1
|
Zhuang DR, Hu X, Huang HB. Hub genes and key pathways of Graves' disease: bioinformatics analysis and validation. Hormones (Athens) 2025:10.1007/s42000-025-00668-w. [PMID: 40388080 DOI: 10.1007/s42000-025-00668-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 04/24/2025] [Indexed: 05/20/2025]
Abstract
OBJECTIVE This study aims to identify hub genes associated with the onset and progression of Graves' disease (GD) with the goal of developing novel biomarkers to enhance diagnosis and improve patient outcomes. METHODS mRNA profiles from thyroid tissue samples (24 GD vs. 24 normal controls) were obtained from GEO (GSE9340), ArrayExpress (E-MEXP-2612), and GTEx (Thyroid dataset). After batch correction via SVA algorithm, 366 differentially expressed genes (DEGs) were identified using limma. Functional enrichment, protein-protein interaction networks, and immune microenvironment analysis were performed. Hub genes were validated in clinical thyroid specimens (3 GD vs. 3 controls) using RT-qPCR. RESULTS A total of 366 DEGs were identified in the diseased and normal groups. Among these, eight hub genes (TYROBP, CSF1R, CD163, ITGAM, CD86, FCGR3B, ITGB2, and IL10RA) showed strong correlations with immune cell content. These genes were predominantly enriched in pathways related to amino acid metabolism, viral protein interactions with cytokines and cytokine receptors, phagosome, chemokine signaling, programmed cell death, NF-κB, and other pathways. Additionally, these hub genes were linked to 39 regulatory factors. mRNA levels of these hub genes were validated in clinical samples through RT-qPCR. It is noteworthy that eight genes were found to be upregulated in GD samples. CONCLUSION The study highlights the potential impact of ITGB 2, TYROBP, CSF1R, CD163, ITGAM, CD86, FCGR3B, and IL10RA on the development and progression of GD, supporting their role as potential biomarkers.
Collapse
Affiliation(s)
- Duan-Rong Zhuang
- Endocrinology Department of the Second Affiliated Hospital of Fujian, Medical University, 1602,Tower 4, One Pacific Place, Donghai Street, Fengze District, Quanzhou City, Fujian Province, 362000, China.
| | - Xin Hu
- Endocrinology Department of the Second Affiliated Hospital of Fujian, Medical University, 1602,Tower 4, One Pacific Place, Donghai Street, Fengze District, Quanzhou City, Fujian Province, 362000, China
| | - Hui-Bin Huang
- Endocrinology Department of the Second Affiliated Hospital of Fujian, Medical University, 1602,Tower 4, One Pacific Place, Donghai Street, Fengze District, Quanzhou City, Fujian Province, 362000, China
| |
Collapse
|
2
|
Mi C, Liu S, Chen Z. Redefining hepatocellular carcinoma treatment: nanotechnology meets tumor immune microenvironment. J Drug Target 2025:1-20. [PMID: 40079845 DOI: 10.1080/1061186x.2025.2479757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/15/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide, characterised by its complex pathogenesis and poor therapeutic outcomes. Despite recent advances in targeted molecular therapies, immune checkpoint inhibitors (ICIs), radiotherapy and conventional chemotherapy, the 5-year survival rate for this neoplasm remains dismally low. The progress in nanotechnology has revolutionised cancer treatment in recent years. These advances provide unprecedented opportunities to overcome the current limitations of different therapeutic modalities. This review provides a comprehensive analysis of how nanotechnology interfaces with the tumour immune microenvironment (TIME) in HCC and can present a new frontier in therapeutic interventions for HCC. We critically overview the latest developments in nanoparticle-based delivery systems for various drugs and also other antitumor agents like thermal therapy and radiotherapy. We also highlight the unique ability of nanoparticles to modulate the immunosuppressive tumour microenvironment (TME) and enhance therapeutic efficacy. Furthermore, we analyse emerging strategies that exploit nanoformulations to overcome biological barriers and enhance drug bioavailability in HCC treatment.
Collapse
Affiliation(s)
- Chuanliang Mi
- Shandong Aimeng Biotechnology Co., Ltd, Jinan, Shandong, China
| | - Sai Liu
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhida Chen
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
3
|
Yuan W, Shi X, Lee LTO. RNA therapeutics in targeting G protein-coupled receptors: Recent advances and challenges. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102195. [PMID: 38741614 PMCID: PMC11089380 DOI: 10.1016/j.omtn.2024.102195] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
G protein-coupled receptors (GPCRs) are the major targets of existing drugs for a plethora of human diseases and dominate the pharmaceutical market. However, over 50% of the GPCRs remain undruggable. To pursue a breakthrough and overcome this situation, there is significant clinical research for developing RNA-based drugs specifically targeting GPCRs, but none has been approved so far. RNA therapeutics represent a unique and promising approach to selectively targeting previously undruggable targets, including undruggable GPCRs. However, the development of RNA therapeutics faces significant challenges in areas of RNA stability and efficient in vivo delivery. This review presents an overview of the advances in RNA therapeutics and the diverse types of nanoparticle RNA delivery systems. It also describes the potential applications of GPCR-targeted RNA drugs for various human diseases.
Collapse
Affiliation(s)
- Wanjun Yuan
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Leo Tsz On Lee
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau, China
| |
Collapse
|
4
|
Wu Y, Zhang Y, Zhang W, Huang Y, Lu X, Shang L, Zhou Z, Chen X, Li S, Cheng S, Song Y. The tremendous clinical potential of the microbiota in the treatment of breast cancer: the next frontier. J Cancer Res Clin Oncol 2023; 149:12513-12534. [PMID: 37382675 DOI: 10.1007/s00432-023-05014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Although significant advances have been made in the diagnosis and treatment of breast cancer (BC) in recent years, BC remains the most common cancer in women and one of the main causes of death among women worldwide. Currently, more than half of BC patients have no known risk factors, emphasizing the significance of identifying more tumor-related factors. Therefore, we urgently need to find new therapeutic strategies to improve prognosis. Increasing evidence demonstrates that the microbiota is present in a wider range of cancers beyond colorectal cancer. BC and breast tissues also have different types of microbiotas that play a key role in carcinogenesis and in modulating the efficacy of anticancer treatment, for instance, chemotherapy, radiotherapy, and immunotherapy. In recent years, studies have confirmed that the microbiota can be an important factor directly and/or indirectly affecting the occurrence, metastasis and treatment of BC by regulating different biological processes, such as estrogen metabolism, DNA damage, and bacterial metabolite production. Here, we review the different microbiota-focused studies associated with BC and explore the mechanisms of action of the microbiota in BC initiation and metastasis and its application in various therapeutic strategies. We found that the microbiota has vital clinical value in the diagnosis and treatment of BC and could be used as a biomarker for prognosis prediction. Therefore, modulation of the gut microbiota and its metabolites might be a potential target for prevention or therapy in BC.
Collapse
Affiliation(s)
- Yang Wu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Yue Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenwen Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanxi Huang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Xiangshi Lu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Lingmin Shang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Zhaoyue Zhou
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Xiaolu Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Shuhui Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Shaoqiang Cheng
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China.
| | - Yanni Song
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
5
|
Kaczmarska A, Kwiatkowska D, Skrzypek KK, Kowalewski ZT, Jaworecka K, Reich A. Pathomechanism of Pruritus in Psoriasis and Atopic Dermatitis: Novel Approaches, Similarities and Differences. Int J Mol Sci 2023; 24:14734. [PMID: 37834183 PMCID: PMC10573181 DOI: 10.3390/ijms241914734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Pruritus is defined as an unpleasant sensation that elicits a desire to scratch. Nearly a third of the world's population may suffer from pruritus during their lifetime. This symptom is widely observed in numerous inflammatory skin diseases-e.g., approximately 70-90% of patients with psoriasis and almost every patient with atopic dermatitis suffer from pruritus. Although the pathogenesis of atopic dermatitis and psoriasis is different, the complex intricacies between several biochemical mediators, enzymes, and pathways seem to play a crucial role in both conditions. Despite the high prevalence of pruritus in the general population, the pathogenesis of this symptom in various conditions remains elusive. This review aims to summarize current knowledge about the pathogenesis of pruritus in psoriasis and atopic dermatitis. Each molecule involved in the pruritic pathway would merit a separate chapter or even an entire book, however, in the current review we have concentrated on some reports which we found crucial in the understanding of pruritus. However, the pathomechanism of pruritus is an extremely complex and intricate process. Moreover, many of these signaling pathways are currently undergoing detailed analysis or are still unexplained. As a result, it is currently difficult to take an objective view of how far we have come in elucidating the pathogenesis of pruritus in the described diseases. Nevertheless, considerable progress has been made in recent years.
Collapse
Affiliation(s)
- Agnieszka Kaczmarska
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland; (A.K.); (D.K.); (K.J.)
| | - Dominika Kwiatkowska
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland; (A.K.); (D.K.); (K.J.)
| | | | | | - Kamila Jaworecka
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland; (A.K.); (D.K.); (K.J.)
| | - Adam Reich
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland; (A.K.); (D.K.); (K.J.)
| |
Collapse
|
6
|
Jing Y, Mao Z, Zhu J, Ma X, Liu H, Chen F. TRAIP serves as a potential prognostic biomarker and correlates with immune infiltrates in lung adenocarcinoma. Int Immunopharmacol 2023; 122:110605. [PMID: 37451021 DOI: 10.1016/j.intimp.2023.110605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/22/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is one of the major types of lung cancer with high morbidity and mortality. The TRAF-interacting protein (TRAIP) is a ring-type E3 ubiquitin ligase which has been recently identified to play pivotal roles in various cancers. However, the expression and function of TRAIP in LUAD remain elusive. METHODS In this study, we used bioinformatic tools as well as molecular experiments to explore the exact role of TRAIP and the underlying mechanism. RESULTS Data mining across the UALCAN, GEPIA and GTEx, GEO and HPA databases revealed that TRAIP was significantly overexpressed in LUAD tissues than that in adjacent normal tissues. Kaplan-Meier curve showed that high TRAIP expression was associated with poor overall survival (OS) and relapse-free survival (RFS). Univariate and multivariate cox regression analysis revealed that TRAIP was an independent risk factor in LUAD. And the TRAIP-based nomogram further supported the prognostic role of TRAIP in LUAD. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that TRAIP-associated genes were mainly involved in DNA replication, cell cycle and other processes. The immune infiltration analysis indicated that TRAIP expression was tightly correlated with the infiltration of diverse immune cell types, including B cell, CD8 + T cell, neutrophil and dendritic cell. Moreover, TRAIP expression was observed to be significantly associated with tumor infiltrating lymphocytes (TILs) and immune checkpoint molecules. In vitro experiments further confirmed knockdown of TRAIP inhibited cell migration and invasion, as well as decreasing chemokine production and inhibiting M2-like macrophage recruitment. Lastly, CMap analysis identified 10 small molecule compounds that may target TRAIP, providing potential therapies for LUAD. CONCLUSIONS Collectively, our study found that TRAIP is an oncogenic gene in LUAD, which may be a potential prognostic biomarker and promising therapeutic target for LUAD.
Collapse
Affiliation(s)
- Yu Jing
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ziming Mao
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jing Zhu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xirui Ma
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huifang Liu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Fengling Chen
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Bandi DSR, Sarvesh S, Farran B, Nagaraju GP, El-Rayes BF. Targeting the metabolism and immune system in pancreatic ductal adenocarcinoma: Insights and future directions. Cytokine Growth Factor Rev 2023; 71-72:26-39. [PMID: 37407355 DOI: 10.1016/j.cytogfr.2023.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC), presents a challenging landscape due to its complex nature and the highly immunosuppressive tumor microenvironment (TME). This immunosuppression severely limits the effectiveness of immune-based therapies. Studies have revealed the critical role of immunometabolism in shaping the TME and influencing PDAC progression. Genetic alterations, lysosomal dysfunction, gut microbiome dysbiosis, and altered metabolic pathways have been shown to modulate immunometabolism in PDAC. These metabolic alterations can significantly impact immune cell functions, including T-cells, myeloid-derived suppressor cells (MDSCs), and macrophages, evading anti-tumor immunity. Advances in immunotherapy offer promising avenues for overcoming immunosuppressive TME and enhancing patient outcomes. This review highlights the challenges and opportunities for future research in this evolving field. By exploring the connections between immunometabolism, genetic alterations, and the microbiome in PDAC, it is possible to tailor novel approaches capable of improving immunotherapy outcomes and addressing the limitations posed by immunosuppressive TME. Ultimately, these insights may pave the way for improved treatment options and better outcomes for PDAC patients.
Collapse
Affiliation(s)
- Dhana Sekhar Reddy Bandi
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| | - Sujith Sarvesh
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
8
|
Siddiqui JA, Nasser MW. Editorial: Role of chemokines in tumor heterogeneity. Semin Cancer Biol 2023; 92:128-129. [PMID: 37028577 DOI: 10.1016/j.semcancer.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
9
|
Tan S, Yang Y, Yang W, Han Y, Huang L, Yang R, Hu Z, Tao Y, Liu L, Li Y, Oyang L, Lin J, Peng Q, Jiang X, Xu X, Xia L, Peng M, Wu N, Tang Y, Cao D, Liao Q, Zhou Y. Exosomal cargos-mediated metabolic reprogramming in tumor microenvironment. J Exp Clin Cancer Res 2023; 42:59. [PMID: 36899389 PMCID: PMC9999652 DOI: 10.1186/s13046-023-02634-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Metabolic reprogramming is one of the hallmarks of cancer. As nutrients are scarce in the tumor microenvironment (TME), tumor cells adopt multiple metabolic adaptations to meet their growth requirements. Metabolic reprogramming is not only present in tumor cells, but exosomal cargos mediates intercellular communication between tumor cells and non-tumor cells in the TME, inducing metabolic remodeling to create an outpost of microvascular enrichment and immune escape. Here, we highlight the composition and characteristics of TME, meanwhile summarize the components of exosomal cargos and their corresponding sorting mode. Functionally, these exosomal cargos-mediated metabolic reprogramming improves the "soil" for tumor growth and metastasis. Moreover, we discuss the abnormal tumor metabolism targeted by exosomal cargos and its potential antitumor therapy. In conclusion, this review updates the current role of exosomal cargos in TME metabolic reprogramming and enriches the future application scenarios of exosomes.
Collapse
Affiliation(s)
- Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yiqing Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Wenjuan Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Lisheng Huang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Ruiqian Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Zifan Hu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Yi Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Lin Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yun Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
10
|
Wu Q, Tian R, Liu J, Ou C, Li Y, Fu X. Deciphering comprehensive features of tumor microenvironment controlled by chromatin regulators to predict prognosis and guide therapies in uterine corpus endometrial carcinoma. Front Immunol 2023; 14:1139126. [PMID: 36936912 PMCID: PMC10022674 DOI: 10.3389/fimmu.2023.1139126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Dysregulation of chromatin regulators (CRs) can perturb the tumor immune microenvironment, but the underlying mechanism remains unclear. We focused on uterine corpus endometrial carcinoma (UCEC) and used gene expression data from TCGA-UCEC to investigate this mechanism. METHODS We used weighted gene co-expression network analysis (WGCNA) and consensus clustering algorithm to classify UCEC patients into Cluster_L and Cluster_H. TME-associated CRs were identified using WGCNA and differential gene expression analysis. A CR risk score (CRRS) was constructed using univariate Cox and LASSO-Cox regression analyses. A nomogram was developed based on CRRS and clinicopathologic factors to predict patients' prognosis. RESULTS Lower CRRS was associated with lower grade, more benign molecular subtypes, and improved survival. Patients with low CRRS showed abundant immune infiltration, a higher mutation burden, fewer CNVs, and better response to immunotherapy. Moreover, low CRRS patients were more sensitive to 24 chemotherapeutic agents. CONCLUSION A comprehensive assessment of CRRS could identify immune activation and improve the efficacy of UCEC treatments.
Collapse
Affiliation(s)
- Qihui Wu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Ruotong Tian
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaxin Liu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Chunlin Ou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yimin Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaodan Fu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Khan P, Fatima M, Khan MA, Batra SK, Nasser MW. Emerging role of chemokines in small cell lung cancer: Road signs for metastasis, heterogeneity, and immune response. Semin Cancer Biol 2022; 87:117-126. [PMID: 36371025 PMCID: PMC10199458 DOI: 10.1016/j.semcancer.2022.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
Small cell lung cancer (SCLC) is a recalcitrant, relatively immune-cold, and deadly subtype of lung cancer. SCLC has been viewed as a single or homogenous disease that includes deletion or inactivation of the two major tumor suppressor genes (TP53 and RB1) as a key hallmark. However, recent sightings suggest the complexity of SCLC tumors that comprises highly dynamic multiple subtypes contributing to high intratumor heterogeneity. Furthermore, the absence of targeted therapies, the understudied tumor immune microenvironment (TIME), and subtype plasticity are also responsible for therapy resistance. Secretory chemokines play a crucial role in immunomodulation by trafficking immune cells to the tumors. Chemokines and cytokines modulate the anti-tumor immune response and wield a pro-/anti-tumorigenic effect on SCLC cells after binding to cognate receptors. In this review, we summarize and highlight recent findings that establish the role of chemokines in SCLC growth and metastasis, and sophisticated intratumor heterogeneity. We also discuss the chemokine networks that are putative targets or modulators for augmenting the anti-tumor immune responses in targeted or chemo-/immuno-therapeutic strategies, and how these combinations may be utilized to conquer SCLC.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mahek Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Md Arafat Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
12
|
Rath S, Chakraborty D, Pradhan J, Imran Khan M, Dandapat J. Epigenomic interplay in tumor heterogeneity: Potential of epidrugs as adjunct therapy. Cytokine 2022; 157:155967. [PMID: 35905624 DOI: 10.1016/j.cyto.2022.155967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022]
Abstract
"Heterogeneity" in tumor mass has immense importance in cancer progression and therapy. The impact of tumor heterogeneity is an emerging field and not yet fully explored. Tumor heterogeneity is mainly considered as intra-tumor heterogeneity and inter-tumor heterogeneity based on their origin. Intra-tumor heterogeneity refers to the discrepancy within the same cancer mass while inter-tumor heterogeneity refers to the discrepancy between different patients having the same tumor type. Both of these heterogeneity types lead to variation in the histopathological as well as clinical properties of the cancer mass which drives disease resistance towards therapeutic approaches. Cancer stem cells (CSCs) act as pinnacle progenitors for heterogeneity development along with various other genetic and epigenetic parameters that are regulating this process. In recent times epigenetic factors are one of the most studied parameters that drive oxidative stress pathways essential during cancer progression. These epigenetic changes are modulated by various epidrugs and have an impact on tumor heterogeneity. The present review summarizes various aspects of epigenetic regulation in the tumor microenvironment, oxidative stress, and progression towards tumor heterogeneity that creates complications during cancer treatment. This review also explores the possible role of epidrugs in regulating tumor heterogeneity and personalized therapy against drug resistance.
Collapse
Affiliation(s)
- Suvasmita Rath
- Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| | - Diptesh Chakraborty
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Jyotsnarani Pradhan
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Mohammad Imran Khan
- Department of Biochemistry, King Abdulaziz University (KAU), Jeddah 21577, Saudi Arabia; Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jagneshwar Dandapat
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India; Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India.
| |
Collapse
|
13
|
Barone A, d’Avanzo N, Cristiano MC, Paolino D, Fresta M. Macrophage-Derived Extracellular Vesicles: A Promising Tool for Personalized Cancer Therapy. Biomedicines 2022; 10:1252. [PMID: 35740274 PMCID: PMC9220135 DOI: 10.3390/biomedicines10061252] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
The incidence of cancer is increasing dramatically, affecting all ages of the population and reaching an ever higher worldwide mortality rate. The lack of therapies' efficacy is due to several factors such as a delay in diagnosis, tumor regrowth after surgical resection and the occurrence of multidrug resistance (MDR). Tumor-associated immune cells and the tumor microenvironment (TME) deeply affect the tumor's progression, leading to several physicochemical changes compared to physiological conditions. In this scenario, macrophages play a crucial role, participating both in tumor suppression or progression based on the polarization of onco-suppressive M1 or pro-oncogenic M2 phenotypes. Moreover, much evidence supports the pivotal role of macrophage-derived extracellular vesicles (EVs) as mediators in TME, because of their ability to shuttle the cell-cell and organ-cell communications, by delivering nucleic acids and proteins. EVs are lipid-based nanosystems with a broad size range distribution, which reflect a similar composition of native parent cells, thus providing a natural selectivity towards target sites. In this review, we discuss the impact of macrophage-derived EVs in the cancer's fate as well as their potential implications for the development of personalized anticancer nanomedicine.
Collapse
Affiliation(s)
- Antonella Barone
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy; (A.B.); (M.C.C.)
| | - Nicola d’Avanzo
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini n.31, 66100 Chieti, Italy;
| | - Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy; (A.B.); (M.C.C.)
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy; (A.B.); (M.C.C.)
| | - Massimo Fresta
- Department of Health Science, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy;
| |
Collapse
|
14
|
Wu Z, Ju Q. Non-Coding RNAs Implicated in the Tumor Microenvironment of Colorectal Cancer: Roles, Mechanisms and Clinical Study. Front Oncol 2022; 12:888276. [PMID: 35574420 PMCID: PMC9096125 DOI: 10.3389/fonc.2022.888276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors. The morbidity and mortality rates have been increasing all over the world. It is critical to elucidate the mechanism of CRC occurrence and development. However, tumor microenvironment (TME) includes immune cells, fibroblasts, endothelial cells, cytokines, chemokines and other components that affect the progression of CRC and patients' prognosis. Non-coding RNAs (ncRNAs) including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) without protein-coding ability have been shown to engage in tumor microenvironment-mediated angiogenesis and metastasis. Therefore, clarifying the mechanism of ncRNAs regulating the microenvironment is very important to develop the therapeutic target of CRC and improve the survival time of patients. This review focuses on the role and mechanism of ncRNAs in the CRC microenvironment and puts forward possible clinical treatment strategies.
Collapse
Affiliation(s)
| | - Qiang Ju
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
15
|
The Dysregulation of SOX Family Correlates with DNA Methylation and Immune Microenvironment Characteristics to Predict Prognosis in Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:2676114. [PMID: 35465267 PMCID: PMC9020970 DOI: 10.1155/2022/2676114] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022]
Abstract
Background Due to the molecular heterogeneity of hepatocellular carcinoma (HCC), majority of patients respond poorly among various of therapy. This study is aimed at conducting a comprehensive analysis about roles of SOX family in HCC for obtaining more therapeutic targets and biomarkers which may bring new ideas for the treatment of HCC. Methods UALCAN, Kaplan Meier plotter, cBioPortal, STRING, WebGestalt, Metascape, TIMER 2.0, DiseaseMeth, MethSurv, HPA, CCLE database, and Cytoscape software were used to comprehensively analyze the bioinformatic data. Results SOX2, SOX4, SOX8, SOX10, SOX11, SOX12, SOX17, and SOX18 were significantly differentially expressed in HCC and normal tissues and were valuable for the grade and survival of HCC patients. In addition, the gene alterations of SOX family happened frequently, and SOX4 and SOX17 had the highest mutation rate. The function of SOX family on HCC may be closely correlated with the regulation of angiogenesis-related signaling pathways. Moreover, SOX4, SOX8, SOX11, SOX12, SOX17, and SOX18 were correlation with 8 types of immune cells (including CD8+ T cell, CD4+ T cell, B cell, Tregs, neutrophil, macrophage, myeloid DC, and NK cell), and we found that most types of immune cells had a positive correlation with SOX family. Notably, CD4+ T cell and macrophage were positively related with all these SOX family. NK cells were negatively related with most SOX family genes. DNA methylation levels in promoter area of SOX2, SOX4, and SOX10 were lower in HCC than normal tissues, while SOX8, SOX11, SOX17, and SOX18 had higher DNA methylation levels than normal tissues. Moreover, higher DNA methylation level of SOX12 and SOX18 demonstrated worse survival rates in patients with HCC. Conclusion SOX family genes could predict the prognosis of HCC. In addition, the regulation of angiogenesis-related signaling pathways may participate in the development of HCC. DNA methylation level and immune microenvironment characteristics (especially CD4+ T cell and macrophage immune cell infiltration) could be a novel insight for predicting prognosis in HCC.
Collapse
|