1
|
Venturi F, Magnaterra E, Scotti B, Ferracin M, Dika E. Predictive Factors for Sentinel Lymph Node Positivity in Melanoma Patients-The Role of Liquid Biopsy, MicroRNA and Gene Expression Profile Panels. Cancers (Basel) 2025; 17:1281. [PMID: 40282456 PMCID: PMC12025810 DOI: 10.3390/cancers17081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
The identification of predictive factors for sentinel lymph node (SLN) positivity in melanoma patients is crucial for accurate staging, prognosis, and personalized therapeutic decisions. This review synthesizes recent advancements in molecular and clinicopathological predictors, with a particular focus on liquid biopsy and gene expression profiling (GEP) tools. Emerging evidence highlights the significant role of miRNAs in melanoma progression, metastatic potential, and lymphatic spread. Clinicopathological factors such as Breslow thickness, ulceration, and mitotic rate remain critical, while GEP provides additional precision by uncovering tumor-specific molecular pathways. By integrating these tools, clinicians can improve risk stratification, reduce unnecessary procedures, and personalize management strategies.
Collapse
Affiliation(s)
- Federico Venturi
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.M.); (B.S.); (E.D.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Elisabetta Magnaterra
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.M.); (B.S.); (E.D.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Biagio Scotti
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.M.); (B.S.); (E.D.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Emi Dika
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.M.); (B.S.); (E.D.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
2
|
Dixon AJ, Steinman HK, Nirenberg A, Zouboulis CC, Sladden M, Popescu C, Anderson S, Longo C, Thomas JM. BAUSSS biomarker improves melanoma survival risk assessment. J Eur Acad Dermatol Venereol 2025; 39:865-870. [PMID: 39215563 DOI: 10.1111/jdv.20292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The American Joint Committee on Cancer (AJCC) method of staging melanoma is dated and inaccurate. It ignores important prognostic melanoma features, especially the patient's age. BAUSSS is more accurate in determining survival risk for primary cutaneous melanoma patients who have no clinical or imaging evidence of nodal or distant metastases. BAUSSS is an algorithm incorporating analysis of Breslow thickness, Age, Ulceration, Subtype of melanoma, Sex and Site. These are the six features from the patient history along with the details from the melanoma pathology report that are most predictive of mortality outcome. OBJECTIVE To develop a single-page document that allows the clinician to determine BAUSSS biomarker-predicted prognosis in consultation with the patient. METHOD From various data sources, we developed an algorithm to predict melanoma mortality using the BAUSSS biomarker system. The single-page algorithm was made available to download at https://globalmelanoma.net/bausss-survival-chart, thus being readily available without charge to all clinicians and their patients. RESULTS BAUSSS method of determining melanoma prognosis is more accurate and less costly than the AJCC staging system. The only surgery the patient requires is wide local excision of the primary tumour. This method of ascertaining melanoma risk does not require added surgery, costs, hospitalization, tests and anaesthesia, such as would be required if sentinel lymph node biopsy was undertaken. BAUSSS can be a useful tool in determining which primary melanoma patients are at sufficiently high risk to be considered for adjuvant drug therapy. CONCLUSIONS We encourage clinicians to download and print in colour this single-page BAUSSS mortality prediction tool, laminate it, and use it face to face with the patient in consultations. Not only will the patient be able to recognize his/her long-term prognosis but will also be able to see how their tumour severity compares with others.
Collapse
Affiliation(s)
- Anthony J Dixon
- Australasian College of Cutaneous Oncology, Docklands, Victoria, Australia
- American Osteopathic College of Dermatology, Kirksville, Missouri, USA
| | - Howard K Steinman
- Campbell University School of Osteopathic Medicine, Lillington, North Carolina, USA
| | | | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | | | - Catalin Popescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Stuart Anderson
- Australasian College of Cutaneous Oncology, Docklands, Victoria, Australia
- Maffra Medical Group, Maffra, Victoria, Australia
| | - Caterina Longo
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
- Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Skin Cancer Center, Reggio Emilia, Italy
| | | |
Collapse
|
3
|
Sheriff S, Saba M, Patel R, Fisher G, Schroeder T, Arnolda G, Luo D, Warburton L, Gray E, Long G, Braithwaite J, Rizos H, Ellis LA. A scoping review of factors influencing the implementation of liquid biopsy for cancer care. J Exp Clin Cancer Res 2025; 44:50. [PMID: 39934875 PMCID: PMC11817833 DOI: 10.1186/s13046-025-03322-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Liquid biopsy (LB) offers a promising, minimally invasive alternative to traditional tissue biopsies in cancer care, enabling real-time monitoring and personalized treatment. Despite its potential, the routine implementation of LB in clinical practice faces significant challenges. This scoping review examines the barriers and facilitators influencing the implementation of liquid biopsies into standard cancer care. METHODS Four academic databases (PubMed, Scopus, Embase, and Web of Science) were systematically searched without language restrictions. We included peer-reviewed articles that were published between January 2019 and March 2024 that focused on the implementation of LB in cancer care or described barriers and facilitators to its implementation. Data relevant to the review objective, including key article characteristics; barriers and facilitators of implementation; and recommendations for advancement or optimisation; were extracted and analysed using thematic and visual network analyses. RESULTS The majority of the included articles were narrative review articles (84%), with most from China (24.2%) and the United States (20%). Thematic analysis identified four main categories and their associated barriers and facilitators to the implementation of LB in cancer care: (1) Laboratory and personnel requirements; (2) Disease specificity; (3) Biomarker-based liquid biopsy; and (4) Policy and regulation. The majority of barriers identified were concentrated in the pre-analytical phase, highlighting the lack of standardization in LB technologies and outcomes. CONCLUSIONS Through a thematic analysis of the barriers and facilitators to LB implementation, we present an integrated tool designed to encourage the standardization of testing methods for clinical practice guidelines in the field.
Collapse
Affiliation(s)
- Samran Sheriff
- Centre for Healthcare Resilience and Implementation Science, Australian Institute of Health Innovation, Macquarie University, Level 6, 75 Talavera Road, North Ryde, Sydney, NSW, Australia.
| | - Maree Saba
- Centre for Healthcare Resilience and Implementation Science, Australian Institute of Health Innovation, Macquarie University, Level 6, 75 Talavera Road, North Ryde, Sydney, NSW, Australia
| | - Romika Patel
- Centre for Healthcare Resilience and Implementation Science, Australian Institute of Health Innovation, Macquarie University, Level 6, 75 Talavera Road, North Ryde, Sydney, NSW, Australia
| | - Georgia Fisher
- Centre for Healthcare Resilience and Implementation Science, Australian Institute of Health Innovation, Macquarie University, Level 6, 75 Talavera Road, North Ryde, Sydney, NSW, Australia
| | - Tanja Schroeder
- Centre for Healthcare Resilience and Implementation Science, Australian Institute of Health Innovation, Macquarie University, Level 6, 75 Talavera Road, North Ryde, Sydney, NSW, Australia
| | - Gaston Arnolda
- Centre for Healthcare Resilience and Implementation Science, Australian Institute of Health Innovation, Macquarie University, Level 6, 75 Talavera Road, North Ryde, Sydney, NSW, Australia
| | - Dan Luo
- The Daffodil Centre, Sydney, NSW, Australia
| | - Lydia Warburton
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
- Department of Medical Oncology, Fiona Stanly Hospital, Murdoch, WA, Australia
| | - Elin Gray
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Georgina Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Royal North Shore and Mater Hospitals, North Sydney, Sydney, NSW, Australia
| | - Jeffrey Braithwaite
- Centre for Healthcare Resilience and Implementation Science, Australian Institute of Health Innovation, Macquarie University, Level 6, 75 Talavera Road, North Ryde, Sydney, NSW, Australia
| | - Helen Rizos
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Macquarie Medical School, Faculty of Medicine Health and Human Science, Macquarie University, Sydney, NSW, Australia
| | - Louise Ann Ellis
- Centre for Healthcare Resilience and Implementation Science, Australian Institute of Health Innovation, Macquarie University, Level 6, 75 Talavera Road, North Ryde, Sydney, NSW, Australia
| |
Collapse
|
4
|
Li M. Atomic force microscopy as a nanomechanical tool for cancer liquid biopsy. Biochem Biophys Res Commun 2024; 734:150637. [PMID: 39226737 DOI: 10.1016/j.bbrc.2024.150637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Liquid biopsies have been receiving tremendous attention for their potential to reshape cancer management. Though current studies of cancer liquid biopsy primarily focus on applying biochemical assays to characterize the genetic/molecular profiles of circulating tumor cells (CTCs) and their secondary products shed from tumor sites in bodily fluids, delineating the nanomechanical properties of tumor-associated materials in liquid biopsy specimens yields complementary insights into the biology of tumor dissemination and evolution. Particularly, atomic force microscopy (AFM) has become a standard and versatile toolbox for characterizing the mechanical properties of living biological systems at the micro/nanoscale, and AFM has been increasingly utilized to probe the nanomechanical properties of various tumor-derived analytes in liquid biopsies, including CTCs, tumor-associated cells, circulating tumor DNA (ctDNA) molecules, and extracellular vesicles (EVs), offering additional possibilities for understanding cancer pathogenesis from the perspective of mechanobiology. Herein, the applications of AFM in cancer liquid biopsy are summarized, and the challenges and future directions of AFM as a nanomechanical analysis tool in cancer liquid biopsy towards clinical utility are discussed and envisioned.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
5
|
Falasca M, Manfredi M. Extracellular vesicles and biomarker discovery. Semin Cancer Biol 2024; 106-107:103-105. [PMID: 39243835 DOI: 10.1016/j.semcancer.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Affiliation(s)
- Marco Falasca
- University of Parma, Department of Medicine and Surgery, Via Volturno 39, Parma 43125, Italy.
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.
| |
Collapse
|
6
|
Khan A, Raza F, He N. Nanoscale Extracellular Vesicle-Enabled Liquid Biopsy: Advances and Challenges for Lung Cancer Detection. MICROMACHINES 2024; 15:1181. [PMID: 39459055 PMCID: PMC11509190 DOI: 10.3390/mi15101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
Lung cancer is responsible for the death of over a million people worldwide every year. With its high mortality rate and exponentially growing number of new cases, lung cancer is a major threat to public health. The high mortality and poor survival rates of lung cancer patients can be attributed to its stealth progression and late diagnosis. For a long time, intrusive tissue biopsy has been considered the gold standard for lung cancer diagnosis and subtyping; however, the intrinsic limitations of tissue biopsy cannot be overlooked. In addition to being invasive and costly, it also suffers from limitations in sensitivity and specificity, is not suitable for repeated sampling, provides restricted information about the tumor and its molecular landscape, and is inaccessible in several cases. To cope with this, advancements in diagnostic technologies, such as liquid biopsy, have shown great prospects. Liquid biopsy is an innovative non-invasive approach in which cancer-related components called biomarkers are detected in body fluids, such as blood, urine, saliva and others. It offers a less invasive alternative with the potential for applications such as routine screening, predicting treatment outcomes, evaluating treatment effectiveness, detecting residual disease, or disease recurrence. A large number of research articles have indicated extracellular vesicles (EVs) as ideal biomarkers for liquid biopsy. EVs are a heterogeneous collection of membranous nanoparticles with diverse sizes, contents, and surface markers. EVs play a critical role in pathophysiological states and have gained prominence as diagnostic and prognostic biomarkers for multiple diseases, including lung cancer. In this review, we provide a detailed overview of the potential of EV-based liquid biopsy for lung cancer. Moreover, it highlights the strengths and weaknesses of various contemporary techniques for EV isolation and analysis in addition to the challenges that need to be addressed to ensure the widespread clinical application of EV-based liquid biopsies for lung cancer. In summary, EV-based liquid biopsies present interesting opportunities for the development of novel diagnostic and prognostic platforms for lung cancer, one of the most abundant cancers responsible for millions of cancer-related deaths worldwide.
Collapse
Affiliation(s)
- Adeel Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| |
Collapse
|
7
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
8
|
Iuliano M, Grimaldi L, Rosa P, Scibetta S, Bernardini N, Proietti I, Tolino E, Skroza N, Potenza C, Mangino G, Romeo G. Extracellular vescicles in psoriasis: from pathogenesis to possible roles in therapy. Front Immunol 2024; 15:1360618. [PMID: 38827737 PMCID: PMC11140073 DOI: 10.3389/fimmu.2024.1360618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/07/2024] [Indexed: 06/04/2024] Open
Abstract
Psoriasis is a chronic inflammatory disease affecting skin and joints characterized by a chronically altered immune and inflammatory response. Several factors occur from the onset to the development of this disease due to different types of cells spatially and temporally localized in the affected area, such as, keratinocytes, macrophages, neutrophils and T helper lymphocytes. This scenario leads to the chronic release of high levels of inflammatory mediators (i.e., IL-17, IL-23, IL-22, TNF-α, S100 proteins, Defensins) and lastly parakeratosis and thickening of the stratum spinosum. Extracellular vesicles (EVs) are small double membraned biological nanoparticles that are secreted by all cell types and classified, based on dimension and biogenesis, into exosomes, microvesicles and apoptotic bodies. Their role as vessels for long range molecular signals renders them key elements in the pathogenesis of psoriasis, as well as innovative platforms for potential biomarker discovery and delivery of fine-tuned anti-inflammatory therapies. In this review, the role of EVs in the pathogenesis of psoriasis and the modulation of cellular microenvironment has been summarized. The biotechnological implementation of EVs for therapy and research for new biomarkers has been also discussed.
Collapse
Affiliation(s)
- Marco Iuliano
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome – Polo Pontino, Latina, Italy
| | - Lorenzo Grimaldi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome – Polo Pontino, Latina, Italy
| | - Paolo Rosa
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome – Polo Pontino, Latina, Italy
- ICOT, Istituto Chirurgico Ortopedico Traumatologico, Latina, Italy
| | - Sofia Scibetta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome – Polo Pontino, Latina, Italy
| | | | - Ilaria Proietti
- Dermatology Unit “Daniele Innocenzi”, “A. Fiorini” Hospital, Terracina, Italy
| | - Ersilia Tolino
- Dermatology Unit “Daniele Innocenzi”, “A. Fiorini” Hospital, Terracina, Italy
| | - Nevena Skroza
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome – Polo Pontino, Latina, Italy
- Dermatology Unit “Daniele Innocenzi”, “A. Fiorini” Hospital, Terracina, Italy
| | - Concetta Potenza
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome – Polo Pontino, Latina, Italy
- Dermatology Unit “Daniele Innocenzi”, “A. Fiorini” Hospital, Terracina, Italy
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome – Polo Pontino, Latina, Italy
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome – Polo Pontino, Latina, Italy
| |
Collapse
|
9
|
Lei H, Liao J, Wang X, Huang R, Ying C, Yang J. ALDH2 is a novel biomarker and exerts an inhibitory effect on melanoma. Sci Rep 2024; 14:4183. [PMID: 38378847 PMCID: PMC10879513 DOI: 10.1038/s41598-024-54084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Abstract
Melanoma is a malignant skin tumor. This study aimed to explore and assess the effect of novel biomarkers on the progression of melanoma. Differently expressed genes (DEGs) were screened from GSE3189 and GSE46517 datasets of Gene Expression Omnibus database using GEO2R. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted based on the identified DEGs. Hub genes were identified and assessed using protein-protein interaction networks, principal component analysis, and receiver operating characteristic curves. Quantitative real-time polymerase chain reaction was employed to measure the mRNA expression levels. TIMER revealed the association between aldehyde dehydrogenase 2 (ALDH2) and tumor immune microenvironment. The viability, proliferation, migration, and invasion were detected by cell counting kit-8, 5-ethynyl-2'-deoxyuridine, wound healing, and transwell assays. Total 241 common DEGs were screened out from GSE3189 and GSE46517 datasets. We determined 6 hub genes with high prediction values for melanoma, which could distinguish tumor samples from normal samples. ALDH2, ADH1B, ALDH3A2, DPT, EPHX2, and GATM were down-regulated in A375 and SK-MEL-2 cells, compared with the human normal melanin cell line (PIG1 cells). ALDH2 was selected as the candidate gene in this research, presenting a high diagnostic and predictive value for melanoma. ALDH2 had a positive correlation with the infiltrating levels of immune cells in melanoma microenvironment. Overexpression of ALDH2 inhibited cell viability, proliferation, migration, and invasion of A375/SK-MEL-2 cells. ALDH2 is a new gene biomarker of melanoma, which exerts an inhibitory effect on melanoma.
Collapse
Affiliation(s)
- Hua Lei
- Department of Dermatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, Yihuan Road, Qingyang District, Chengdu City, 610072, Sichuan Province, China
| | - Jinfeng Liao
- Department of Dermatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, Yihuan Road, Qingyang District, Chengdu City, 610072, Sichuan Province, China
| | - Xinyu Wang
- Department of Dermatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, Yihuan Road, Qingyang District, Chengdu City, 610072, Sichuan Province, China
| | - Rong Huang
- Department of Dermatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, Yihuan Road, Qingyang District, Chengdu City, 610072, Sichuan Province, China
| | - Chuanpeng Ying
- Department of Dermatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, Yihuan Road, Qingyang District, Chengdu City, 610072, Sichuan Province, China.
| | - Jianing Yang
- Department of Dermatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, Yihuan Road, Qingyang District, Chengdu City, 610072, Sichuan Province, China.
| |
Collapse
|
10
|
Yang S, Li Z, Pan M, Ma J, Pan Z, Zhang P, Cao W. Repurposing of Antidiarrheal Loperamide for Treating Melanoma by Inducing Cell Apoptosis and Cell Metastasis Suppression In vitro and In vivo. Curr Cancer Drug Targets 2024; 24:1015-1030. [PMID: 38303527 DOI: 10.2174/0115680096283086240116093400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Melanoma is the most common skin tumor worldwide and still lacks effective therapeutic agents in clinical practice. Repurposing of existing drugs for clinical tumor treatment is an attractive and effective strategy. Loperamide is a commonly used anti-diarrheal drug with excellent safety profiles. However, the affection and mechanism of loperamide in melanoma remain unknown. Herein, the potential anti-melanoma effects and mechanism of loperamide were investigated in vitro and in vivo. METHODS In the present study, we demonstrated that loperamide possessed a strong inhibition in cell viability and proliferation in melanoma using MTT, colony formation and EUD incorporation assays. Meanwhile, xenograft tumor models were established to investigate the anti-melanoma activity of loperamide in vivo. Moreover, the effects of loperamide on apoptosis in melanoma cells and potential mechanisms were explored by Annexin V-FITC apoptosis detection, cell cycle, mitochondrial membrane potential assay, reactive oxygen species level detection, and apoptosis-correlation proteins analysis. Furthermore, loperamide-suppressed melanoma metastasis was studied by migration and invasion assays. What's more, immunohistochemical and immunofluorescence staining assays were applied to demonstrate the mechanism of loperamide against melanoma in vivo. Finally, we performed the analysis of routine blood and blood biochemical, as well as hematoxylin- eosin (H&E) staining, in order to investigate the safety properties of loperamide. RESULTS Loperamide could observably inhibit melanoma cell proliferation in vitro and in vivo. Meanwhile, loperamide induced melanoma cell apoptosis by accumulation of the sub-G1 cells population, enhancement of reactive oxygen species level, depletion of mitochondrial membrane potential, and apoptosis-related protein activation in vitro. Of note, apoptosis-inducing effects were also observed in vivo. Subsequently, loperamide markedly restrained melanoma cell migration and invasion in vitro and in vivo. Ultimately, loperamide was witnessed to have an amicable safety profile. CONCLUSION These findings suggested that repurposing of loperamide might have great potential as a novel and safe alternative strategy to cure melanoma via inhibiting proliferation, inducing apoptosis and cell cycle arrest, and suppressing migration and invasion.
Collapse
Affiliation(s)
- Shuping Yang
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, China
| | - Zhi Li
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, China
| | - Mingyue Pan
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, China
| | - Jing Ma
- Department of Pharmacy, South China Hospital, Medical School, Shenzhen University, Shenzhen, P.R. China
| | - Zeyu Pan
- Shantou University Medical College, Shantou, Guangdong, China
| | - Peng Zhang
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, China
| | - Weiling Cao
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Zhu Z, Hu E, Shen H, Tan J, Zeng S. The functional and clinical roles of liquid biopsy in patient-derived models. J Hematol Oncol 2023; 16:36. [PMID: 37031172 PMCID: PMC10082989 DOI: 10.1186/s13045-023-01433-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
The liquid biopsy includes the detection of circulating tumor cells (CTCs) and CTC clusters in blood, as well as the detection of, cell-free DNA (cfDNA)/circulating tumor DNA (ctDNA) and extracellular vesicles (EVs) in the patient's body fluid. Liquid biopsy has important roles in translational research. But its clinical utility is still under investigation. Newly emerged patient-derived xenograft (PDX) and CTC-derived xenograft (CDX) faithfully recapitulate the genetic and morphological features of the donor patients' tumor and patient-derived organoid (PDO) can mostly mimic tumor growth, tumor microenvironment and its response to drugs. In this review, we describe how the development of these patient-derived models has assisted the studies of CTCs and CTC clusters in terms of tumor biological behavior exploration, genomic analysis, and drug testing, with the help of the latest technology. We then summarize the studies of EVs and cfDNA/ctDNA in PDX and PDO models in early cancer diagnosis, tumor burden monitoring, drug test and response monitoring, and molecular profiling. The challenges faced and future perspectives of research related to liquid biopsy using patient-derived models are also discussed.
Collapse
Affiliation(s)
- Ziqing Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Erya Hu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jun Tan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|