1
|
Ran H, Li C, Rizvi SMM, Zhou R, Kong L, Shuangling S, Shao Y, Wu K, Duan C, Luo J, Shi H, Wu Q, Zhang C. Integrated analyses of Mendelian randomization, eQTL, and single-cell transcriptome identify CCN3 as a potential biomarker in aortic dissection. Sci Rep 2024; 14:32062. [PMID: 39738466 PMCID: PMC11685893 DOI: 10.1038/s41598-024-83611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Plasma secretory proteins are associated with various diseases, including aortic dissection (AD). However, current research on the correlation between AD and plasma protein levels is scarce or lacks specificity. This study aimed to explore plasma secretory proteins as potential biomarkers for AD. Through genome-wide association studies, expression quantitative trait locus (eQTL) analysis, and human plasma protein profiling, we identified DBNL, NPC2, SUMF2, and TFPI as high-risk genes and CCN3, PRKCSH, TEX264, and TGFBR3 as low-risk genes for AD. Further cell localization and differential expression analysis of these eight genes were conducted using single-cell data. We also examined their expression in three Gene Expression Omnibus datasets, measured their mRNA levels in AD versus normal tissues using qPCR, and assessed their protein levels in patients' blood versus healthy individuals using enzyme-linked immunosorbent assay. Our findings suggest that CCN3, consistently downregulated in both mRNA and plasma levels during AD, may have a protective role. Initial enrichment analyses of differentially expressed CCN3 cells suggested their involvement in focal adhesion, actin cytoskeleton regulation, and the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Haoyu Ran
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changying Li
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Syed M Musa Rizvi
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruiqin Zhou
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Sun Shuangling
- Department of Biochemistry, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yue Shao
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kejia Wu
- Department of Cell Biology and Genetics, Center for Molecular Medicine and Oncology Research, Chongqing Medical University, Chongqing, China
| | - Changzhu Duan
- Department of Cell Biology and Genetics, Center for Molecular Medicine and Oncology Research, Chongqing Medical University, Chongqing, China
| | - Jun Luo
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haoming Shi
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingchen Wu
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Dadgar N, Sherry C, Zimmerman J, Park H, Lewis C, Donnenberg A, Zaidi AH, Fan Y, Xiao K, Bartlett D, Donnenberg V, Wagner PL. Targeting interleukin-6 as a treatment approach for peritoneal carcinomatosis. J Transl Med 2024; 22:402. [PMID: 38689325 PMCID: PMC11061933 DOI: 10.1186/s12967-024-05205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Peritoneal carcinomatosis (PC) is a complex manifestation of abdominal cancers, with a poor prognosis and limited treatment options. Recent work identifying high concentrations of the cytokine interleukin-6 (IL-6) and its soluble receptor (sIL-6-Rα) in the peritoneal cavity of patients with PC has highlighted this pathway as an emerging potential therapeutic target. This review article provides a comprehensive overview of the current understanding of the potential role of IL-6 in the development and progression of PC. We discuss mechansims by which the IL-6 pathway may contribute to peritoneal tumor dissemination, mesothelial adhesion and invasion, stromal invasion and proliferation, and immune response modulation. Finally, we review the prospects for targeting the IL-6 pathway in the treatment of PC, focusing on common sites of origin, including ovarian, gastric, pancreatic, colorectal and appendiceal cancer, and mesothelioma.
Collapse
Affiliation(s)
- Neda Dadgar
- Translational Hematology & Oncology Research, Enterprise Cancer Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Christopher Sherry
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Jenna Zimmerman
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Hyun Park
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Catherine Lewis
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Albert Donnenberg
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Ali H Zaidi
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Yong Fan
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Kunhong Xiao
- Center for Proteomics & Artificial Intelligence, Center for Clinical Mass Spectrometry, Allegheny Health Network Cancer Institute, Pittsburgh, PA, 15224, USA
| | - David Bartlett
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Vera Donnenberg
- University of Pittsburgh School of MedicineDepartment of Cardiothoracic SurgeryUPMC Hillman Cancer Center Wagner, Patrick; Allegheny Health Network Cancer Institute, Pittsburgh, USA
| | - Patrick L Wagner
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA.
| |
Collapse
|
3
|
Meng Z, Wang T, Hu Y, Ouyang H, Wang Q, Wu M, Zhou J, Lou X, Wang S, Dai J, Xia F. Macrophage Membrane-Camouflaged Aggregation-Induced Emission Nanoparticles Enhance Photodynamic-Immunotherapy to Delay Postoperative Tumor Recurrence. Adv Healthc Mater 2024; 13:e2302156. [PMID: 37838834 DOI: 10.1002/adhm.202302156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/07/2023] [Indexed: 10/16/2023]
Abstract
Surgery is a traditional tumor treatment, and immunotherapy can reduce the postoperative recurrence of tumors. However, the intrinsic limits of low responsive rate and non-tumor specificity of immunotherapy agents are still insufficient to address therapeutic demands. Herein, the macrophages membrane camouflaged nanoparticles (NPs), named M@PFC, consisting of the aggregation-induced emission photosensitizer (PF3-PPh3 ) and immune adjuvant (CpG), are reported. As the protein on the membrane interacts with the vascular cell adhesion molecule 1 (VCAM-1) of cancer cells, M@PFC efficiently transports CpG to the tumor. Meanwhile, M@PFC can evade clearance by the immune system and prolong the circulation time in vivo; thus, enhancing their accumulation in tumors. PF3-PPh3 promotes high production of reactive oxygen species (ROS) and triggers immune cell death (ICD) in tumor cells under light exposure. Importantly, CpG enrichment in tumors can stimulate tumor cells to produce immune factors to assist in enhancing ICD effects. The synergistic effect combining the PDT properties of the aggregation-induced emission (AIE)-active photosensitizer and immunotherapy properties of CpG significantly delays tumor recurrence after surgery. In conclusion, this strategy achieves the synergistic activation of the immune system for anti-tumor activity, providing a novel paradigm for the development of therapeutic nanodrugs to delay postoperative tumor recurrence.
Collapse
Affiliation(s)
- Zijuan Meng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Tingting Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Yuxin Hu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Hanzhi Ouyang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Quan Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, P. R. China
| | - Jian Zhou
- College of Material, Chemistry and Chemical Engineering, Hangzhou, Normal University, Hangzhou, 311121, P. R. China
| | - Xiaoding Lou
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P. R. China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, P. R. China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, P. R. China
| | - Fan Xia
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P. R. China
| |
Collapse
|
4
|
Liu Y, Zhao M, Qu H. Identification of cytokine-induced cell communications by pan-cancer meta-analysis. PeerJ 2023; 11:e16221. [PMID: 38054018 PMCID: PMC10695116 DOI: 10.7717/peerj.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/11/2023] [Indexed: 12/07/2023] Open
Abstract
Cancer immune responses are complex cellular processes in which cytokine-receptor interactions play central roles in cancer development and response to therapy; dysregulated cytokine-receptor communication may lead to pathological processes, including cancer, autoimmune diseases, and cytokine storm; however, our knowledge regarding cytokine-mediated cell-cell communication (CCI) in different cancers remains limited. The present study presents a single-cell and pan-cancer-level transcriptomics integration of 41,900 cells across 25 cancer types. We developed a single-cell method to actively express 62 cytokine-receptor pairs to reveal stable cytokine-mediated cell communications involving 84 cytokines and receptors. The correlation between the sample-based CCI profile and the interactome analysis indicates multiple cytokine-receptor modules including TGFB1, IL16ST, IL15, and the PDGF family. Some isolated cytokine interactions, such as FN1-IL17RC, displayed diverse functions within over ten single-cell transcriptomics datasets. Further functional enrichment analysis revealed that the constructed cytokine-receptor interaction map is associated with the positive regulation of multiple immune response pathways. Using public TCGA pan-cancer mutational data, co-mutational analysis of the cytokines and receptors provided significant co-occurrence features, implying the existence of cooperative mechanisms. Analysis of 10,967 samples from 32 TCGA cancer types revealed that the 84 cytokine and receptor genes are significantly associated with clinical survival time. Interestingly, the tumor samples with mutations in any of the 84 cytokines and receptors have a substantially higher mutational burden, offering insights into antitumor immune regulation and response. Clinical cancer stage information revealed that tumor samples with mutations in any of the 84 cytokines and receptors stratify into earlier tumor stages, with unique cellular compositions and clinical outcomes. This study provides a comprehensive cytokine-receptor atlas of the cellular architecture in multiple cancers at the single-cell level.
Collapse
Affiliation(s)
- Yining Liu
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Min Zhao
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Australia
| | - Hong Qu
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
5
|
Dey DK, Krause D, Rai R, Choudhary S, Dockery LE, Chandra V. The role and participation of immune cells in the endometrial tumor microenvironment. Pharmacol Ther 2023; 251:108526. [PMID: 37690483 DOI: 10.1016/j.pharmthera.2023.108526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
The tumor microenvironment is surrounded by blood vessels and consists of malignant, non-malignant, and immune cells, as well as signalling molecules, which primarily affect the therapeutic response and curative effects of drugs in clinical studies. Tumor-infiltrating immune cells participate in tumor progression, impact anticancer therapy, and eventually lead to the development of immune tolerance. Immunotherapy is evolving as a promising therapeutic intervention to stimulate and activate the immune system to suppress cancer cell growth. Endometrial cancer (EC) is an immunogenic disease, and in recent years, immunotherapy has shown benefit in the treatment of recurrent and advanced EC. This review discusses the key molecular pathways associated with the intra-tumoral immune response and the involvement of circulatory signalling molecules. Specific immunologic signatures in EC which offer targets for immunomodulating agents, are also discussed. We have summarized the available literature in support of using immunotherapy in EC. Lastly, we have also discussed ongoing clinical trials that may offer additional promising immunotherapy options in the future. The manuscript also explored innovative approaches for screening and identifying effective drugs, and to reduce the financial burdens for the development of personalized treatment strategies. Collectively, we aim to provide a comprehensive review of the role of immune cells and the tumor microenvironment in the development, progression, and treatment of EC.
Collapse
Affiliation(s)
- Debasish Kumar Dey
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Danielle Krause
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rajani Rai
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Swati Choudhary
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lauren E Dockery
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Vishal Chandra
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
6
|
Dahri M, Beheshtizadeh N, Seyedpour N, Nakhostin-Ansari A, Aghajani F, Seyedpour S, Masjedi M, Farjadian F, Maleki R, Adibkia K. Biomaterial-based delivery platforms for transdermal immunotherapy. Biomed Pharmacother 2023; 165:115048. [PMID: 37385212 DOI: 10.1016/j.biopha.2023.115048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Nowadays, immunotherapy is one of the most essential treatments for various diseases and a broad spectrum of disorders are assumed to be treated by altering the function of the immune system. For this reason, immunotherapy has attracted a great deal of attention and numerous studies on different approaches for immunotherapies have been investigated, using multiple biomaterials and carriers, from nanoparticles (NPs) to microneedles (MNs). In this review, the immunotherapy strategies, biomaterials, devices, and diseases supposed to be treated by immunotherapeutic strategies are reviewed. Several transdermal therapeutic methods, including semisolids, skin patches, chemical, and physical skin penetration enhancers, are discussed. MNs are the most frequent devices implemented in transdermal immunotherapy of cancers (e.g., melanoma, squamous cell carcinoma, cervical, and breast cancer), infectious (e.g., COVID-19), allergic and autoimmune disorders (e.g., Duchenne's muscular dystrophy and Pollinosis). The biomaterials used in transdermal immunotherapy vary in shape, size, and sensitivity to external stimuli (e.g., magnetic field, photo, redox, pH, thermal, and even multi-stimuli-responsive) were reported. Correspondingly, vesicle-based NPs, including niosomes, transferosomes, ethosomes, microemulsions, transfersomes, and exosomes, are also discussed. In addition, transdermal immunotherapy using vaccines has been reviewed for Ebola, Neisseria gonorrhoeae, Hepatitis B virus, Influenza virus, respiratory syncytial virus, Hand-foot-and-mouth disease, and Tetanus.
Collapse
Affiliation(s)
- Mohammad Dahri
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nasrin Seyedpour
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Nakhostin-Ansari
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Aghajani
- Research Development Center, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Seyedpour
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Masjedi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Maleki
- Department of Chemical Technologies, Iranian Research Organization for Sciences and Technology (IROST), P.O. Box 33535111 Tehran, Iran.
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Siddiqui JA, Nasser MW. Editorial: Role of chemokines in tumor heterogeneity. Semin Cancer Biol 2023; 92:128-129. [PMID: 37028577 DOI: 10.1016/j.semcancer.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
8
|
Yao C, Dong J, Ren K, Sun L, Wang H, Zhang J, Wang H, Xu X, Yao B, Zhou H, Zhao L, Peng R. Accumulative Effects of Multifrequency Microwave Exposure with 1.5 GHz and 2.8 GHz on the Structures and Functions of the Immune System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4988. [PMID: 36981897 PMCID: PMC10049199 DOI: 10.3390/ijerph20064988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Microwave ablation can produce immune activation due to thermal effects. However, the nonthermal effects of microwaves on the immune system are still largely unexplored. In this study, we sequentially exposed rats to 1.5 GHz microwave for 6 min and 2.8 GHz microwave for 6 min at an average power density of 5, 10, and 30 mW/cm2. The structure of the thymus, spleen, and mesenteric lymph node were observed, and we showed that multifrequency microwave exposure caused tissue injuries, such as congestion and nuclear fragmentation in lymphocytes. Ultrastructural injuries, including mitochondrial swelling, mitochondrial cristae rupture, and mitochondrial cavitation, were observed, especially in the 30 mW/cm2 microwave-exposed group. Generally, multifrequency microwaves decreased white blood cells, as well as lymphocytes, monocytes, and neutrophils, in peripheral blood, from 7 d to 28 d after exposure. Microwaves with an average density of 30 mW/cm2 produced much more significant inhibitory effects on immune cells. Moreover, multifrequency microwaves at 10 and 30 mW/cm2, but not 5 mW/cm2, reduced the serum levels of several cytokines, such as interleukin-1 alpha (IL-1α), IL-1β, interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α), at 7 d and 14 d after exposure. We also found similar alterations in immunoglobulins (Igs), IgG, and IgM in serum. However, no obvious changes in complement proteins were detected. In conclusion, multifrequency microwave exposure of 1.5 GHz and 2.8 GHz caused both structural injuries of immune tissues and functional impairment in immune cells. Therefore, it will be necessary to develop an effective strategy to protect people from multifrequency microwave-induced immune suppression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Li Zhao
- Correspondence: (L.Z.); (R.P.)
| | | |
Collapse
|