1
|
Norppa AJ, Shcherbii MV, Frilander MJ. Connecting genotype and phenotype in minor spliceosome diseases. RNA (NEW YORK, N.Y.) 2025; 31:284-299. [PMID: 39761998 PMCID: PMC11874965 DOI: 10.1261/rna.080337.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Minor spliceosome is responsible for recognizing and excising a specific subset of divergent introns during the pre-mRNA splicing process. Mutations in the unique snRNA and protein components of the minor spliceosome are increasingly being associated with a variety of germline and somatic human disorders, collectively termed as minor spliceosomopathies. Understanding the mechanistic basis of these diseases has been challenging due to limited functional information on many minor spliceosome components. However, recently published cryo-electron microscopy (cryo-EM) structures of various minor spliceosome assembly intermediates have marked a significant advancement in elucidating the roles of these components during splicing. These structural breakthroughs have not only enhanced our comprehension of the minor spliceosome's functionality but also shed light on how disease-associated mutations disrupt its functions. Consequently, research focus is now shifting toward investigating how these splicing defects translate into broader pathological processes within gene expression pathways. Here we outline the current structural and functional knowledge of the minor spliceosome, explore the mechanistic consequences of its mutations, and discuss emerging challenges in connecting molecular dysfunctions to clinical phenotypes.
Collapse
Affiliation(s)
- Antto J Norppa
- Institute of Biotechnology, 000014 University of Helsinki, Finland
| | | | | |
Collapse
|
2
|
Zhao J, Peter D, Brandina I, Liu X, Galej WP. Structural basis of 5' splice site recognition by the minor spliceosome. Mol Cell 2025; 85:652-664.e4. [PMID: 39809272 DOI: 10.1016/j.molcel.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/12/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
The minor spliceosome catalyzes excision of U12-dependent introns from precursors of eukaryotic messenger RNAs (pre-mRNAs). This process is critical for many cellular functions, but the underlying molecular mechanisms remain elusive. Here, we report a cryoelectron microscopy (cryo-EM) reconstruction of the 13-subunit human U11 small nuclear ribonucleoprotein particle (snRNP) complex in apo and substrate-bound forms, revealing the architecture of the U11 small nuclear RNA (snRNA), five minor spliceosome-specific factors, and the mechanism of the U12-type 5' splice site (5'SS) recognition. SNRNP25 and SNRNP35 specifically recognize U11 snRNA, while PDCD7 bridges SNRNP25 and SNRNP48, located at the distal ends of the particle. SNRNP48 and ZMAT5 are positioned near the 5' end of U11 snRNA and stabilize binding of the incoming 5'SS. Recognition of the U12-type 5'SS is achieved through base-pairing to the 5' end of the U11 snRNA and unexpected, non-canonical base-triple interactions with the U11 snRNA stem-loop 3. Our structures provide mechanistic insights into U12-dependent intron recognition and the evolution of the splicing machinery.
Collapse
Affiliation(s)
- Jiangfeng Zhao
- European Molecular Biology Laboratory (EMBL), EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Daniel Peter
- European Molecular Biology Laboratory (EMBL), EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Irina Brandina
- European Molecular Biology Laboratory (EMBL), EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Xiangyang Liu
- European Molecular Biology Laboratory (EMBL), EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Wojciech P Galej
- European Molecular Biology Laboratory (EMBL), EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France.
| |
Collapse
|
3
|
Perurena-Prieto J, Sanz-Martínez MT, Viñas-Giménez L, Codina-Clavaguera C, Triginer L, Gordillo-González F, Andrés-León E, Batlle-Masó L, Martin J, Selva-O'Callaghan A, Pujol R, McHugh NJ, Tansley SL, Colobran R, Guillen-Del-Castillo A, Simeón-Aznar CP. Expanding the landscape of systemic sclerosis-related autoantibodies through RNA immunoprecipitation coupled with massive parallel sequencing. J Autoimmun 2024; 149:103328. [PMID: 39500147 DOI: 10.1016/j.jaut.2024.103328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 12/15/2024]
Abstract
OBJECTIVES Systemic sclerosis (SSc)-related autoantibodies are widely used diagnostic and prognostic biomarkers. This study aimed to develop a new assay for detecting anti-ribonucleoprotein autoantibodies in SSc based on RNA immunoprecipitation (RNA IP) coupled with massive parallel sequencing. METHODS Serum samples and clinical data were collected from 307 SSc patients. Among these, 57 samples underwent analysis using a new protocol that combines RNA IP with massive parallel sequencing (RIP-Seq). Filtering strategies and statistical outlier detection methods were applied to select RNA molecules that could represent novel ribonucleoprotein autoantigens associated with SSc. RESULTS Among the 30,966 different RNA molecules identified by RIP-Seq in 57 SSc patients, 197 were ultimately selected. These included all RNA molecules previously identified by RNA IP, which were found to exhibit high counts almost exclusively in samples positive for the autoantibodies associated to the corresponding RNA molecule, indicating high sensitivity and specificity of the RIP-Seq technique. C/D box snoRNAs were the most abundant RNA type identified. The immunoprecipitation patterns of the detected C/D box snoRNAs varied among patients and could be associated with different clinical phenotypes. In addition, other ribonucleoproteins were identified, which could be potential targets for previously undescribed SSc-related autoantibodies. These include H/ACA box snoRNPs, vault complexes, mitochondrial tRNA synthetases, and 7SK snRNP. CONCLUSION A novel RIP-Seq assay has been developed to detect autoantibodies targeting ribonucleoprotein complexes in SSc patients. This method successfully identified RNA molecules associated with ribonucleoproteins known to be targeted by SSc-related autoantibodies, validating both the assay and the analysis strategy. Additionally, this approach uncovered RNA molecules associated with ribonucleoproteins that were not previously identified as targets of SSc patients' sera, suggesting potential new autoantibody candidates in this disease.
Collapse
Affiliation(s)
- Janire Perurena-Prieto
- Immunology Division, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Translational Immunology Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Bellaterra, Spain
| | - María Teresa Sanz-Martínez
- Immunology Division, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Translational Immunology Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Laura Viñas-Giménez
- Immunology Division, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Translational Immunology Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Claudia Codina-Clavaguera
- Systemic Autoimmune Diseases Unit, Internal Medicine Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Systemic Autoimmune Diseases Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Laura Triginer
- Systemic Autoimmune Diseases Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | - Eduardo Andrés-León
- Institute of Parasitology and Biomedicine "López-Neyra", CSIC (IPBLN-CSIC), Granada, Spain
| | - Laura Batlle-Masó
- Infection and Immunity in Pediatric Patients Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Pediatric Infectious Diseases and Immunodeficiencies Unit, Children's Hospital, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain
| | - Javier Martin
- Institute of Parasitology and Biomedicine "López-Neyra", CSIC (IPBLN-CSIC), Granada, Spain
| | - Albert Selva-O'Callaghan
- Systemic Autoimmune Diseases Unit, Internal Medicine Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Systemic Autoimmune Diseases Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ricardo Pujol
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Bellaterra, Spain; Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Neil J McHugh
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Sarah L Tansley
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Roger Colobran
- Immunology Division, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Translational Immunology Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Bellaterra, Spain; Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
| | - Alfredo Guillen-Del-Castillo
- Systemic Autoimmune Diseases Unit, Internal Medicine Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Systemic Autoimmune Diseases Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
| | - Carmen Pilar Simeón-Aznar
- Systemic Autoimmune Diseases Unit, Internal Medicine Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Systemic Autoimmune Diseases Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
4
|
Rogalska ME, Mancini E, Bonnal S, Gohr A, Dunyak BM, Arecco N, Smith PG, Vaillancourt FH, Valcárcel J. Transcriptome-wide splicing network reveals specialized regulatory functions of the core spliceosome. Science 2024; 386:551-560. [PMID: 39480945 DOI: 10.1126/science.adn8105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/19/2024] [Indexed: 11/02/2024]
Abstract
The spliceosome is the complex molecular machinery that sequentially assembles on eukaryotic messenger RNA precursors to remove introns (pre-mRNA splicing), a physiologically regulated process altered in numerous pathologies. We report transcriptome-wide analyses upon systematic knock down of 305 spliceosome components and regulators in human cancer cells and the reconstruction of functional splicing factor networks that govern different classes of alternative splicing decisions. The results disentangle intricate circuits of splicing factor cross-regulation, reveal that the precise architecture of late-assembling U4/U6.U5 tri-small nuclear ribonucleoprotein (snRNP) complexes regulates splice site pairing, and discover an unprecedented division of labor among protein components of U1 snRNP for regulating exon definition and alternative 5' splice site selection. Thus, we provide a resource to explore physiological and pathological mechanisms of splicing regulation.
Collapse
Affiliation(s)
- Malgorzata E Rogalska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Estefania Mancini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sophie Bonnal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - André Gohr
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Niccolò Arecco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | | | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
5
|
Powell-Rodgers G, Pirzada MUR, Richee J, Jungers CF, Colijn S, Stratman AN, Djuranovic S. Role of U11/U12 minor spliceosome gene ZCRB1 in Ciliogenesis and WNT Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607392. [PMID: 39149385 PMCID: PMC11326282 DOI: 10.1101/2024.08.09.607392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Despite the fact that 0.5% of human introns are processed by the U11/U12 minor spliceosome, the latter influences gene expression across multiple cellular processes. The ZCRB1 protein is a recently described core component of the U12 mono-snRNP minor spliceosome, but its functional significance to minor splicing, gene regulation, and biological signaling cascades is poorly understood. Using CRISPR-Cas9 and siRNA targeted knockout and knockdown strategies, we show that human cell lines with a partial reduction in ZCRB1 expression exhibit significant dysregulation of the splicing and expression of U12-type genes, primarily due to dysregulation of U12 mono-snRNA. RNA-Seq and targeted analyses of minor intron-containing genes indicate a downregulation in the expression of genes involved in ciliogenesis, and consequentially an upregulation in WNT signaling. Additionally, zcrb1 CRISPR-Cas12a knockdown in zebrafish embryos led to gross developmental and body axis abnormalities, disrupted ciliogenesis, and upregulated WNT signaling, complementing our human cell studies. This work highlights a conserved and essential biological role of the minor spliceosome in general, and the ZCRB1 protein specifically in cellular and developmental processes across species, shedding light on the multifaceted relationship between splicing regulation, ciliogenesis, and WNT signaling.
Collapse
Affiliation(s)
- Geralle Powell-Rodgers
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Mujeeb Ur Rehman Pirzada
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Jahmiera Richee
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Courtney F. Jungers
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Sarah Colijn
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Amber N. Stratman
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Sergej Djuranovic
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| |
Collapse
|
6
|
Chen Y, Dawes R, Kim HC, Stenton SL, Walker S, Ljungdahl A, Lord J, Ganesh VS, Ma J, Martin-Geary AC, Lemire G, D’Souza EN, Dong S, Ellingford JM, Adams DR, Allan K, Bakshi M, Baldwin EE, Berger SI, Bernstein JA, Brown NJ, Burrage LC, Chapman K, Compton AG, Cunningham CA, D’Souza P, Délot EC, Dias KR, Elias ER, Evans CA, Ewans L, Ezell K, Fraser JL, Gallacher L, Genetti CA, Grant CL, Haack T, Kuechler A, Lalani SR, Leitão E, Fevre AL, Leventer RJ, Liebelt JE, Lockhart PJ, Ma AS, Macnamara EF, Maurer TM, Mendez HR, Montgomery SB, Nassogne MC, Neumann S, O’Leary M, Palmer EE, Phillips J, Pitsava G, Pysar R, Rehm HL, Reuter CM, Revencu N, Riess A, Rius R, Rodan L, Roscioli T, Rosenfeld JA, Sachdev R, Simons C, Sisodiya SM, Snell P, Clair L, Stark Z, Tan TY, Tan NB, Temple SEL, Thorburn DR, Tifft CJ, Uebergang E, VanNoy GE, Vilain E, Viskochil DH, Wedd L, Wheeler MT, White SM, Wojcik M, Wolfe LA, Wolfenson Z, Xiao C, Zocche D, Rubenstein JL, Markenscoff-Papadimitriou E, Fica SM, Baralle D, Depienne C, MacArthur DG, Howson JMM, Sanders SJ, O’Donnell-Luria A, Whiffin N. De novo variants in the non-coding spliceosomal snRNA gene RNU4-2 are a frequent cause of syndromic neurodevelopmental disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.07.24305438. [PMID: 38645094 PMCID: PMC11030480 DOI: 10.1101/2024.04.07.24305438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Around 60% of individuals with neurodevelopmental disorders (NDD) remain undiagnosed after comprehensive genetic testing, primarily of protein-coding genes1. Increasingly, large genome-sequenced cohorts are improving our ability to discover new diagnoses in the non-coding genome. Here, we identify the non-coding RNA RNU4-2 as a novel syndromic NDD gene. RNU4-2 encodes the U4 small nuclear RNA (snRNA), which is a critical component of the U4/U6.U5 tri-snRNP complex of the major spliceosome2. We identify an 18 bp region of RNU4-2 mapping to two structural elements in the U4/U6 snRNA duplex (the T-loop and Stem III) that is severely depleted of variation in the general population, but in which we identify heterozygous variants in 119 individuals with NDD. The vast majority of individuals (77.3%) have the same highly recurrent single base-pair insertion (n.64_65insT). We estimate that variants in this region explain 0.41% of individuals with NDD. We demonstrate that RNU4-2 is highly expressed in the developing human brain, in contrast to its contiguous counterpart RNU4-1 and other U4 homologs, supporting RNU4-2's role as the primary U4 transcript in the brain. Overall, this work underscores the importance of non-coding genes in rare disorders. It will provide a diagnosis to thousands of individuals with NDD worldwide and pave the way for the development of effective treatments for these individuals.
Collapse
Affiliation(s)
- Yuyang Chen
- Big Data Institute, University of Oxford, Oxford, UK
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ruebena Dawes
- Big Data Institute, University of Oxford, Oxford, UK
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Hyung Chul Kim
- Big Data Institute, University of Oxford, Oxford, UK
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sarah L Stenton
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Alicia Ljungdahl
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Jenny Lord
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Vijay S Ganesh
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jialan Ma
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexandra C Martin-Geary
- Big Data Institute, University of Oxford, Oxford, UK
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gabrielle Lemire
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Elston N D’Souza
- Big Data Institute, University of Oxford, Oxford, UK
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Shan Dong
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Jamie M Ellingford
- Genomics England, London, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester, UK
| | - David R Adams
- Undiagnosed Disesases Program, National Human Genome Research Institute, Bethesda, MD, USA
| | - Kirsten Allan
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Madhura Bakshi
- Department of Clinical Genetics, Liverpool Hospital, Sydney, NSW, Australia
| | - Erin E Baldwin
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Seth I Berger
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, USA
- Division of Genetics and Metabolism, Children’s National Hospital, Washington, DC, USA
| | - Jonathan A Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- GREGoR Stanford Site, Stanford University School of Medicine, Stanford, CA, USA
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
| | - Natasha J Brown
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kimberly Chapman
- Division of Genetics and Metabolism, Children’s National Hospital, Washington, DC, USA
| | - Alison G Compton
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Chloe A Cunningham
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Precilla D’Souza
- Undiagnosed Disesases Program, National Human Genome Research Institute, Bethesda, MD, USA
| | - Emmanuèle C Délot
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, USA
| | - Kerith-Rae Dias
- Neuroscience Research Australia, Sydney, NSW, Australia
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Ellen R Elias
- Department of Pediatrics, Children’s Hospital Colorado, Aurora, CO, USA
- University of Colorado School of Medicine, University of Colorado, Aurora, CO, USA
| | - Carey-Anne Evans
- Neuroscience Research Australia, Sydney, NSW, Australia
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Lisa Ewans
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Centre for Clinical Genetics, Sydney Children’s Hospitals Network, Randwick, NSW, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Kimberly Ezell
- Division of Medical Genetics & Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jamie L Fraser
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, USA
- Division of Genetics and Metabolism, Children’s National Hospital, Washington, DC, USA
| | - Lyndon Gallacher
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Casie A Genetti
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Christina L Grant
- Division of Genetics and Metabolism, Children’s National Hospital, Washington, DC, USA
| | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Center for Rare Diseases Tübingen, University of Tübingen, Tübingen, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Elsa Leitão
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anna Le Fevre
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Richard J Leventer
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Royal Children’s Hospital, Melbourne, VIC, Australia
| | - Jan E Liebelt
- Paediatric and Reproductive Genetics Unit, South Australian Clinical Genetics Service, Women’s and Children’s Hospital, North Adelaide, SA, Australia
- Repromed, Dulwich, SA, Australia
| | - Paul J Lockhart
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Alan S Ma
- Department of Clinical Genetics, Sydney Children’s Hospitals Network Westmead, Sydney, NSW, Australia
- Specialty of Genomic Medicine, University of Sydney, Sydney, NSW, Australia
| | - Ellen F Macnamara
- Undiagnosed Disesases Program, National Human Genome Research Institute, Bethesda, MD, USA
| | - Taylor M Maurer
- GREGoR Stanford Site, Stanford University School of Medicine, Stanford, CA, USA
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Hector R Mendez
- GREGoR Stanford Site, Stanford University School of Medicine, Stanford, CA, USA
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine - Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen B Montgomery
- GREGoR Stanford Site, Stanford University School of Medicine, Stanford, CA, USA
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Department of Genetics, Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Marie-Cécile Nassogne
- Service de Neurologie Pédiatrique, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200, Brussels, Belgium
- Institut des Maladies Rares, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200, Brussels, Belgium
| | - Serena Neumann
- Division of Medical Genetics & Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melanie O’Leary
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elizabeth E Palmer
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Centre for Clinical Genetics, Sydney Children’s Hospitals Network, Randwick, NSW, Australia
| | - John Phillips
- Division of Medical Genetics & Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Georgia Pitsava
- Institute for Clinical and Translational Research, University of California, Irvine, CA, USA
| | - Ryan Pysar
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Centre for Clinical Genetics, Sydney Children’s Hospitals Network, Randwick, NSW, Australia
- Department of Clinical Genetics, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Heidi L Rehm
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chloe M Reuter
- GREGoR Stanford Site, Stanford University School of Medicine, Stanford, CA, USA
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine - Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicole Revencu
- Center for Human Genetics, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Angelika Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Rocio Rius
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Lance Rodan
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tony Roscioli
- Neuroscience Research Australia, Sydney, NSW, Australia
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Rani Sachdev
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Centre for Clinical Genetics, Sydney Children’s Hospitals Network, Randwick, NSW, Australia
| | - Cas Simons
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- UK and Chalfont Centre for Epilepsy, Bucks, UK
| | - Penny Snell
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Laura Clair
- Department of Clinical Genetics, Sydney Children’s Hospitals Network Westmead, Sydney, NSW, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Natalie B Tan
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Suzanna EL Temple
- Department of Clinical Genetics, Liverpool Hospital, Sydney, NSW, Australia
- School of Women’s and Childrens’s Health, University of New South Wales, Sydney, NSW, Australia
| | - David R Thorburn
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Cynthia J Tifft
- Undiagnosed Disesases Program, National Human Genome Research Institute, Bethesda, MD, USA
| | - Eloise Uebergang
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Grace E VanNoy
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric Vilain
- Institute for Clinical and Translational Science, University of California, Irvine, CA, USA
| | - David H Viskochil
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Laura Wedd
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Matthew T Wheeler
- GREGoR Stanford Site, Stanford University School of Medicine, Stanford, CA, USA
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine - Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Monica Wojcik
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lynne A Wolfe
- Undiagnosed Disesases Program, National Human Genome Research Institute, Bethesda, MD, USA
| | - Zoe Wolfenson
- Undiagnosed Disesases Program, National Human Genome Research Institute, Bethesda, MD, USA
| | - Changrui Xiao
- Department of Neurology, University of California, Irvine, CA, USA
| | - David Zocche
- North West Thames Regional Genetics Service, Northwick Park & St Mark’s Hospitals, London, UK
| | - John L Rubenstein
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Eirene Markenscoff-Papadimitriou
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California, San Francisco, USA
| | | | - Diana Baralle
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust, Southampton, UK
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Daniel G MacArthur
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Joanna MM Howson
- Human Genetics Centre of Excellence, Novo Nordisk Research Centre, Oxford, UK
| | - Stephan J Sanders
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Anne O’Donnell-Luria
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Whiffin
- Big Data Institute, University of Oxford, Oxford, UK
- Centre for Human Genetics, University of Oxford, Oxford, UK
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
7
|
Nishimura K, Saika W, Inoue D. Minor introns impact on hematopoietic malignancies. Exp Hematol 2024; 132:104173. [PMID: 38309573 DOI: 10.1016/j.exphem.2024.104173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 02/05/2024]
Abstract
In the intricate orchestration of the central dogma, pre-mRNA splicing plays a crucial role in the post-transcriptional process that transforms DNA into mature mRNA. Widely acknowledged as a pivotal RNA processing step, it significantly influences gene expression and alters the functionality of gene product proteins. Although U2-dependent spliceosomes efficiently manage the removal of over 99% of introns, a distinct subset of essential genes undergo splicing with a different intron type, denoted as minor introns, using U12-dependent spliceosomes. Mutations in spliceosome component genes are now recognized as prevalent genetic abnormalities in cancer patients, especially those with hematologic malignancies. Despite the relative rarity of minor introns, genes containing them are evolutionarily conserved and play crucial roles in functions such as the RAS-MAPK pathway. Disruptions in U12-type minor intron splicing caused by mutations in snRNA or its regulatory components significantly contribute to cancer progression. Notably, recurrent mutations associated with myelodysplastic syndrome (MDS) in the minor spliceosome component ZRSR2 underscore its significance. Examination of ZRSR2-mutated MDS cells has revealed that only a subset of minor spliceosome-dependent genes, such as LZTR1, consistently exhibit missplicing. Recent technological advancements have uncovered insights into minor introns, raising inquiries beyond current understanding. This review comprehensively explores the importance of minor intron regulation, the molecular implications of minor (U12-type) spliceosomal mutations and cis-regulatory regions, and the evolutionary progress of studies on minor, aiming to provide a sophisticated understanding of their intricate role in cancer biology.
Collapse
Affiliation(s)
- Koutarou Nishimura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan.
| | - Wataru Saika
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan; Department of Hematology, Shiga University of Medical Science, Ōtsu, Shiga, Japan
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan.
| |
Collapse
|
8
|
Hannes L, Atzori M, Goldenberg A, Argente J, Attie-Bitach T, Amiel J, Attanasio C, Braslavsky DG, Bruel AL, Castanet M, Dubourg C, Jacobs A, Lyonnet S, Martinez-Mayer J, Pérez Millán MI, Pezzella N, Pelgrims E, Aerden M, Bauters M, Rochtus A, Scaglia P, Swillen A, Sifrim A, Tammaro R, Mau-Them FT, Odent S, Thauvin-Robinet C, Franco B, Breckpot J. Differential alternative splicing analysis links variation in ZRSR2 to a novel type of oral-facial-digital syndrome. Genet Med 2024; 26:101059. [PMID: 38158857 DOI: 10.1016/j.gim.2023.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024] Open
Abstract
PURPOSE Oral-facial-digital (OFD) syndromes are genetically heterogeneous developmental disorders, caused by pathogenic variants in genes involved in primary cilia formation and function. We identified a previously undescribed type of OFD with brain anomalies, ranging from alobar holoprosencephaly to pituitary anomalies, in 6 unrelated families. METHODS Exome sequencing of affected probands was supplemented with alternative splicing analysis in patient and control lymphoblastoid and fibroblast cell lines, and primary cilia structure analysis in patient fibroblasts. RESULTS In 1 family with 2 affected males, we identified a germline variant in the last exon of ZRSR2, NM_005089.4:c.1211_1212del NP_005080.1:p.(Gly404GlufsTer23), whereas 7 affected males from 5 unrelated families were hemizygous for the ZRSR2 variant NM_005089.4:c.1207_1208del NP_005080.1:p.(Arg403GlyfsTer24), either occurring de novo or inherited in an X-linked recessive pattern. ZRSR2, located on chromosome Xp22.2, encodes a splicing factor of the minor spliceosome complex, which recognizes minor introns, representing 0.35% of human introns. Patient samples showed significant enrichment of minor intron retention. Among differentially spliced targets are ciliopathy-related genes, such as TMEM107 and CIBAR1. Primary fibroblasts containing the NM_005089.4:c.1207_1208del ZRSR2 variant had abnormally elongated cilia, confirming an association between defective U12-type intron splicing, OFD and abnormal primary cilia formation. CONCLUSION We introduce a novel type of OFD associated with elongated cilia and differential splicing of minor intron-containing genes due to germline variation in ZRSR2.
Collapse
Affiliation(s)
- Laurens Hannes
- Department of Human Genetics, KU Leuven, Leuven, Belgium; Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Marta Atzori
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Alice Goldenberg
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU Rouen, Rouen, France
| | - Jesús Argente
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain; CIBEROBN de fisiopatología de la obesidad y nutrición, Instituto de Salud Carlos III, Madrid, Spain; IMDEA Food Institute, Madrid, Spain
| | - Tania Attie-Bitach
- Université Paris Cité, INSERM, IHU Imagine - Institut des maladies génétiques, Paris, France; Service de médecine génomique des maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Institut Imagine, Paris, France
| | - Jeanne Amiel
- Université Paris Cité, INSERM, IHU Imagine - Institut des maladies génétiques, Paris, France; Service de médecine génomique des maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Institut Imagine, Paris, France
| | | | - Débora G Braslavsky
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez. Buenos Aires, Argentina
| | - Ange-Line Bruel
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France; UF Innovation diagnostique des maladies rares, FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Mireille Castanet
- Normandie Univ, UNIROUEN, Inserm U1239, CHU Rouen, Department of Pediatrics, Rouen, France
| | - Christèle Dubourg
- Department of Molecular Genetics and Genomics, Rennes University Hospital, Rennes, France; Univ Rennes, CNRS, INSERM, IGDR, UMR 6290, ERL U1305, Rennes, France
| | - An Jacobs
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Stanislas Lyonnet
- Université Paris Cité, INSERM, IHU Imagine - Institut des maladies génétiques, Paris, France; Service de médecine génomique des maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Institut Imagine, Paris, France
| | - Julian Martinez-Mayer
- Instituto de Biociencias, Biotecnología y Biología Traslacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - María Inés Pérez Millán
- Instituto de Biociencias, Biotecnología y Biología Traslacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Nunziana Pezzella
- Telethon Institute of Genetics and Medicine-TIGEM, Naples, Italy; Scuola Superiore Meridionale, School for Advanced Studies, Genomics and Experimental Medicine program, Naples, Italy
| | - Elise Pelgrims
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Mio Aerden
- Department of Human Genetics, KU Leuven, Leuven, Belgium; Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Marijke Bauters
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Anne Rochtus
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Paula Scaglia
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez. Buenos Aires, Argentina
| | - Ann Swillen
- Department of Human Genetics, KU Leuven, Leuven, Belgium; Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | | | - Roberta Tammaro
- Telethon Institute of Genetics and Medicine-TIGEM, Naples, Italy
| | - Frederic Tran Mau-Them
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France; UF Innovation diagnostique des maladies rares, FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France; Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
| | - Sylvie Odent
- Department of Molecular Genetics and Genomics, Rennes University Hospital, Rennes, France; Univ Rennes, CNRS, INSERM, IGDR, UMR 6290, ERL U1305, Rennes, France; Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Ouest, ERN ITHACA, FHU GenOmedS, Centre Hospitalier Universitaire Rennes, Rennes, France
| | - Christel Thauvin-Robinet
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France; UF Innovation diagnostique des maladies rares, FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France; Centre de Référence Anomalies du Développement de l'Est, Centre de Génétique, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine-TIGEM, Naples, Italy; Scuola Superiore Meridionale, School for Advanced Studies, Genomics and Experimental Medicine program, Naples, Italy; Department of Translational Medicine, Medical Genetics Federico II University of Naples, Naples, Italy
| | - Jeroen Breckpot
- Department of Human Genetics, KU Leuven, Leuven, Belgium; Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Wuchty S, White AK, Olthof AM, Drake K, Hume AJ, Olejnik J, Aguiar-Pulido V, Mühlberger E, Kanadia RN. Minor intron-containing genes as an ancient backbone for viral infection? PNAS NEXUS 2024; 3:pgad479. [PMID: 38274120 PMCID: PMC10810330 DOI: 10.1093/pnasnexus/pgad479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Minor intron-containing genes (MIGs) account for <2% of all human protein-coding genes and are uniquely dependent on the minor spliceosome for proper excision. Despite their low numbers, we surprisingly found a significant enrichment of MIG-encoded proteins (MIG-Ps) in protein-protein interactomes and host factors of positive-sense RNA viruses, including SARS-CoV-1, SARS-CoV-2, MERS coronavirus, and Zika virus. Similarly, we observed a significant enrichment of MIG-Ps in the interactomes and sets of host factors of negative-sense RNA viruses such as Ebola virus, influenza A virus, and the retrovirus HIV-1. We also found an enrichment of MIG-Ps in double-stranded DNA viruses such as Epstein-Barr virus, human papillomavirus, and herpes simplex viruses. In general, MIG-Ps were highly connected and placed in central positions in a network of human-host protein interactions. Moreover, MIG-Ps that interact with viral proteins were enriched with essential genes. We also provide evidence that viral proteins interact with ancestral MIGs that date back to unicellular organisms and are mainly involved in basic cellular functions such as cell cycle, cell division, and signal transduction. Our results suggest that MIG-Ps form a stable, evolutionarily conserved backbone that viruses putatively tap to invade and propagate in human host cells.
Collapse
Affiliation(s)
- Stefan Wuchty
- Department of Computer Science, University of Miami, Coral Gables, FL 33146, USA
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
- Institute of Data Science and Computing, University of Miami, Coral Gables, FL 33146, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33134, USA
| | - Alisa K White
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Anouk M Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Kyle Drake
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Adam J Hume
- Department of Virology, Immunology and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
- Center for Emerging Infectious Diseases Policy and Research, Boston University, Boston, MA 02118, USA
| | - Judith Olejnik
- Department of Virology, Immunology and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | | | - Elke Mühlberger
- Department of Virology, Immunology and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Rahul N Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
10
|
Verdile V, Palombo R, Ferrante G, Ferri A, Amadio S, Volonté C, Paronetto MP. Dysregulation of alternative splicing underlies synaptic defects in familial amyotrophic lateral sclerosis. Prog Neurobiol 2023; 231:102529. [PMID: 37739207 DOI: 10.1016/j.pneurobio.2023.102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by the degeneration of upper and lower motor neurons, progressive wasting and paralysis of voluntary muscles. A hallmark of ALS is the frequent nuclear loss and cytoplasmic accumulation of RNA binding proteins (RBPs) in motor neurons (MN), which leads to aberrant alternative splicing regulation. However, whether altered splicing patterns are also present in familial models of ALS without mutations in RBP-encoding genes has not been investigated yet. Herein, we found that altered splicing of synaptic genes is a common trait of familial ALS MNs. Similar deregulation was also observed in hSOD1G93A MN-like cells. In silico analysis identified the potential regulators of these pre-mRNAs, including the RBP Sam68. Immunofluorescence analysis and biochemical fractionation experiments revealed that Sam68 accumulates in the cytoplasmic insoluble ribonucleoprotein fraction of MN. Remarkably, the synaptic splicing events deregulated in ALS MNs were also affected in Sam68-/- spinal cords. Recombinant expression of Sam68 protein was sufficient to rescue these splicing changes in ALS hSOD1G93A MN-like cells. Hence, our study highlights an aberrant function of Sam68, which leads to splicing changes in synaptic genes and may contribute to the MN phenotype that characterizes ALS.
Collapse
Affiliation(s)
- Veronica Verdile
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 6, 00135 Rome, Italy; Division of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Ramona Palombo
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 6, 00135 Rome, Italy
| | - Gabriele Ferrante
- Division of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Alberto Ferri
- Division of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, Rome 00143, Italy; National Research Council (CNR), Institute of Translational Pharmacology (IFT), Rome, Italy
| | - Susanna Amadio
- Division of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Cinzia Volonté
- Division of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, Rome 00143, Italy; National Research Council (CNR), Institute for Systems Analysis and Computer Science (IASI), Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 6, 00135 Rome, Italy; Division of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, Rome 00143, Italy.
| |
Collapse
|
11
|
Wang M, Liang AM, Zhou ZZ, Pang TL, Fan YJ, Xu YZ. Deletions of singular U1 snRNA gene significantly interfere with transcription and 3'-end mRNA formation. PLoS Genet 2023; 19:e1011021. [PMID: 37917726 PMCID: PMC10645366 DOI: 10.1371/journal.pgen.1011021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 11/14/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
Small nuclear RNAs (snRNAs) are structural and functional cores of the spliceosome. In metazoan genomes, each snRNA has multiple copies/variants, up to hundreds in mammals. However, the expressions and functions of each copy/variant in one organism have not been systematically studied. Focus on U1 snRNA genes, we investigated all five copies in Drosophila melanogaster using two series of constructed strains. Analyses of transgenic flies that each have a U1 promoter-driven gfp revealed that U1:21D is the major and ubiquitously expressed copy, and the other four copies have specificities in developmental stages and tissues. Mutant strains that each have a precisely deleted copy of U1-gene exhibited various extents of defects in fly morphology or mobility, especially deletion of U1:82Eb. Interestingly, splicing was changed at limited levels in the deletion strains, while large amounts of differentially-expressed genes and alternative polyadenylation events were identified, showing preferences in the down-regulation of genes with 1-2 introns and selection of proximal sites for 3'-end polyadenylation. In vitro assays suggested that Drosophila U1 variants pulled down fewer SmD2 proteins compared to the canonical U1. This study demonstrates that all five U1-genes in Drosophila have physiological functions in development and play regulatory roles in transcription and 3'-end formation.
Collapse
Affiliation(s)
- Mei Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences; Shanghai, China, University of Chinese Academy of Sciences, China
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei, China
- Shanghai Institute of Biological Products, Shanghai, China
| | - An-Min Liang
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei, China
| | - Zhen-Zhen Zhou
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei, China
| | - Ting-Lin Pang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences; Shanghai, China, University of Chinese Academy of Sciences, China
| | - Yu-Jie Fan
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei, China
| | - Yong-Zhen Xu
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei, China
| |
Collapse
|
12
|
Yavas Abali Z, Gokpinar Ili E, Bas F, Ulak Ozkan M, Gulec Ç, Toksoy G, Ozturk AP, Karakilic Ozturan E, Aslanger A, Caliskan M, Yesil G, Poyrazoglu S, Darendeliler F, Oya Uyguner Z. A Novel RNPC3 Gene Variant Expands the Phenotype in Patients with Congenital Hypopituitarism and Neuropathy. Horm Res Paediatr 2023; 97:157-164. [PMID: 37463572 DOI: 10.1159/000532000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
INTRODUCTION Pathogenic biallelic RNPC3 variants cause congenital hypopituitarism (CH) with congenital cataracts, neuropathy, developmental delay/intellectual disability, primary ovarian insufficiency, and pituitary hypoplasia. Here, we aimed to evaluate the clinical and molecular characteristics of 2 patients with CH and neuropathy. MATERIALS AND METHODS Proband was evaluated by clinical, laboratory, and radiological exams, followed by exome sequencing (ES). Clinical investigation of an affected sibling and variant segregation in the family was performed by Sanger sequencing. A three-dimensional protein model study was conducted to predict the effect of the variant on the function of the RNPC3 peptide. RESULTS Proband was a 16-month-old girl who was referred for the evaluation of failure to thrive. Her height, weight, and head circumference were 55.8 cm (-7.6 SDS), 6.5 kg (-3.6 SDS), and 41.8 cm (-3.82), respectively. She had a developmental delay and intellectual disability. Central hypothyroidism, growth hormone, and prolactin deficiencies were identified, and MRI revealed pituitary hypoplasia. Electroneuromyography performed for the gait abnormality revealed peripheral neuropathy. A homozygous novel variant c.484C>T/p.(Pro162Ser) in the RNPC3 was detected in the ES. Her brother had the same genotype, and he similarly had pituitary hormone deficiencies with polyneuropathy. CONCLUSION Expanding our knowledge of the spectrum of RNPC3 variants, and apprehending clinical and molecular data of additional cases, is decisive for accurate diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Zehra Yavas Abali
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey
- Department of Medical Genetics, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
- Department of Pediatric Endocrinology, Pendik Research and Training Hospital, Marmara University, İstanbul, Turkey
| | - Ezgi Gokpinar Ili
- Department of Medical Genetics, Başaksehir Çam and Sakura City Hospital, Istanbul, Turkey
| | - Firdevs Bas
- Department of Pediatric Endocrinology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Melis Ulak Ozkan
- Department of Pediatric Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Çagrı Gulec
- Department of Medical Genetics, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Guven Toksoy
- Department of Medical Genetics, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Ayşe Pinar Ozturk
- Department of Pediatric Endocrinology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Esin Karakilic Ozturan
- Department of Pediatric Endocrinology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Ayça Aslanger
- Department of Pediatric Endocrinology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Mine Caliskan
- Department of Pediatric Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Gozde Yesil
- Department of Pediatric Endocrinology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Sukran Poyrazoglu
- Department of Pediatric Endocrinology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Feyza Darendeliler
- Department of Pediatric Endocrinology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Zehra Oya Uyguner
- Department of Medical Genetics, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
13
|
Busselez J, Uzbekov RE, Franco B, Pancione M. New insights into the centrosome-associated spliceosome components as regulators of ciliogenesis and tissue identity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1776. [PMID: 36717357 DOI: 10.1002/wrna.1776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 02/01/2023]
Abstract
Biomolecular condensates are membrane-less assemblies of proteins and nucleic acids. Centrosomes are biomolecular condensates that play a crucial role in nuclear division, cytoskeletal remodeling, and cilia formation in animal cells. Spatial omics technology is providing new insights into the dynamic exchange of spliceosome components between the nucleus and the centrosome/cilium. Intriguingly, centrosomes are emerging as cytoplasmic sites for information storage, enriched with RNA molecules and RNA-processing proteins. Furthermore, growing evidence supports the view that nuclear spliceosome components assembled at the centrosome function as potential coordinators of splicing subprograms, pluripotency, and cell differentiation. In this article, we first discuss the current understanding of the centrosome/cilium complex, which controls both stem cell differentiation and pluripotency. We next explore the molecular mechanisms that govern splicing factor assembly and disassembly around the centrosome and examine how RNA processing pathways contribute to ciliogenesis. Finally, we discuss numerous unresolved compelling questions regarding the centrosome-associated spliceosome components and transcript variants within the cytoplasm as sources of RNA-based secondary messages in the regulation of cell identity and cell fate determination. This article is categorized under: RNA-Based Catalysis > RNA Catalysis in Splicing and Translation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > RNA Processing.
Collapse
Affiliation(s)
- Johan Busselez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France
| | - Rustem E Uzbekov
- Faculté de Médecine, Université de Tours, Tours, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medicine, Medical Genetics, University of Naples "Federico II", Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy
| | - Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University Madrid, Madrid, Spain
| |
Collapse
|
14
|
Juan-Mateu J, Valcárcel J. Minority report: The minor spliceosome as a novel cancer vulnerability factor. Mol Cell 2023; 83:1958-1960. [PMID: 37327771 DOI: 10.1016/j.molcel.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/18/2023]
Abstract
The minor spliceosome regulates the removal of a conserved subset of introns present in genes with regulatory functions. In this issue of Molecular Cell, Augspach et al.1 report that elevated levels of U6atac snRNA, a key minor spliceosome component, contribute to prostate cancer cell growth and can be a novel therapeutic target.
Collapse
Affiliation(s)
- Jonàs Juan-Mateu
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
15
|
Augspach A, Drake KD, Roma L, Qian E, Lee SR, Clarke D, Kumar S, Jaquet M, Gallon J, Bolis M, Triscott J, Galván JA, Chen Y, Thalmann GN, Kruithof-de Julio M, Theurillat JPP, Wuchty S, Gerstein M, Piscuoglio S, Kanadia RN, Rubin MA. Minor intron splicing is critical for survival of lethal prostate cancer. Mol Cell 2023; 83:1983-2002.e11. [PMID: 37295433 PMCID: PMC10637423 DOI: 10.1016/j.molcel.2023.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
The evolutionarily conserved minor spliceosome (MiS) is required for protein expression of ∼714 minor intron-containing genes (MIGs) crucial for cell-cycle regulation, DNA repair, and MAP-kinase signaling. We explored the role of MIGs and MiS in cancer, taking prostate cancer (PCa) as an exemplar. Both androgen receptor signaling and elevated levels of U6atac, a MiS small nuclear RNA, regulate MiS activity, which is highest in advanced metastatic PCa. siU6atac-mediated MiS inhibition in PCa in vitro model systems resulted in aberrant minor intron splicing leading to cell-cycle G1 arrest. Small interfering RNA knocking down U6atac was ∼50% more efficient in lowering tumor burden in models of advanced therapy-resistant PCa compared with standard antiandrogen therapy. In lethal PCa, siU6atac disrupted the splicing of a crucial lineage dependency factor, the RE1-silencing factor (REST). Taken together, we have nominated MiS as a vulnerability for lethal PCa and potentially other cancers.
Collapse
Affiliation(s)
- Anke Augspach
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Kyle D Drake
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Luca Roma
- Institute of Pathology and Medical Genetics, University Hospital Basel, 4056 Basel, Switzerland
| | - Ellen Qian
- Department of Computer Science, Yale University, New Haven, CT 06520, USA; Yale College, New Haven, CT 06520, USA
| | - Se Ri Lee
- Department of Computer Science, Yale University, New Haven, CT 06520, USA; Yale College, New Haven, CT 06520, USA
| | - Declan Clarke
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Sushant Kumar
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Muriel Jaquet
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - John Gallon
- Institute of Pathology and Medical Genetics, University Hospital Basel, 4056 Basel, Switzerland
| | - Marco Bolis
- Institute of Oncology Research, 6500 Bellinzona, Switzerland; Computational Oncology Unit, Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, 20156 Milano, Italy
| | - Joanna Triscott
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - José A Galván
- Institute of Pathology, University of Bern, Bern 3008, Switzerland
| | - Yu Chen
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - George N Thalmann
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland; Bern Center for Precision Medicine, University of Bern and Inselspital, 3008 Bern, Switzerland
| | - Jean-Philippe P Theurillat
- Institute of Oncology Research, 6500 Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland
| | - Stefan Wuchty
- Department of Computer Science, University of Miami, Coral Gables, FL 33146, USA; Sylvester Comprehensive Cancer Center, University of Miami, Coral Gables, FL 33136, USA; Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | - Mark Gerstein
- Department of Computer Science, Yale University, New Haven, CT 06520, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Salvatore Piscuoglio
- Institute of Pathology and Medical Genetics, University Hospital Basel, 4056 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Rahul N Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; Bern Center for Precision Medicine, University of Bern and Inselspital, 3008 Bern, Switzerland.
| |
Collapse
|
16
|
Garsetti DE, Sahay K, Wang Y, Rogers MB. Sex and the basal mRNA synthesis machinery. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1765. [PMID: 36195437 PMCID: PMC10070566 DOI: 10.1002/wrna.1765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 11/07/2022]
Abstract
Evolution and change generated an incredible diversity of organisms on this earth. Yet, some processes are so central to life that change is strongly selected against. Synthesis of the eukaryotic messenger RNA is one example. The assemblies that carry out transcription and processing (capping, polyadenylation, and splicing) are so conserved that most genes have recognizable orthologs in yeast and humans. Naturally, most would conclude transcription and processing are identical in both sexes. However, this is an assumption. Men and women vastly differ in their physiologies. The incidence of pathologies, symptom presentation, disease outcome, and therapeutic response in each sex vary enormously. Despite the harm ignorance causes women, biological research has been historically carried out without regard to sex. The male mouse was the default mammal. A cultured cell's sex was considered irrelevant. Attempts to fill this knowledge gap have revealed molecular dissimilarities. For example, the earliest embryonic male and female transcriptomes differ long before fetal sex hormones appear. We used public data to challenge the assumption of sameness by reviewing reports of sex-biased gene expression and gene targeting. We focused on 120 genes encoding nonregulatory proteins involved in mRNA synthesis. Remarkably, genes with recognizable orthologs in yeast and thus LEAST likely to differ, did differ between the sexes. The rapidly growing public databases can be used to compare the expression of any gene in male and female tissues. Appreciating the principles that drive sex differences will enrich our understanding of RNA biology in all humans-men and women. This article is categorized under: RNA in Disease and Development > RNA in Development RNA Evolution and Genomics > Computational Analyses of RNA.
Collapse
Affiliation(s)
- Diane E Garsetti
- Rutgers-New Jersey Medical School (NJMS), Department of Microbiology, Biochemistry, and Molecular Genetics, Newark, New Jersey, USA
| | - Khushboo Sahay
- Rutgers-New Jersey Medical School (NJMS), Department of Microbiology, Biochemistry, and Molecular Genetics, Newark, New Jersey, USA
| | - Yue Wang
- Rutgers-New Jersey Medical School (NJMS), Department of Microbiology, Biochemistry, and Molecular Genetics, Newark, New Jersey, USA
| | - Melissa B Rogers
- Rutgers-New Jersey Medical School (NJMS), Department of Microbiology, Biochemistry, and Molecular Genetics, Newark, New Jersey, USA
| |
Collapse
|
17
|
Singh A, Pandey KK, Agrawal SK, Srivastava RK, Bhattacharyya S, Verma B. The SARS-CoV-2 UTR’s Intrudes Host RBP’s and Modulates Cellular Splicing. Adv Virol 2023; 2023:2995443. [PMID: 37065904 PMCID: PMC10098413 DOI: 10.1155/2023/2995443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/02/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
SARS-CoV-2 is a novel coronavirus that causes a potentially fatal respiratory disease known as coronavirus disease (COVID-19) and is responsible for the ongoing pandemic with increasing mortality. Understanding the host-virus interaction involved in SARS-CoV-2 pathophysiology will enhance our understanding of the mechanistic basis of COVID-19 infection. The characterization of post-transcriptional gene regulatory networks, particularly pre-mRNA splicing, and the identification and characterization of host proteins interacting with the 5′ and 3′UTRs of SARS-CoV-2 will improve our understanding of post-transcriptional gene regulation during SARS-CoV-2 pathogenesis. Here, we demonstrate that either SARS-CoV-2 infection or exogenous overexpression of the 5′ and 3’UTRs of the viral genomic RNAs, results in reduced mRNA levels possibly due to modulation of host cell pre-mRNA splicing. Further, we have investigated the potential RNA-binding proteins interacting with the 5′ and 3′UTRs, using in-silico approaches. Our results suggest that 5′ and 3′UTRs indeed interact with many RNA-binding proteins. Our results provide a primer for further investigations into the UTR-mediated regulation of splicing and related molecular mechanisms in host cells.
Collapse
Affiliation(s)
- Anjali Singh
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Kush Kumar Pandey
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
- Nebraska Center for Virology and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln 68583, NE, USA
| | - Shubham Kumar Agrawal
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Sankar Bhattacharyya
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
18
|
Phylogenetic Analysis of Spliceosome SF3a2 in Different Plant Species. Int J Mol Sci 2023; 24:ijms24065232. [PMID: 36982311 PMCID: PMC10049718 DOI: 10.3390/ijms24065232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The formation of mature mRNA requires cutting introns and splicing exons. The occurrence of splicing involves the participation of the spliceosome. Common spliceosomes mainly include five snRNPs: U1, U2, U4/U6, and U5. SF3a2, an essential component of spliceosome U2 snRNP, participates in splicing a series of genes. There is no definition of SF3a2 in plants. The paper elaborated on SF3a2s from a series of plants through protein sequence similarity. We constructed the evolutionary relationship of SF3a2s in plants. Moreover, we analyzed the similarities and differences in gene structure, protein structure, the cis-element of the promoter, and expression pattern; we predicted their interacting proteins and constructed their collinearity. We have preliminarily analyzed SF3a2s in plants and clarified the evolutionary relationship between different species; these studies can better serve for in-depth research on the members of the spliceosome in plants.
Collapse
|
19
|
Jacquemin V, Versbraegen N, Duerinckx S, Massart A, Soblet J, Perazzolo C, Deconinck N, Brischoux-Boucher E, De Leener A, Revencu N, Janssens S, Moorgat S, Blaumeiser B, Avela K, Touraine R, Abou Jaoude I, Keymolen K, Saugier-Veber P, Lenaerts T, Abramowicz M, Pirson I. Congenital hydrocephalus: new Mendelian mutations and evidence for oligogenic inheritance. Hum Genomics 2023; 17:16. [PMID: 36859317 PMCID: PMC9979489 DOI: 10.1186/s40246-023-00464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Congenital hydrocephalus is characterized by ventriculomegaly, defined as a dilatation of cerebral ventricles, and thought to be due to impaired cerebrospinal fluid (CSF) homeostasis. Primary congenital hydrocephalus is a subset of cases with prenatal onset and absence of another primary cause, e.g., brain hemorrhage. Published series report a Mendelian cause in only a minority of cases. In this study, we analyzed exome data of PCH patients in search of novel causal genes and addressed the possibility of an underlying oligogenic mode of inheritance for PCH. MATERIALS AND METHODS We sequenced the exome in 28 unrelated probands with PCH, 12 of whom from families with at least two affected siblings and 9 of whom consanguineous, thereby increasing the contribution of genetic causes. Patient exome data were first analyzed for rare (MAF < 0.005) transmitted or de novo variants. Population stratification of unrelated PCH patients and controls was determined by principle component analysis, and outliers identified using Mahalanobis distance 5% as cutoff. Patient and control exome data for genes biologically related to cilia (SYScilia database) were analyzed by mutation burden test. RESULTS In 18% of probands, we identify a causal (pathogenic or likely pathogenic) variant of a known hydrocephalus gene, including genes for postnatal, syndromic hydrocephalus, not previously reported in isolated PCH. In a further 11%, we identify mutations in novel candidate genes. Through mutation burden tests, we demonstrate a significant burden of genetic variants in genes coding for proteins of the primary cilium in PCH patients compared to controls. CONCLUSION Our study confirms the low contribution of Mendelian mutations in PCH and reports PCH as a phenotypic presentation of some known genes known for syndromic, postnatal hydrocephalus. Furthermore, this study identifies novel Mendelian candidate genes, and provides evidence for oligogenic inheritance implicating primary cilia in PCH.
Collapse
Affiliation(s)
- Valerie Jacquemin
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium.
| | - Nassim Versbraegen
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
| | - Sarah Duerinckx
- Service de Neuropédiatrie, Hôpital Universitaire de Bruxelles and CUB Hôpital Erasme and Université Libre de Bruxelles, Brussels, Belgium
| | - Annick Massart
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
- Department of Nephrology, University Hospital of Antwerp, Edegem, Belgium
| | - Julie Soblet
- Human Genetics Department, CUB Hôpital Erasme, Brussels, Belgium
| | - Camille Perazzolo
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Deconinck
- Hopital Universitaire des Enfants Reine Fabiola and Hopital Universitaire de Bruxelles and Université Libre de Bruxelles, Brussels, Belgium
| | - Elise Brischoux-Boucher
- Centre de génétique humaine - CHU de Besançon, Université de Bourgogne-Franche-Comté, Besançon, France
| | - Anne De Leener
- Centre de Génétique Humaine, Cliniques Universitaires Saint-Luc et Université Catholique de Louvain, Brussels, Belgium
| | - Nicole Revencu
- Centre de Génétique Humaine, Cliniques Universitaires Saint-Luc et Université Catholique de Louvain, Brussels, Belgium
| | - Sandra Janssens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Stèphanie Moorgat
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Bettina Blaumeiser
- Center of Medical Genetics, Antwerp University and Antwerp University Hospital, Edegem, Belgium
| | - Kristiina Avela
- Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
| | - Renaud Touraine
- Génétique Clinique Chromosomique et Moléculaire, CHU de Saint-Etienne, St-Priest-en-Jarez, France
| | - Imad Abou Jaoude
- Department of Gynecology and Obstetrics, Abou Jaoude Hospital, Jal El Dib, Lebanon
| | | | - Pascale Saugier-Veber
- Department of Genetics and Reference Center for Developmental Disorders, Université Rouen Normandie, Inserm U1245 and CHU Rouen, Rouen, France
| | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
- Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marc Abramowicz
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium.
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.
| | - Isabelle Pirson
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
20
|
Ivanova OM, Anufrieva KS, Kazakova AN, Malyants IK, Shnaider PV, Lukina MM, Shender VO. Non-canonical functions of spliceosome components in cancer progression. Cell Death Dis 2023; 14:77. [PMID: 36732501 PMCID: PMC9895063 DOI: 10.1038/s41419-022-05470-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 02/04/2023]
Abstract
Dysregulation of pre-mRNA splicing is a common hallmark of cancer cells and it is associated with altered expression, localization, and mutations of the components of the splicing machinery. In the last few years, it has been elucidated that spliceosome components can also influence cellular processes in a splicing-independent manner. Here, we analyze open source data to understand the effect of the knockdown of splicing factors in human cells on the expression and splicing of genes relevant to cell proliferation, migration, cell cycle regulation, DNA repair, and cell death. We supplement this information with a comprehensive literature review of non-canonical functions of splicing factors linked to cancer progression. We also specifically discuss the involvement of splicing factors in intercellular communication and known autoregulatory mechanisms in restoring their levels in cells. Finally, we discuss strategies to target components of the spliceosome machinery that are promising for anticancer therapy. Altogether, this review greatly expands understanding of the role of spliceosome proteins in cancer progression.
Collapse
Affiliation(s)
- Olga M Ivanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation.
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation.
- Institute for Regenerative Medicine, Sechenov University, Moscow, 119991, Russian Federation.
| | - Ksenia S Anufrieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Anastasia N Kazakova
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, 141701, Russian Federation
| | - Irina K Malyants
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Faculty of Chemical-Pharmaceutical Technologies and Biomedical Drugs, Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russian Federation
| | - Polina V Shnaider
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Maria M Lukina
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Victoria O Shender
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation.
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russian Federation.
| |
Collapse
|
21
|
Almentina Ramos Shidi F, Cologne A, Delous M, Besson A, Putoux A, Leutenegger AL, Lacroix V, Edery P, Mazoyer S, Bordonné R. Mutations in the non-coding RNU4ATAC gene affect the homeostasis and function of the Integrator complex. Nucleic Acids Res 2023; 51:712-727. [PMID: 36537210 PMCID: PMC9881141 DOI: 10.1093/nar/gkac1182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Various genetic diseases associated with microcephaly and developmental defects are due to pathogenic variants in the U4atac small nuclear RNA (snRNA), a component of the minor spliceosome essential for the removal of U12-type introns from eukaryotic mRNAs. While it has been shown that a few RNU4ATAC mutations result in impaired binding of essential protein components, the molecular defects of the vast majority of variants are still unknown. Here, we used lymphoblastoid cells derived from RNU4ATAC compound heterozygous (g.108_126del;g.111G>A) twin patients with MOPD1 phenotypes to analyze the molecular consequences of the mutations on small nuclear ribonucleoproteins (snRNPs) formation and on splicing. We found that the U4atac108_126del mutant is unstable and that the U4atac111G>A mutant as well as the minor di- and tri-snRNPs are present at reduced levels. Our results also reveal the existence of 3'-extended snRNA transcripts in patients' cells. Moreover, we show that the mutant cells have alterations in splicing of INTS7 and INTS10 minor introns, contain lower levels of the INTS7 and INTS10 proteins and display changes in the assembly of Integrator subunits. Altogether, our results show that compound heterozygous g.108_126del;g.111G>A mutations induce splicing defects and affect the homeostasis and function of the Integrator complex.
Collapse
Affiliation(s)
- Fatimat Almentina Ramos Shidi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR5535, 34293 Montpellier, France
| | - Audric Cologne
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, 69622 Villeurbanne, France
| | - Marion Delous
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
| | - Alicia Besson
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
| | - Audrey Putoux
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
- Clinical Genetics Unit, Department of Genetics, Centre de Référence Anomalies du Développement et Syndromes Polymalformatifs, Hospices Civils de Lyon, University Lyon 1, Bron, France
| | | | - Vincent Lacroix
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, 69622 Villeurbanne, France
| | - Patrick Edery
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
- Clinical Genetics Unit, Department of Genetics, Centre de Référence Anomalies du Développement et Syndromes Polymalformatifs, Hospices Civils de Lyon, University Lyon 1, Bron, France
| | - Sylvie Mazoyer
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
| | - Rémy Bordonné
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR5535, 34293 Montpellier, France
| |
Collapse
|
22
|
Ding Z, Meng YR, Fan YJ, Xu YZ. Roles of minor spliceosome in intron recognition and the convergence with the better understood major spliceosome. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1761. [PMID: 36056453 DOI: 10.1002/wrna.1761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/06/2022] [Accepted: 08/06/2022] [Indexed: 01/31/2023]
Abstract
Catalyzed by spliceosomes in the nucleus, RNA splicing removes intronic sequences from precursor RNAs in eukaryotes to generate mature RNA, which also significantly increases proteome complexity and fine-tunes gene expression. Most metazoans have two coexisting spliceosomes; the major spliceosome, which removes >99.5% of introns, and the minor spliceosome, which removes far fewer introns (only 770 at present have been predicted in the human genome). Both spliceosomes are large and dynamic machineries, each consisting of five small nuclear RNAs (snRNAs) and more than 100 proteins. However, the dynamic assembly, catalysis, and protein composition of the minor spliceosome are still poorly understood. With different splicing signals, minor introns are rare and usually distributed alone and flanked by major introns in genes, raising questions of how they are recognized by the minor spliceosome and how their processing deals with the splicing of neighboring major introns. Due to large numbers of introns and close similarities between the two machinery, cooperative, and competitive recognition by the two spliceosomes has been investigated. Functionally, many minor-intron-containing genes are evolutionarily conserved and essential. Mutations in the minor spliceosome exhibit a variety of developmental defects in plants and animals and are linked to numerous human diseases. Here, we review recent progress in the understanding of minor splicing, compare currently known components of the two spliceosomes, survey minor introns in a wide range of organisms, discuss cooperation and competition of the two spliceosomes in splicing of minor-intron-containing genes, and contributions of minor splicing mutations in development and diseases. This article is categorized under: RNA Processing > Processing of Small RNAs RNA Processing > Splicing Mechanisms RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Zhan Ding
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan-Ran Meng
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Yu-Jie Fan
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Yong-Zhen Xu
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
23
|
Funk L, Su KC, Ly J, Feldman D, Singh A, Moodie B, Blainey PC, Cheeseman IM. The phenotypic landscape of essential human genes. Cell 2022; 185:4634-4653.e22. [PMID: 36347254 PMCID: PMC10482496 DOI: 10.1016/j.cell.2022.10.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/01/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Understanding the basis for cellular growth, proliferation, and function requires determining the roles of essential genes in diverse cellular processes, including visualizing their contributions to cellular organization and morphology. Here, we combined pooled CRISPR-Cas9-based functional screening of 5,072 fitness-conferring genes in human HeLa cells with microscopy-based imaging of DNA, the DNA damage response, actin, and microtubules. Analysis of >31 million individual cells identified measurable phenotypes for >90% of gene knockouts, implicating gene targets in specific cellular processes. Clustering of phenotypic similarities based on hundreds of quantitative parameters further revealed co-functional genes across diverse cellular activities, providing predictions for gene functions and associations. By conducting pooled live-cell screening of ∼450,000 cell division events for 239 genes, we additionally identified diverse genes with functional contributions to chromosome segregation. Our work establishes a resource detailing the consequences of disrupting core cellular processes that represents the functional landscape of essential human genes.
Collapse
Affiliation(s)
- Luke Funk
- Broad Institute of MIT and Harvard, 415 Main St., Cambridge, MA 02142, USA; Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Kuan-Chung Su
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jimmy Ly
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - David Feldman
- Broad Institute of MIT and Harvard, 415 Main St., Cambridge, MA 02142, USA
| | - Avtar Singh
- Broad Institute of MIT and Harvard, 415 Main St., Cambridge, MA 02142, USA
| | - Brittania Moodie
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Paul C Blainey
- Broad Institute of MIT and Harvard, 415 Main St., Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02142, USA.
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
24
|
Emerging Roles of RNA-Binding Proteins in Inner Ear Hair Cell Development and Regeneration. Int J Mol Sci 2022; 23:ijms232012393. [PMID: 36293251 PMCID: PMC9604452 DOI: 10.3390/ijms232012393] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
RNA-binding proteins (RBPs) regulate gene expression at the post-transcriptional level. They play major roles in the tissue- and stage-specific expression of protein isoforms as well as in the maintenance of protein homeostasis. The inner ear is a bi-functional organ, with the cochlea and the vestibular system required for hearing and for maintaining balance, respectively. It is relatively well documented that transcription factors and signaling pathways are critically involved in the formation of inner ear structures and in the development of hair cells. Accumulating evidence highlights emerging functions of RBPs in the post-transcriptional regulation of inner ear development and hair cell function. Importantly, mutations of splicing factors of the RBP family and defective alternative splicing, which result in inappropriate expression of protein isoforms, lead to deafness in both animal models and humans. Because RBPs are critical regulators of cell proliferation and differentiation, they present the potential to promote hair cell regeneration following noise- or ototoxin-induced damage through mitotic and non-mitotic mechanisms. Therefore, deciphering RBP-regulated events during inner ear development and hair cell regeneration can help define therapeutic strategies for treatment of hearing loss. In this review, we outline our evolving understanding of the implications of RBPs in hair cell formation and hearing disease with the aim of promoting future research in this field.
Collapse
|
25
|
Iturrate A, Rivera-Barahona A, Flores CL, Otaify GA, Elhossini R, Perez-Sanz ML, Nevado J, Tenorio-Castano J, Triviño JC, Garcia-Gonzalo FR, Piceci-Sparascio F, De Luca A, Martínez L, Kalaycı T, Lapunzina P, Altunoglu U, Aglan M, Abdalla E, Ruiz-Perez VL. Mutations in SCNM1 cause orofaciodigital syndrome due to minor intron splicing defects affecting primary cilia. Am J Hum Genet 2022; 109:1828-1849. [PMID: 36084634 PMCID: PMC9606384 DOI: 10.1016/j.ajhg.2022.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/12/2022] [Indexed: 01/25/2023] Open
Abstract
Orofaciodigital syndrome (OFD) is a genetically heterogeneous ciliopathy characterized by anomalies of the oral cavity, face, and digits. We describe individuals with OFD from three unrelated families having bi-allelic loss-of-function variants in SCNM1 as the cause of their condition. SCNM1 encodes a protein recently shown to be a component of the human minor spliceosome. However, so far the effect of loss of SCNM1 function on human cells had not been assessed. Using a comparative transcriptome analysis between fibroblasts derived from an OFD-affected individual harboring SCNM1 mutations and control fibroblasts, we identified a set of genes with defective minor intron (U12) processing in the fibroblasts of the affected subject. These results were reproduced in SCNM1 knockout hTERT RPE-1 (RPE-1) cells engineered by CRISPR-Cas9-mediated editing and in SCNM1 siRNA-treated RPE-1 cultures. Notably, expression of TMEM107 and FAM92A encoding primary cilia and basal body proteins, respectively, and that of DERL2, ZC3H8, and C17orf75, were severely reduced in SCNM1-deficient cells. Primary fibroblasts containing SCNM1 mutations, as well as SCNM1 knockout and SCNM1 knockdown RPE-1 cells, were also found with abnormally elongated cilia. Conversely, cilia length and expression of SCNM1-regulated genes were restored in SCNM1-deficient fibroblasts following reintroduction of SCNM1 via retroviral delivery. Additionally, functional analysis in SCNM1-retrotransduced fibroblasts showed that SCNM1 is a positive mediator of Hedgehog (Hh) signaling. Our findings demonstrate that defective U12 intron splicing can lead to a typical ciliopathy such as OFD and reveal that primary cilia length and Hh signaling are regulated by the minor spliceosome through SCNM1 activity.
Collapse
Affiliation(s)
- Asier Iturrate
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Ana Rivera-Barahona
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen-Lisset Flores
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Ghada A. Otaify
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Rasha Elhossini
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Marina L. Perez-Sanz
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Julián Nevado
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain,Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPAZ, ITHACA-ERN, 28046 Madrid, Spain
| | - Jair Tenorio-Castano
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain,Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPAZ, ITHACA-ERN, 28046 Madrid, Spain
| | | | - Francesc R. Garcia-Gonzalo
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain,Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain,Área de Cáncer y Genética Molecular Humana, Instituto de Investigaciones del Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Francesca Piceci-Sparascio
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy,Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Leopoldo Martínez
- Departamento de Cirugía Pediátrica. Hospital Universitario La Paz-IdiPAZ, ITHACA-ERN, 28046 Madrid, Spain
| | - Tugba Kalaycı
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul 34093, Turkey
| | - Pablo Lapunzina
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain,Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPAZ, ITHACA-ERN, 28046 Madrid, Spain
| | - Umut Altunoglu
- Medical Genetics Department, Koç University School of Medicine, Istanbul 34450, Turkey
| | - Mona Aglan
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt,Genetics Department, Armed Forces College of Medicine, Cairo, Egypt
| | - Victor L. Ruiz-Perez
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain,Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPAZ, ITHACA-ERN, 28046 Madrid, Spain,Corresponding author
| |
Collapse
|
26
|
Siebert AE, Corll J, Paige Gronevelt J, Levine L, Hobbs LM, Kenney C, Powell CLE, Battistuzzi FU, Davenport R, Mark Settles A, Brad Barbazuk W, Westrick RJ, Madlambayan GJ, Lal S. Genetic analysis of human RNA binding motif protein 48 (RBM48) reveals an essential role in U12-type intron splicing. Genetics 2022; 222:iyac129. [PMID: 36040194 PMCID: PMC9526058 DOI: 10.1093/genetics/iyac129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
U12-type or minor introns are found in most multicellular eukaryotes and constitute ∼0.5% of all introns in species with a minor spliceosome. Although the biological significance for the evolutionary conservation of U12-type introns is debated, mutations disrupting U12 splicing cause developmental defects in both plants and animals. In human hematopoietic stem cells, U12 splicing defects disrupt proper differentiation of myeloid lineages and are associated with myelodysplastic syndrome, predisposing individuals to acute myeloid leukemia. Mutants in the maize ortholog of RNA binding motif protein 48 (RBM48) have aberrant U12-type intron splicing. Human RBM48 was recently purified biochemically as part of the minor spliceosome and shown to recognize the 5' end of the U6atac snRNA. In this report, we use CRISPR/Cas9-mediated ablation of RBM48 in human K-562 cells to show the genetic function of RBM48. RNA-seq analysis comparing wild-type and mutant K-562 genotypes found that 48% of minor intron-containing genes have significant U12-type intron retention in RBM48 mutants. Comparing these results to maize rbm48 mutants defined a subset of minor intron-containing genes disrupted in both species. Mutations in the majority of these orthologous minor intron-containing genes have been reported to cause developmental defects in both plants and animals. Our results provide genetic evidence that the primary defect of human RBM48 mutants is aberrant U12-type intron splicing, while a comparison of human and maize RNA-seq data identifies candidate genes likely to mediate mutant phenotypes of U12-type splicing defects.
Collapse
Affiliation(s)
- Amy E Siebert
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Jacob Corll
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - J Paige Gronevelt
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Laurel Levine
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Linzi M Hobbs
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Catalina Kenney
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Christopher L E Powell
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Fabia U Battistuzzi
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Ruth Davenport
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - A Mark Settles
- Horticultural Sciences Department and Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - W Brad Barbazuk
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Randal J Westrick
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Gerard J Madlambayan
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Shailesh Lal
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| |
Collapse
|
27
|
Vorländer MK, Pacheco-Fiallos B, Plaschka C. Structural basis of mRNA maturation: Time to put it together. Curr Opin Struct Biol 2022; 75:102431. [PMID: 35930970 DOI: 10.1016/j.sbi.2022.102431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022]
Abstract
In eukaryotes, the expression of genetic information begins in the cell nucleus with precursor messenger RNA (pre-mRNA) transcription and processing into mature mRNA. The mRNA is subsequently recognized and packaged by proteins into an mRNA ribonucleoprotein complex (mRNP) and exported to the cytoplasm for translation. Each of the nuclear mRNA maturation steps is carried out by a dedicated molecular machine. Here, we highlight recent structural and mechanistic insights into how these machines function, including the capping enzyme, the spliceosome, the 3'-end processing machinery, and the transcription-export complex. While we increasingly understand individual steps of nuclear gene expression, many questions remain. For example, we are only beginning to reveal how mature mRNAs are recognized and packaged for nuclear export and how mRNA maturation events are coupled to transcription and to each other. Advances in the preparation of recombinant and endogenous protein-nucleic acid complexes, cryo-electron microscopy, and machine learning promise exciting insights into the mechanisms of nuclear gene expression and its spatial organization.
Collapse
Affiliation(s)
- Matthias K Vorländer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria. https://twitter.com/@MVorlandr
| | - Belén Pacheco-Fiallos
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030, Vienna, Austria. https://twitter.com/@bpachecofiallos
| | - Clemens Plaschka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.
| |
Collapse
|
28
|
Marchi M, D'Amato I, Andelic M, Cartelli D, Salvi E, Lombardi R, Gumus E, Lauria G. Congenital insensitivity to pain: a novel mutation affecting a U12-type intron causes multiple aberrant splicing of SCN9A. Pain 2022; 163:e882-e887. [PMID: 34799533 PMCID: PMC9199108 DOI: 10.1097/j.pain.0000000000002535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Mutations in the alpha subunit of voltage-gated sodium channel 1.7 (NaV1.7), encoded by SCN9A gene, play an important role in the regulation of nociception and can lead to a wide range of clinical outcomes, ranging from extreme pain syndromes to congenital inability to experience pain. To expand the phenotypic and genotypic spectrum of SCN9A-related channelopathies, we describe the proband, a daughter born from consanguineous parents, who had pain insensitivity, diminished temperature sensation, foot burns, and severe loss of nociceptive nerve fibers in the epidermis. Next-generation sequencing of SCN9A (NM_002977.3) revealed a novel homozygous substitution (c.377+7T>G) in the donor splice site of intron 3. As the RNA functional testing is challenging, the in silico analysis is the first approach to predict possible alterations. In this case, the computational analysis was unable to identify the splicing consensus and could not provide any prediction for splicing defects. The affected intron indeed belongs to the U12 type, a family of introns characterised by noncanonical consensus at the splice sites, accounting only for 0.35% of all human introns, and is not included in most of the training sets for splicing prediction. A functional study on proband RNA showed different aberrant transcripts, where exon 3 was missing and an intron fragment was included. A quantification study using real-time polymerase chain reaction showed a significant reduction of the NaV1.7 canonical transcript. Collectively, these data widen the spectrum of SCN9A-related insensitivity to pain by describing a mutation causing NaV1.7 deficiency, underlying the nociceptor dysfunction, and highlight the importance of molecular investigation of U12 introns' mutations despite the silent prediction.
Collapse
Affiliation(s)
- Margherita Marchi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Ilaria D'Amato
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Mirna Andelic
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Daniele Cartelli
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Raffaella Lombardi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Evren Gumus
- Department of Medical Genetics, Faculty of Medicine, University of Harran, Sanliurfa, Turkey
| | - Giuseppe Lauria
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
29
|
Nishimura K, Yamazaki H, Zang W, Inoue D. Dysregulated minor intron splicing in cancer. Cancer Sci 2022; 113:2934-2942. [PMID: 35766428 PMCID: PMC9459249 DOI: 10.1111/cas.15476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Pre‐mRNA splicing is now widely recognized as a cotranscriptional and post‐transcriptional mechanism essential for regulating gene expression and modifying gene product function. Mutations in genes encoding core spliceosomal proteins and accessory regulatory splicing factors are now considered among the most recurrent genetic abnormalities in patients with cancer, particularly hematologic malignancies. These include mutations in the major (U2‐type) and minor (U12‐type) spliceosomes, which remove >99% and ~0.35% of introns, respectively. Growing evidence indicates that aberrant splicing of evolutionarily conserved U12‐type minor introns plays a crucial role in cancer as the minor spliceosome component, ZRSR2, is subject to recurrent, leukemia‐associated mutations, and intronic mutations have been shown to disrupt the splicing of minor introns. Here, we review the importance of minor intron regulation, the molecular effects of the minor (U12‐type) spliceosomal mutations and cis‐regulatory regions, and the development of minor intron studies for better understanding of cancer biology.
Collapse
Affiliation(s)
- Koutarou Nishimura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Hiromi Yamazaki
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Weijia Zang
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
30
|
Wang Y, Wang X, Yang C, Hua W, Wang H. m6A Regulator-Mediated RNA Methylation Modification Patterns are Involved in the Pathogenesis and Immune Microenvironment of Depression. Front Genet 2022; 13:865695. [PMID: 35480327 PMCID: PMC9035487 DOI: 10.3389/fgene.2022.865695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
Depression is a genetical disease characterized by neuroinflammatory symptoms and is difficult to diagnose and treat effectively. Recently, modification of N6-methyladenosine (m6A) at the gene level was shown to be closely related to immune regulation. This study was conducted to explore the effect of m6A modifications on the occurrence of depression and composition of the immune microenvironment. We downloaded gene expression profile data of healthy and depressed rats from the Gene Expression Omnibus. We described the overall expression of m6A regulators in animal models of depression and constructed risk and clinical prediction models using training and validation sets. Bioinformatics analysis was performed using gene ontology functions, gene set enrichment analysis, gene set variation analysis, weighted gene co-expression network analysis, and protein-protein interaction networks. We used CIBERSORT to identify immune-infiltrating cells in depression and perform correlation analysis. We then constructed two molecular subtypes of depression and assessed the correlation between the key genes and molecular subtypes. Through differential gene analysis of m6A regulators in depressed rats, we identified seven m6A regulators that were significantly upregulated in depressed rats and successfully constructed a clinical prediction model. Gene Ontology functional annotation showed that the m6A regulators enriched differentially expressed genes in biological processes, such as the regulation of mRNA metabolic processes. Further, 12 hub genes were selected from the protein-protein interaction network. Immune cell infiltration analysis showed that levels of inflammatory cells, such as CD4 T cells, were significantly increased in depressed rats and were significantly correlated with the depression hub genes. Depression was divided into two subtypes, and the correlation between hub genes and these two subtypes was clarified. We described the effect of m6A modification on the pathogenesis of depression, focusing on the role of inflammatory infiltration.
Collapse
Affiliation(s)
- Ye Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Xinyi Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
- Nankai University Affinity the Third Central Hospital, Tianjin, China
| | - Chenyi Yang
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
- Nankai University Affinity the Third Central Hospital, Tianjin, China
| | - Wei Hua
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
- Nankai University Affinity the Third Central Hospital, Tianjin, China
| | - Haiyun Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
- Nankai University Affinity the Third Central Hospital, Tianjin, China
- *Correspondence: Haiyun Wang,
| |
Collapse
|
31
|
Jacquier V, Prévot M, Gostan T, Bordonné R, Benkhelifa-Ziyyat S, Barkats M, Soret J. Splicing efficiency of minor introns in a mouse model of SMA predominantly depends on their branchpoint sequence and can involve the contribution of major spliceosome components. RNA (NEW YORK, N.Y.) 2022; 28:303-319. [PMID: 34893560 PMCID: PMC8848931 DOI: 10.1261/rna.078329.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Spinal muscular atrophy (SMA) is a devastating neurodegenerative disease caused by reduced amounts of the ubiquitously expressed Survival of Motor Neuron (SMN) protein. In agreement with its crucial role in the biogenesis of spliceosomal snRNPs, SMN-deficiency is correlated to numerous splicing alterations in patient cells and various tissues of SMA mouse models. Among the snRNPs whose assembly is impacted by SMN-deficiency, those involved in the minor spliceosome are particularly affected. Importantly, splicing of several, but not all U12-dependent introns has been shown to be affected in different SMA models. Here, we have investigated the molecular determinants of this differential splicing in spinal cords from SMA mice. We show that the branchpoint sequence (BPS) is a key element controlling splicing efficiency of minor introns. Unexpectedly, splicing of several minor introns with suboptimal BPS is not affected in SMA mice. Using in vitro splicing experiments and oligonucleotides targeting minor or major snRNAs, we show for the first time that splicing of these introns involves both the minor and major machineries. Our results strongly suggest that splicing of a subset of minor introns is not affected in SMA mice because components of the major spliceosome compensate for the loss of minor splicing activity.
Collapse
Affiliation(s)
- Valentin Jacquier
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier 34293, France
| | - Manon Prévot
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier 34293, France
| | - Thierry Gostan
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier 34293, France
| | - Rémy Bordonné
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier 34293, France
| | - Sofia Benkhelifa-Ziyyat
- Centre de Recherche en Myologie (CRM), Institut de Myologie, Sorbonne Universités, UPMC Univ Paris 06, Inserm UMRS974, GH Pitié Salpêtrière, Paris 75013, France
| | - Martine Barkats
- Centre de Recherche en Myologie (CRM), Institut de Myologie, Sorbonne Universités, UPMC Univ Paris 06, Inserm UMRS974, GH Pitié Salpêtrière, Paris 75013, France
| | - Johann Soret
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier 34293, France
| |
Collapse
|
32
|
Akin L, Rizzoti K, Gregory LC, Corredor B, Le Quesne Stabej P, Williams H, Buonocore F, Mouilleron S, Capra V, McGlacken-Byrne SM, Martos-Moreno GÁ, Azmanov DN, Kendirci M, Kurtoglu S, Suntharalingham JP, Galichet C, Gustincich S, Tasic V, Achermann JC, Accogli A, Filipovska A, Tuilpakov A, Maghnie M, Gucev Z, Gonen ZB, Pérez-Jurado LA, Robinson I, Lovell-Badge R, Argente J, Dattani MT. Pathogenic variants in RNPC3 are associated with hypopituitarism and primary ovarian insufficiency. Genet Med 2022; 24:384-397. [PMID: 34906446 PMCID: PMC7612377 DOI: 10.1016/j.gim.2021.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/15/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022] Open
Abstract
PURPOSE We aimed to investigate the molecular basis underlying a novel phenotype including hypopituitarism associated with primary ovarian insufficiency. METHODS We used next-generation sequencing to identify variants in all pedigrees. Expression of Rnpc3/RNPC3 was analyzed by in situ hybridization on murine/human embryonic sections. CRISPR/Cas9 was used to generate mice carrying the p.Leu483Phe pathogenic variant in the conserved murine Rnpc3 RRM2 domain. RESULTS We described 15 patients from 9 pedigrees with biallelic pathogenic variants in RNPC3, encoding a specific protein component of the minor spliceosome, which is associated with a hypopituitary phenotype, including severe growth hormone (GH) deficiency, hypoprolactinemia, variable thyrotropin (also known as thyroid-stimulating hormone) deficiency, and anterior pituitary hypoplasia. Primary ovarian insufficiency was diagnosed in 8 of 9 affected females, whereas males had normal gonadal function. In addition, 2 affected males displayed normal growth when off GH treatment despite severe biochemical GH deficiency. In both mouse and human embryos, Rnpc3/RNPC3 was expressed in the developing forebrain, including the hypothalamus and Rathke's pouch. Female Rnpc3 mutant mice displayed a reduction in pituitary GH content but with no reproductive impairment in young mice. Male mice exhibited no obvious phenotype. CONCLUSION Our findings suggest novel insights into the role of RNPC3 in female-specific gonadal function and emphasize a critical role for the minor spliceosome in pituitary and ovarian development and function.
Collapse
Affiliation(s)
- Leyla Akin
- Department of Paediatric Endocrinology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey; Department of Paediatric Endocrinology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Karine Rizzoti
- Stem Cell Biology and Developmental Genetics Lab, The Francis Crick Institute, London, United Kingdom
| | - Louise C Gregory
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Beatriz Corredor
- Departments of Paediatrics and Paediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Polona Le Quesne Stabej
- GOSgene, Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Hywel Williams
- Division of Cancer and Genetics, Genetics and Genomic Medicine, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Federica Buonocore
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Stephane Mouilleron
- Structural Biology Science Technology Platforms, The Francis Crick Institute, London, United Kingdom
| | - Valeria Capra
- Unit of Medical Genetics, IRCCS Giannina Gaslini Institute, Genova, Italy
| | - Sinead M McGlacken-Byrne
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Gabriel Á Martos-Moreno
- Departments of Paediatrics and Paediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain; Department of Paediatrics, Universidad Autónoma de Madrid, Madrid, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Dimitar N Azmanov
- Centre of Medical Research, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia; Department of Diagnostic Genomics, PathWest, QEII MedicalCentre, Perth, Western Australia, Australia
| | - Mustafa Kendirci
- Department of Paediatric Endocrinology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Selim Kurtoglu
- Department of Paediatric Endocrinology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Jenifer P Suntharalingham
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Christophe Galichet
- Stem Cell Biology and Developmental Genetics Lab, The Francis Crick Institute, London, United Kingdom
| | | | - Velibor Tasic
- University Children's Hospital, Medical School, Skopje, North Macedonia
| | - John C Achermann
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Andrea Accogli
- Division of Medical Genetics, Department of Specialized Medicine, Montreal Children's Hospital, McGill University Health Centre (MUHC), Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Aleksandra Filipovska
- Centre of Medical Research, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia; Telethon Kids Institute, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Anatoly Tuilpakov
- Department of Endocrine Genetics, Research Centre for Medical Genetics, Moscow, Russia; Department of Inherited Endocrine Disorders, Endocrinology Research Centre, Moscow, Russia
| | - Mohamad Maghnie
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; Department of Paediatrics, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Zoran Gucev
- University Children's Hospital, Medical School, Skopje, North Macedonia
| | - Zeynep Burcin Gonen
- Oral and Maxillofacial Surgery, Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Luis A Pérez-Jurado
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; South Australian Health and Medical Research Institute (SAHMRI), The University of Adelaide, Adelaide, South Australia, Australia
| | - Iain Robinson
- Stem Cell Biology and Developmental Genetics Lab, The Francis Crick Institute, London, United Kingdom
| | - Robin Lovell-Badge
- Stem Cell Biology and Developmental Genetics Lab, The Francis Crick Institute, London, United Kingdom
| | - Jesús Argente
- Departments of Paediatrics and Paediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain; Department of Paediatrics, Universidad Autónoma de Madrid, Madrid, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain; IMDEA Food Institute, Campus of International Excellence UAM+CSIC, Madrid, Spain
| | - Mehul T Dattani
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; South Australian Health and Medical Research Institute (SAHMRI), The University of Adelaide, Adelaide, South Australia, Australia; Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom.
| |
Collapse
|
33
|
Jutzi D, Ruepp MD. Alternative Splicing in Human Biology and Disease. Methods Mol Biol 2022; 2537:1-19. [PMID: 35895255 DOI: 10.1007/978-1-0716-2521-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alternative pre-mRNA splicing allows for the production of multiple mRNAs from an individual gene, which not only expands the protein-coding potential of the genome but also enables complex mechanisms for the post-transcriptional control of gene expression. Regulation of alternative splicing entails a combinatorial interplay between an abundance of trans-acting splicing factors, cis-acting regulatory sequence elements and their concerted effects on the core splicing machinery. Given the extent and biological significance of alternative splicing in humans, it is not surprising that aberrant splicing patterns can cause or contribute to a wide range of diseases. In this introductory chapter, we outline the mechanisms that govern alternative pre-mRNA splicing and its regulation and discuss how dysregulated splicing contributes to human diseases affecting the motor system and the brain.
Collapse
Affiliation(s)
- Daniel Jutzi
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK.
| | - Marc-David Ruepp
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK.
| |
Collapse
|
34
|
Montañés-Agudo P, Casini S, Aufiero S, Ernault AC, van der Made I, Pinto YM, Remme CA, Creemers EE. Inhibition of minor intron splicing reduces Na+ and Ca2+ channel expression and function in cardiomyocytes. J Cell Sci 2021; 135:273616. [PMID: 34859816 PMCID: PMC8767276 DOI: 10.1242/jcs.259191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/26/2021] [Indexed: 12/04/2022] Open
Abstract
Eukaryotic genomes contain a tiny subset of ‘minor class’ introns with unique sequence elements that require their own splicing machinery. These minor introns are present in certain gene families with specific functions, such as voltage-gated Na+ and voltage-gated Ca2+ channels. Removal of minor introns by the minor spliceosome has been proposed as a post-transcriptional regulatory layer, which remains unexplored in the heart. Here, we investigate whether the minor spliceosome regulates electrophysiological properties of cardiomyocytes by knocking down the essential minor spliceosome small nuclear snRNA component U6atac in neonatal rat ventricular myocytes. Loss of U6atac led to robust minor intron retention within Scn5a and Cacna1c, resulting in reduced protein levels of Nav1.5 and Cav1.2 channels. Functional consequences were studied through patch-clamp analysis, and revealed reduced Na+ and L-type Ca2+ currents after loss of U6atac. In conclusion, minor intron splicing modulates voltage-dependent ion channel expression and function in cardiomyocytes. This may be of particular relevance in situations in which minor splicing activity changes, such as in genetic diseases affecting minor spliceosome components, or in acquired diseases in which minor spliceosome components are dysregulated, such as heart failure. Summary: Knockdown of minor spliceosome component U6atac in cardiomyocytes reveals that expression of the Na+ channel Scn5a and the L-type Ca2+ channel Cacna1c critically depend on minor intron splicing.
Collapse
Affiliation(s)
- Pablo Montañés-Agudo
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Simona Casini
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Simona Aufiero
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands.,Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Auriane C Ernault
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Ingeborg van der Made
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Yigal M Pinto
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Carol Ann Remme
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Esther E Creemers
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Abstract
Herculean efforts by the Wellcome Sanger Institute, the National Cancer Institute, and the National Human Genome Research Institute to sequence thousands of tumors representing all major cancer types have yielded more than 700 genes that contribute to neoplastic growth when mutated, amplified, or deleted. While some of these genes (now included in the COSMIC Cancer Gene Census) encode proteins previously identified in hypothesis-driven experiments (oncogenic transcription factors, protein kinases, etc.), additional classes of cancer drivers have emerged, perhaps none more surprisingly than RNA-binding proteins (RBPs). Over 40 RBPs responsible for virtually all aspects of RNA metabolism, from synthesis to degradation, are recurrently mutated in cancer, and just over a dozen are considered major cancer drivers. This Review investigates whether and how their RNA-binding activities pertain to their oncogenic functions. Focusing on several well-characterized steps in RNA metabolism, we demonstrate that for virtually all cancer-driving RBPs, RNA processing activities are either abolished (the loss-of-function phenotype) or carried out with low fidelity (the LoFi phenotype). Conceptually, this suggests that in normal cells, RBPs act as gatekeepers maintaining proper RNA metabolism and the "balanced" proteome. From the practical standpoint, at least some LoFi phenotypes create therapeutic vulnerabilities, which are beginning to be exploited in the clinic.
Collapse
|
36
|
Kataoka N, Matsumoto E, Masaki S. Mechanistic Insights of Aberrant Splicing with Splicing Factor Mutations Found in Myelodysplastic Syndromes. Int J Mol Sci 2021; 22:ijms22157789. [PMID: 34360561 PMCID: PMC8346168 DOI: 10.3390/ijms22157789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Pre-mRNA splicing is an essential process for gene expression in higher eukaryotes, which requires a high order of accuracy. Mutations in splicing factors or regulatory elements in pre-mRNAs often result in many human diseases. Myelodysplastic syndrome (MDS) is a heterogeneous group of chronic myeloid neoplasms characterized by many symptoms and a high risk of progression to acute myeloid leukemia. Recent findings indicate that mutations in splicing factors represent a novel class of driver mutations in human cancers and affect about 50% of Myelodysplastic syndrome (MDS) patients. Somatic mutations in MDS patients are frequently found in genes SF3B1, SRSF2, U2AF1, and ZRSR2. Interestingly, they are involved in the recognition of 3' splice sites and exons. It has been reported that mutations in these splicing regulators result in aberrant splicing of many genes. In this review article, we first describe molecular mechanism of pre-mRNA splicing as an introduction and mainly focus on those four splicing factors to describe their mutations and their associated aberrant splicing patterns.
Collapse
Affiliation(s)
- Naoyuki Kataoka
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
- Correspondence: ; Tel.: +81-3-5841-5372; Fax: +81-3-5841-8014
| | - Eri Matsumoto
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
| | - So Masaki
- Laboratory of Molecular Medicinal Science, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan;
| |
Collapse
|
37
|
Bioinformatics Analysis of the Molecular Mechanism and Potential Treatment Target of Ankylosing Spondylitis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:7471291. [PMID: 34335866 PMCID: PMC8321739 DOI: 10.1155/2021/7471291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/05/2021] [Indexed: 02/08/2023]
Abstract
Ankylosing spondylitis (AS) is an autoimmune disease that mainly affects the spinal joints, sacroiliac joints, and adjacent soft tissues. We conducted bioinformatics analysis to explore the molecular mechanism related to AS pathogenesis and uncover novel potential molecular targets for the treatment of AS. The profiles of GSE25101, containing gene expression data extracted from the blood of 16 AS patients and 16 matched controls, were acquired from the Gene Expression Omnibus (GEO) database. The background correction and standardization were carried out utilizing the transcript per million (TPM) method. After analysis of AS patients and the normal groups, we identified 199 differentially expressed genes (DEGs) with upregulation and 121 DEGs with downregulation by the limma R package. The results of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) biological process enrichment analysis revealed that the DEGs with upregulation were mainly associated with spliceosome, ribosome, RNA-catabolic process, electron transport chain, etc. And the DEGs with downregulation primarily participated in T cell-associated pathways and processes. After analysis of the protein-protein interaction (PPI) network, our data revealed that the hub genes, comprising MRPL13, MRPL22, LSM3, COX7A2, COX7C, EP300, PTPRC, and CD4, could be the treatment targets in AS. Our data furnish new hints to uncover the features of AS and explore more promising treatment targets towards AS.
Collapse
|
38
|
Yang H, Beutler B, Zhang D. Emerging roles of spliceosome in cancer and immunity. Protein Cell 2021; 13:559-579. [PMID: 34196950 PMCID: PMC9232692 DOI: 10.1007/s13238-021-00856-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/08/2021] [Indexed: 12/19/2022] Open
Abstract
Precursor messenger RNA (pre-mRNA) splicing is catalyzed by an intricate ribonucleoprotein complex called the spliceosome. Although the spliceosome is considered to be general cell “housekeeping” machinery, mutations in core components of the spliceosome frequently correlate with cell- or tissue-specific phenotypes and diseases. In this review, we expound the links between spliceosome mutations, aberrant splicing, and human cancers. Remarkably, spliceosome-targeted therapies (STTs) have become efficient anti-cancer strategies for cancer patients with splicing defects. We also highlight the links between spliceosome and immune signaling. Recent studies have shown that some spliceosome gene mutations can result in immune dysregulation and notable phenotypes due to mis-splicing of immune-related genes. Furthermore, several core spliceosome components harbor splicing-independent immune functions within the cell, expanding the functional repertoire of these diverse proteins.
Collapse
Affiliation(s)
- Hui Yang
- Department of Neurosurgery, Huashan Hospital, Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
39
|
Xu M, Xie Y, Li Y, Shen L, Huang K, Lin Z, Li B, Xia C, Zhang X, Chi Y, Zhang B, Yang J. Proteomic Analysis of Histone Crotonylation Suggests Diverse Functions in Myzus persicae. ACS OMEGA 2021; 6:16391-16401. [PMID: 34235310 PMCID: PMC8246447 DOI: 10.1021/acsomega.1c01194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Myzus persicae is one of the most important economic pests of cultivated crops. In the present study, we used an integrated approach involving high-performance liquid chromatography fractionation, affinity enrichment, and mass spectrometry-based proteomics to carry out a comprehensive proteomic analysis of lysine crotonylation in M. persicae. Altogether, 7530 lysine crotonylation sites were identified in 2452 protein groups. Intensive bioinformatic analyses were then carried out to annotate those lysine crotonylated targets identified in terms of Gene Ontology annotation, domain annotation, subcellular localization, Kyoto Encyclopedia of Genes and Genomes pathway annotation, functional cluster analysis, etc. Analysis results showed that lysine-crotonylated proteins were involved in many biological processes, such as the amino acid metabolism, aminoacyl-tRNA biosynthesis, spliceosomes, ribosomes, and so forth. Notably, the interaction network showed that there were 199 crotonylated proteins involved in the amino acid metabolism and numerous crotonylation targets associated with fatty acid biosynthesis and degradation. The results provide a system-wide view of the entire M. persicae crotonylome and a rich data set for functional analysis of crotonylated proteins in this economically important pest, which marks an important beginning for the further research.
Collapse
Affiliation(s)
- Manlin Xu
- Tobacco
Research Institute of CAAS, Qingdao, Shandong 266101, China
- Shandong
Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Yi Xie
- Tobacco
Research Institute of CAAS, Qingdao, Shandong 266101, China
| | - Ying Li
- Tobacco
Research Institute of CAAS, Qingdao, Shandong 266101, China
| | - Lili Shen
- Tobacco
Research Institute of CAAS, Qingdao, Shandong 266101, China
| | - Kun Huang
- Tobacco
Company of Yunnan Province, Honghe Company, Mile, Yunnan 652300, China
| | - Zhonglong Lin
- China
Tobacco Corporation Yunnan Company, Kunming, Yunnan 650000, China
| | - Bin Li
- China
Tobacco Corporation Sichuan Company, Chengdu, Sichuan 610000, China
| | - Changjian Xia
- Haikou Cigar
Research Institute, Hainan Provincial Branch
of China National Tobacco Corporation (CNTC), Haikou, Hainan 570100, China
| | - Xia Zhang
- Shandong
Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Yucheng Chi
- Shandong
Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Bin Zhang
- Qingdao
Agricultural University, Qingdao, Shandong 266109, China
| | - Jinguang Yang
- Tobacco
Research Institute of CAAS, Qingdao, Shandong 266101, China
| |
Collapse
|
40
|
Minor Intron Splicing from Basic Science to Disease. Int J Mol Sci 2021; 22:ijms22116062. [PMID: 34199764 PMCID: PMC8199999 DOI: 10.3390/ijms22116062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/14/2023] Open
Abstract
Pre-mRNA splicing is an essential step in gene expression and is catalyzed by two machineries in eukaryotes: the major (U2 type) and minor (U12 type) spliceosomes. While the majority of introns in humans are U2 type, less than 0.4% are U12 type, also known as minor introns (mi-INTs), and require a specialized spliceosome composed of U11, U12, U4atac, U5, and U6atac snRNPs. The high evolutionary conservation and apparent splicing inefficiency of U12 introns have set them apart from their major counterparts and led to speculations on the purpose for their existence. However, recent studies challenged the simple concept of mi-INTs splicing inefficiency due to low abundance of their spliceosome and confirmed their regulatory role in alternative splicing, significantly impacting the expression of their host genes. Additionally, a growing list of minor spliceosome-associated diseases with tissue-specific pathologies affirmed the importance of minor splicing as a key regulatory pathway, which when deregulated could lead to tissue-specific pathologies due to specific alterations in the expression of some minor-intron-containing genes. Consequently, uncovering how mi-INTs splicing is regulated in a tissue-specific manner would allow for better understanding of disease pathogenesis and pave the way for novel therapies, which we highlight in this review.
Collapse
|
41
|
El Marabti E, Abdel-Wahab O. Therapeutic Modulation of RNA Splicing in Malignant and Non-Malignant Disease. Trends Mol Med 2021; 27:643-659. [PMID: 33994320 DOI: 10.1016/j.molmed.2021.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/24/2023]
Abstract
RNA splicing is the enzymatic process by which non-protein coding sequences are removed from RNA to produce mature protein-coding mRNA. Splicing is thereby a major mediator of proteome diversity as well as a dynamic regulator of gene expression. Genetic alterations disrupting splicing of individual genes or altering the function of splicing factors contribute to a wide range of human genetic diseases as well as cancer. These observations have resulted in the development of therapies based on oligonucleotides that bind to RNA sequences and modulate splicing for therapeutic benefit. In parallel, small molecules that bind to splicing factors to alter their function or modify RNA processing of individual transcripts are being pursued for monogenic disorders as well as for cancer.
Collapse
Affiliation(s)
- Ettaib El Marabti
- Clinical Transplant Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
42
|
Olthof AM, White AK, Mieruszynski S, Doggett K, Lee MF, Chakroun A, Abdel Aleem AK, Rousseau J, Magnani C, Roifman CM, Campeau PM, Heath JK, Kanadia RN. Disruption of exon-bridging interactions between the minor and major spliceosomes results in alternative splicing around minor introns. Nucleic Acids Res 2021; 49:3524-3545. [PMID: 33660780 PMCID: PMC8034651 DOI: 10.1093/nar/gkab118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Vertebrate genomes contain major (>99.5%) and minor (<0.5%) introns that are spliced by the major and minor spliceosomes, respectively. Major intron splicing follows the exon-definition model, whereby major spliceosome components first assemble across exons. However, since most genes with minor introns predominately consist of major introns, formation of exon-definition complexes in these genes would require interaction between the major and minor spliceosomes. Here, we report that minor spliceosome protein U11-59K binds to the major spliceosome U2AF complex, thereby supporting a model in which the minor spliceosome interacts with the major spliceosome across an exon to regulate the splicing of minor introns. Inhibition of minor spliceosome snRNAs and U11-59K disrupted exon-bridging interactions, leading to exon skipping by the major spliceosome. The resulting aberrant isoforms contained a premature stop codon, yet were not subjected to nonsense-mediated decay, but rather bound to polysomes. Importantly, we detected elevated levels of these alternatively spliced transcripts in individuals with minor spliceosome-related diseases such as Roifman syndrome, Lowry–Wood syndrome and early-onset cerebellar ataxia. In all, we report that the minor spliceosome informs splicing by the major spliceosome through exon-definition interactions and show that minor spliceosome inhibition results in aberrant alternative splicing in disease.
Collapse
Affiliation(s)
- Anouk M Olthof
- Physiology and Neurobiology Department, University of Connecticut, 75 N. Eagleville Road, Storrs, CT 06269, USA
| | - Alisa K White
- Physiology and Neurobiology Department, University of Connecticut, 75 N. Eagleville Road, Storrs, CT 06269, USA
| | - Stephen Mieruszynski
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Karen Doggett
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Madisen F Lee
- Physiology and Neurobiology Department, University of Connecticut, 75 N. Eagleville Road, Storrs, CT 06269, USA
| | | | | | - Justine Rousseau
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Cinzia Magnani
- Neonatology and Neonatal Intensive Care Unit, Maternal and Child Department, University of Parma, Parma, 43121, Italy
| | - Chaim M Roifman
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON M5G 1X8, Canada.,The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Philippe M Campeau
- Department of Pediatrics, University of Montreal, Montreal, QC H4A 3J1, Canada
| | - Joan K Heath
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Rahul N Kanadia
- Physiology and Neurobiology Department, University of Connecticut, 75 N. Eagleville Road, Storrs, CT 06269, USA.,Institute for System Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
43
|
Norppa AJ, Frilander MJ. The integrity of the U12 snRNA 3' stem-loop is necessary for its overall stability. Nucleic Acids Res 2021; 49:2835-2847. [PMID: 33577674 PMCID: PMC7968993 DOI: 10.1093/nar/gkab048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 01/14/2021] [Accepted: 02/07/2021] [Indexed: 12/20/2022] Open
Abstract
Disruption of minor spliceosome functions underlies several genetic diseases with mutations in the minor spliceosome-specific small nuclear RNAs (snRNAs) and proteins. Here, we define the molecular outcome of the U12 snRNA mutation (84C>U) resulting in an early-onset form of cerebellar ataxia. To understand the molecular consequences of the U12 snRNA mutation, we created cell lines harboring the 84C>T mutation in the U12 snRNA gene (RNU12). We show that the 84C>U mutation leads to accelerated decay of the snRNA, resulting in significantly reduced steady-state U12 snRNA levels. Additionally, the mutation leads to accumulation of 3′-truncated forms of U12 snRNA, which have undergone the cytoplasmic steps of snRNP biogenesis. Our data suggests that the 84C>U-mutant snRNA is targeted for decay following reimport into the nucleus, and that the U12 snRNA fragments are decay intermediates that result from the stalling of a 3′-to-5′ exonuclease. Finally, we show that several other single-nucleotide variants in the 3′ stem-loop of U12 snRNA that are segregating in the human population are also highly destabilizing. This suggests that the 3′ stem-loop is important for the overall stability of the U12 snRNA and that additional disease-causing mutations are likely to exist in this region.
Collapse
Affiliation(s)
- Antto J Norppa
- Institute of Biotechnology, P.O. Box 56, Viikinkaari 5, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mikko J Frilander
- Institute of Biotechnology, P.O. Box 56, Viikinkaari 5, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
44
|
Yamada M, Ono M, Ishii T, Suzuki H, Uehara T, Takenouchi T, Kosaki K. Establishing intellectual disability as the key feature of patients with biallelic RNPC3 variants. Am J Med Genet A 2021; 185:1836-1840. [PMID: 33650182 DOI: 10.1002/ajmg.a.62152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 01/14/2023]
Abstract
Some mammalian genes contain both major and minor introns, the splicing of which require distinctive major and minor spliceosomes, respectively; these genes are referred to as minor intron containing-genes. RNPC3 (RNA-binding domain-containing protein 3) is one of the proteins that are unique to the minor spliceosome U11/U12 di-snRNP. Only two families with biallelic pathogenic variants in the RNPC3 gene encoding the protein have been reported so far, and the affected members in both families had proportional short stature. While the affected members of the originally identified family did not have intellectual disability, the patients from the other family exhibited intellectual disability. Here, we report on a patient with severe primordial microcephalic dwarfism and intellectual disability who carried compound heterozygous variants in RNPC3 (NM_017619.3): c.261dup, p.Leu88Thrfs*11 and c.1228T>G, p.Phe410Val. The single nucleotide substitution c.1228T>G had a very high predictive score for pathogenicity: the p.Phe410 residue is highly conserved down to fish. Based on ACMG (American College of Medical Genetics and Genomics) guideline, this non-synonymous variant was scored as likely pathogenic. This documentation of yet another patient with biallelic RNPC3 variants exhibiting intellectual disability lends further support to the notion that intellectual disability is a key feature of the spectrum of RNPC3-related disorders.
Collapse
Affiliation(s)
- Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Masae Ono
- Department of Pediatrics, Tokyo Teishin Hospital, Tokyo, Japan
| | - Tomohiro Ishii
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan.,Department of Pediatrics, Central Hospital, Aichi Developmental Disability Center, Aichi, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
45
|
Camacho-Ordonez N, Ballestar E, Timmers HTM, Grimbacher B. What can clinical immunology learn from inborn errors of epigenetic regulators? J Allergy Clin Immunol 2021; 147:1602-1618. [PMID: 33609625 DOI: 10.1016/j.jaci.2021.01.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
The epigenome is at the interface between environmental factors and the genome, regulating gene transcription, DNA repair, and replication. Epigenetic modifications play a crucial role in establishing and maintaining cell identity and are especially crucial for neurology, musculoskeletal integrity, and the function of the immune system. Mutations in genes encoding for the components of the epigenetic machinery lead to the development of distinct disorders, especially involving the central nervous system and host defense. In this review, we focus on the role of epigenetic modifications for the function of the immune system. By studying the immune phenotype of patients with monogenic mutations in components of the epigenetic machinery (inborn errors of epigenetic regulators), we demonstrate the importance of DNA methylation, histone modifications, chromatin remodeling, noncoding RNAs, and mRNA processing for immunity. Moreover, we give a short overview on therapeutic strategies targeting the epigenome.
Collapse
Affiliation(s)
- Nadezhda Camacho-Ordonez
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Badalona, Barcelona, Spain
| | - H Th Marc Timmers
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Urology, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST- Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany.
| |
Collapse
|
46
|
Bai R, Wan R, Wang L, Xu K, Zhang Q, Lei J, Shi Y. Structure of the activated human minor spliceosome. Science 2021; 371:science.abg0879. [PMID: 33509932 DOI: 10.1126/science.abg0879] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/18/2021] [Indexed: 12/31/2022]
Abstract
The minor spliceosome mediates splicing of the rare but essential U12-type precursor messenger RNA. Here, we report the atomic features of the activated human minor spliceosome determined by cryo-electron microscopy at 2.9-angstrom resolution. The 5' splice site and branch point sequence of the U12-type intron are recognized by the U6atac and U12 small nuclear RNAs (snRNAs), respectively. Five newly identified proteins stabilize the conformation of the catalytic center: The zinc finger protein SCNM1 functionally mimics the SF3a complex of the major spliceosome, the RBM48-ARMC7 complex binds the γ-monomethyl phosphate cap at the 5' end of U6atac snRNA, the U-box protein PPIL2 coordinates loop I of U5 snRNA and stabilizes U5 small nuclear ribonucleoprotein (snRNP), and CRIPT stabilizes U12 snRNP. Our study provides a framework for the mechanistic understanding of the function of the human minor spliceosome.
Collapse
Affiliation(s)
- Rui Bai
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China
| | - Ruixue Wan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China
| | - Lin Wang
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kui Xu
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiangfeng Zhang
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
47
|
Chang WF, Peng M, Hsu J, Xu J, Cho HC, Hsieh-Li HM, Liu JL, Lu CH, Sung LY. Effects of Survival Motor Neuron Protein on Germ Cell Development in Mouse and Human. Int J Mol Sci 2021; 22:ijms22020661. [PMID: 33440839 PMCID: PMC7827477 DOI: 10.3390/ijms22020661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 11/24/2022] Open
Abstract
Survival motor neuron (SMN) is ubiquitously expressed in many cell types and its encoding gene, survival motor neuron 1 gene (SMN1), is highly conserved in various species. SMN is involved in the assembly of RNA spliceosomes, which are important for pre-mRNA splicing. A severe neurogenic disease, spinal muscular atrophy (SMA), is caused by the loss or mutation of SMN1 that specifically occurred in humans. We previously reported that SMN plays roles in stem cell biology in addition to its roles in neuron development. In this study, we investigated whether SMN can improve the propagation of spermatogonia stem cells (SSCs) and facilitate the spermatogenesis process. In in vitro culture, SSCs obtained from SMA model mice showed decreased growth rate accompanied by significantly reduced expression of spermatogonia marker promyelocytic leukemia zinc finger (PLZF) compared to those from heterozygous and wild-type littermates; whereas SMN overexpressed SSCs showed enhanced cell proliferation and improved potency. In vivo, the superior ability of homing and complete performance in differentiating progeny was shown in SMN overexpressed SSCs in host seminiferous tubule of transplant experiments compared to control groups. To gain insights into the roles of SMN in clinical infertility, we derived human induced pluripotent stem cells (hiPSCs) from azoospermia patients (AZ-hiPSCs) and from healthy control (ct-hiPSCs). Despite the otherwise comparable levels of hallmark iPCS markers, lower expression level of SMN1 was found in AZ-hiPSCs compared with control hiPSCs during in vitro primordial germ cell like cells (PGCLCs) differentiation. On the other hand, overexpressing hSMN1 in AZ-hiPSCs led to increased level of pluripotent markers such as OCT4 and KLF4 during PGCLC differentiation. Our work reveal novel roles of SMN in mammalian spermatogenesis and suggest new therapeutic targets for azoospermia treatment.
Collapse
Affiliation(s)
- Wei-Fang Chang
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (W.-F.C.); (M.P.); (J.H.)
| | - Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (W.-F.C.); (M.P.); (J.H.)
| | - Jing Hsu
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (W.-F.C.); (M.P.); (J.H.)
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA;
| | - Huan-Chieh Cho
- Animal Resource Center, National Taiwan University, Taipei 106, Taiwan;
| | - Hsiu-Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan;
| | - Ji-Long Liu
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK;
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chung-Hao Lu
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 105, Taiwan
- Correspondence: (C.-H.L.); (L.-Y.S.)
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (W.-F.C.); (M.P.); (J.H.)
- Animal Resource Center, National Taiwan University, Taipei 106, Taiwan;
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Correspondence: (C.-H.L.); (L.-Y.S.)
| |
Collapse
|
48
|
del Río-Moreno M, Luque RM, Rangel-Zúñiga OA, Alors-Pérez E, Alcalá-Diaz JF, Roncero-Ramos I, Camargo A, Gahete MD, López-Miranda J, Castaño JP. Dietary Intervention Modulates the Expression of Splicing Machinery in Cardiovascular Patients at High Risk of Type 2 Diabetes Development: From the CORDIOPREV Study. Nutrients 2020; 12:E3528. [PMID: 33212780 PMCID: PMC7696699 DOI: 10.3390/nu12113528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Type-2 diabetes mellitus (T2DM) has become a major health problem worldwide. T2DM risk can be reduced with healthy dietary interventions, but the precise molecular underpinnings behind this association are still incompletely understood. We recently discovered that the expression profile of the splicing machinery is associated with the risk of T2DM development. Thus, the aim of this work was to evaluate the influence of 3-year dietary intervention in the expression pattern of the splicing machinery components in peripheral blood mononuclear cells (PBMCs) from patients within the CORDIOPREV study. Expression of splicing machinery components was determined in PBMCs, at baseline and after 3 years of follow-up, from all patients who developed T2DM (Incident-T2DM, n = 107) and 108 randomly selected non-T2DM subjects, who were randomly enrolled in two healthy dietary patterns (Mediterranean or low-fat diets). Dietary intervention modulated the expression of key splicing machinery components (i.e., up-regulation of SPFQ/RMB45/RNU6, etc., down-regulation of RNU2/SRSF6) after three years, independently of the type of healthy diet. Some of these changes (SPFQ/RMB45/SRSF6) were associated with key clinical features and were differentially induced in Incident-T2DM patients and non-T2DM subjects. This study reveals that splicing machinery can be modulated by long-term dietary intervention, and could become a valuable tool to screen the progression of T2DM.
Collapse
Grants
- PIE14/00005 Instituto de Salud Carlos III
- PIE14/00031 Instituto de Salud Carlos III
- PI16/00264 Instituto de Salud Carlos III
- CP15/00156 Instituto de Salud Carlos III
- PI17/002287 Instituto de Salud Carlos III
- BFU2016-80360-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- TIN2017-83445-P Ministerio de Economía, Industria y Competitividad, Gobierno de España
- PI13/00023 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- AGL2012/39615 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- AGL2015-67896-P Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BIO-0139 Junta de Andalucía
- CTS-1406 Junta de Andalucía
- CTS-525 Junta de Andalucía
- PI-0541-2013 Junta de Andalucía
- CVI-7450 Junta de Andalucía
Collapse
Affiliation(s)
- Mercedes del Río-Moreno
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.d.R.-M.); (O.A.R.-Z.); (E.A.-P.); (J.F.A.-D.); (I.R.-R.); (A.C.)
- Department of Cell Biology, University of Córdoba, 14004 Córdoba, Spain
- Reina Sofia University Hospital, 14004 Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Córdoba, Spain
| | - Raúl M. Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.d.R.-M.); (O.A.R.-Z.); (E.A.-P.); (J.F.A.-D.); (I.R.-R.); (A.C.)
- Department of Cell Biology, University of Córdoba, 14004 Córdoba, Spain
- Reina Sofia University Hospital, 14004 Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Córdoba, Spain
| | - Oriol A. Rangel-Zúñiga
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.d.R.-M.); (O.A.R.-Z.); (E.A.-P.); (J.F.A.-D.); (I.R.-R.); (A.C.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Córdoba, Spain
- Lipid and Atherosclerosis Unit, Department of Medicine, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Emilia Alors-Pérez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.d.R.-M.); (O.A.R.-Z.); (E.A.-P.); (J.F.A.-D.); (I.R.-R.); (A.C.)
- Department of Cell Biology, University of Córdoba, 14004 Córdoba, Spain
- Reina Sofia University Hospital, 14004 Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Córdoba, Spain
| | - Juan F. Alcalá-Diaz
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.d.R.-M.); (O.A.R.-Z.); (E.A.-P.); (J.F.A.-D.); (I.R.-R.); (A.C.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Córdoba, Spain
- Lipid and Atherosclerosis Unit, Department of Medicine, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Irene Roncero-Ramos
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.d.R.-M.); (O.A.R.-Z.); (E.A.-P.); (J.F.A.-D.); (I.R.-R.); (A.C.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Córdoba, Spain
- Lipid and Atherosclerosis Unit, Department of Medicine, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Antonio Camargo
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.d.R.-M.); (O.A.R.-Z.); (E.A.-P.); (J.F.A.-D.); (I.R.-R.); (A.C.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Córdoba, Spain
- Lipid and Atherosclerosis Unit, Department of Medicine, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Manuel D. Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.d.R.-M.); (O.A.R.-Z.); (E.A.-P.); (J.F.A.-D.); (I.R.-R.); (A.C.)
- Department of Cell Biology, University of Córdoba, 14004 Córdoba, Spain
- Reina Sofia University Hospital, 14004 Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Córdoba, Spain
| | - José López-Miranda
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.d.R.-M.); (O.A.R.-Z.); (E.A.-P.); (J.F.A.-D.); (I.R.-R.); (A.C.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Córdoba, Spain
- Lipid and Atherosclerosis Unit, Department of Medicine, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Justo P. Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.d.R.-M.); (O.A.R.-Z.); (E.A.-P.); (J.F.A.-D.); (I.R.-R.); (A.C.)
- Department of Cell Biology, University of Córdoba, 14004 Córdoba, Spain
- Reina Sofia University Hospital, 14004 Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Córdoba, Spain
| |
Collapse
|
49
|
Defective minor spliceosomes induce SMA-associated phenotypes through sensitive intron-containing neural genes in Drosophila. Nat Commun 2020; 11:5608. [PMID: 33154379 PMCID: PMC7644725 DOI: 10.1038/s41467-020-19451-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 10/13/2020] [Indexed: 01/31/2023] Open
Abstract
The minor spliceosome is evolutionarily conserved in higher eukaryotes, but its biological significance remains poorly understood. Here, by precise CRISPR/Cas9-mediated disruption of the U12 and U6atac snRNAs, we report that a defective minor spliceosome is responsible for spinal muscular atrophy (SMA) associated phenotypes in Drosophila. Using a newly developed bioinformatic approach, we identified a large set of minor spliceosome-sensitive splicing events and demonstrate that three sensitive intron-containing neural genes, Pcyt2, Zmynd10, and Fas3, directly contribute to disease development as evidenced by the ability of their cDNAs to rescue the SMA-associated phenotypes in muscle development, neuromuscular junctions, and locomotion. Interestingly, many splice sites in sensitive introns are recognizable by both minor and major spliceosomes, suggesting a new mechanism of splicing regulation through competition between minor and major spliceosomes. These findings reveal a vital contribution of the minor spliceosome to SMA and to regulated splicing in animals.
Collapse
|
50
|
Hautin M, Mornet C, Chauveau A, Bernard DG, Corcos L, Lippert E. Splicing Anomalies in Myeloproliferative Neoplasms: Paving the Way for New Therapeutic Venues. Cancers (Basel) 2020; 12:E2216. [PMID: 32784800 PMCID: PMC7464941 DOI: 10.3390/cancers12082216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Since the discovery of spliceosome mutations in myeloid malignancies, abnormal pre-mRNA splicing, which has been well studied in various cancers, has attracted novel interest in hematology. However, despite the common occurrence of spliceosome mutations in myelo-proliferative neoplasms (MPN), not much is known regarding the characterization and mechanisms of splicing anomalies in MPN. In this article, we review the current scientific literature regarding "splicing and myeloproliferative neoplasms". We first analyse the clinical series reporting spliceosome mutations in MPN and their clinical correlates. We then present the current knowledge about molecular mechanisms by which these mutations participate in the pathogenesis of MPN or other myeloid malignancies. Beside spliceosome mutations, splicing anomalies have been described in myeloproliferative neoplasms, as well as in acute myeloid leukemias, a dreadful complication of these chronic diseases. Based on splicing anomalies reported in chronic myelogenous leukemia as well as in acute leukemia, and the mechanisms presiding splicing deregulation, we propose that abnormal splicing plays a major role in the evolution of myeloproliferative neoplasms and may be the target of specific therapeutic strategies.
Collapse
Affiliation(s)
- Marie Hautin
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200 Brest, France; (M.H.); (A.C.); (D.G.B.); (L.C.)
| | - Clélia Mornet
- Laboratoire d’Hématologie, CHU de Brest, F-29200 Brest, France;
| | - Aurélie Chauveau
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200 Brest, France; (M.H.); (A.C.); (D.G.B.); (L.C.)
- Laboratoire d’Hématologie, CHU de Brest, F-29200 Brest, France;
| | - Delphine G. Bernard
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200 Brest, France; (M.H.); (A.C.); (D.G.B.); (L.C.)
| | - Laurent Corcos
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200 Brest, France; (M.H.); (A.C.); (D.G.B.); (L.C.)
| | - Eric Lippert
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200 Brest, France; (M.H.); (A.C.); (D.G.B.); (L.C.)
- Laboratoire d’Hématologie, CHU de Brest, F-29200 Brest, France;
| |
Collapse
|