of Molecular Medicine, Padova, Italy
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Steven H. Swerdlow
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Judith Trotman
- Haematology Department, Concord Repatriation General Hospital, Sydney, Australia
| | - Julie M. Vose
- Department of Internal Medicine, Division of Hematology-Oncology, University of Nebraska Medical Center, Omaha, NE
| | - Oliver Weigert
- Department of Medicine III, LMU Hospital, Munich, Germany
| | - Wyndham H. Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jane N. Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - Pier L. Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Istitudo di Ematologia “Seràgnoli” and Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy
| | - Emanuele Zucca
- Institute of Oncology Research and Oncology Institute of Southern Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Rodríguez Ruiz N, Abd Own S, Ekström Smedby K, Eloranta S, Koch S, Wästerlid T, Krstic A, Boman M. Data-driven support to decision-making in molecular tumour boards for lymphoma: A design science approach. Front Oncol 2022; 12:984021. [PMID: 36457495 PMCID: PMC9705761 DOI: 10.3389/fonc.2022.984021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/03/2022] [Indexed: 09/10/2024] Open
Abstract
Background The increasing amount of molecular data and knowledge about genomic alterations from next-generation sequencing processes together allow for a greater understanding of individual patients, thereby advancing precision medicine. Molecular tumour boards feature multidisciplinary teams of clinical experts who meet to discuss complex individual cancer cases. Preparing the meetings is a manual and time-consuming process. Purpose To design a clinical decision support system to improve the multimodal data interpretation in molecular tumour board meetings for lymphoma patients at Karolinska University Hospital, Stockholm, Sweden. We investigated user needs and system requirements, explored the employment of artificial intelligence, and evaluated the proposed design with primary stakeholders. Methods Design science methodology was used to form and evaluate the proposed artefact. Requirements elicitation was done through a scoping review followed by five semi-structured interviews. We used UML Use Case diagrams to model user interaction and UML Activity diagrams to inform the proposed flow of control in the system. Additionally, we modelled the current and future workflow for MTB meetings and its proposed machine learning pipeline. Interactive sessions with end-users validated the initial requirements based on a fictive patient scenario which helped further refine the system. Results The analysis showed that an interactive secure Web-based information system supporting the preparation of the meeting, multidisciplinary discussions, and clinical decision-making could address the identified requirements. Integrating artificial intelligence via continual learning and multimodal data fusion were identified as crucial elements that could provide accurate diagnosis and treatment recommendations. Impact Our work is of methodological importance in that using artificial intelligence for molecular tumour boards is novel. We provide a consolidated proof-of-concept system that could support the end-to-end clinical decision-making process and positively and immediately impact patients. Conclusion Augmenting a digital decision support system for molecular tumour boards with retrospective patient material is promising. This generates realistic and constructive material for human learning, and also digital data for continual learning by data-driven artificial intelligence approaches. The latter makes the future system adaptable to human bias, improving adequacy and decision quality over time and over tasks, while building and maintaining a digital log.
Collapse
Affiliation(s)
- Núria Rodríguez Ruiz
- Department of Learning, Informatics, Management and Ethics (LIME), Health Informatics Centre, Karolinska Institutet, Stockholm, Sweden
| | - Sulaf Abd Own
- Department of Medicine Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Division of Pathology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Karin Ekström Smedby
- Department of Medicine Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Sandra Eloranta
- Department of Medicine Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
| | - Sabine Koch
- Department of Learning, Informatics, Management and Ethics (LIME), Health Informatics Centre, Karolinska Institutet, Stockholm, Sweden
| | - Tove Wästerlid
- Department of Medicine Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Aleksandra Krstic
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Boman
- Department of Learning, Informatics, Management and Ethics (LIME), Health Informatics Centre, Karolinska Institutet, Stockholm, Sweden
- School of Electrical Engineering and Computer Science (EECS)/Software and Computer Systems, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
13
|
Critical Role of Aquaporins in Cancer: Focus on Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14174182. [PMID: 36077720 PMCID: PMC9455074 DOI: 10.3390/cancers14174182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Aquaporins are proteins able to regulate the transfer of water and other small substances such as ions, glycerol, urea, and hydrogen peroxide across cellular membranes. AQPs provide for a huge variety of physiological phenomena; their alteration provokes several types of pathologies including cancer and hematological malignancies. Our review presents data revealing the possibility of employing aquaporins as biomarkers in patients with hematological malignancies and evaluates the possibility that interfering with the expression of aquaporins could represent an effective treatment for hematological malignancies. Abstract Aquaporins are transmembrane molecules regulating the transfer of water and other compounds such as ions, glycerol, urea, and hydrogen peroxide. Their alteration has been reported in several conditions such as cancer. Tumor progression might be enhanced by aquaporins in modifying tumor angiogenesis, cell volume adaptation, proteases activity, cell–matrix adhesions, actin cytoskeleton, epithelial–mesenchymal transitions, and acting on several signaling pathways facilitating cancer progression. Close connections have also been identified between the aquaporins and hematological malignancies. However, it is difficult to identify a unique action exerted by aquaporins in different hemopathies, and each aquaporin has specific effects that vary according to the class of aquaporin examined and to the different neoplastic cells. However, the expression of aquaporins is altered in cell cultures and in patients with acute and chronic myeloid leukemia, in lymphoproliferative diseases and in multiple myeloma, and the different expression of aquaporins seems to be able to influence the efficacy of treatment and could have a prognostic significance, as greater expression of aquaporins is correlated to improved overall survival in leukemia patients. Finally, we assessed the possibility that modifying the aquaporin expression using aquaporin-targeting regulators, specific monoclonal antibodies, and even aquaporin gene transfer could represent an effective therapy of hematological malignancies.
Collapse
|