1
|
Liu X, Peng H, Ye X, Zhang X, Xu G, Zhao X. A Versatile Colorimetric Diagnostic Platform Based on Primer Exchange Reaction Cascades Driven Loop-Mediated Isothermal Amplification. Anal Chem 2025; 97:9000-9007. [PMID: 40234204 DOI: 10.1021/acs.analchem.5c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The primer exchange reaction (PER), as a well-established and sophisticated isothermal nucleic acid amplification strategy, has been extensively employed to amplify various genetic biomarkers. However, the amplification efficiency of conventional PER is generally unsatisfactory due to its linear signal-amplifying mechanism. In this study, we developed a versatile colorimetric platform by rationally integrating Primer exchange reaction with efficient Loop-mediated isothermal amplification (LAMP), termed vcPeLa, for the rapid and sensitive detection of cancer-related biomarkers, such as microRNAs (miRNAs) and carcinoembryonic antigen (CEA). The PER cascade in the vcPeLa can be directly initiated by the target, resulting in the production of long single-stranded DNA products with repeated functional sections. These repeats in the product can serve as the template to produce a significant number of double stem-loop DNAs with the cooperation of DNA polymerase and hairpin structure primer probes. These DNAs are the primary starting materials for subsequent LAMP. A substantial quantity of pyrophosphate can be recognized by Cu2+-chelated pp Probe (pyrophosphate sensing probe). The Cu2+ is removed from the Cu2+-chelated pp Probe as a result of the formation of a complex between Cu2+ and pyrophosphate, which results in color changes. Consequently, the vcPeLa platform is feasible to detect 0.31 fM miRNA and 0.043 ng/mL CEA with high selectivity and stability without the requirement of introducing any additional reaction steps or sample transfer operations in comparison to conventional assays. Therefore, this facile and ultrasensitive vcPeLa platform provides a new promising tool for cancer diagnosis and biomarker screening.
Collapse
Affiliation(s)
- Xiaoya Liu
- Department of Oncology, Laboratory of Immunity, Inflammation & Cancer, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hai Peng
- Central Laboratory, Chongqing University FuLing Hospital, Chongqing 408099, China
| | - Xiaoping Ye
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiang Zhang
- Department of Oncology, Laboratory of Immunity, Inflammation & Cancer, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ge Xu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xianxian Zhao
- Department of Oncology, Laboratory of Immunity, Inflammation & Cancer, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Central Laboratory, Chongqing University FuLing Hospital, Chongqing 408099, China
| |
Collapse
|
2
|
Reikvam H, Hatfield K, Sandnes M, Bruserud Ø. Future biomarkers for acute graft-versus-host disease: potential roles of nucleic acids, metabolites, and immune cell markers. Expert Rev Clin Immunol 2025; 21:305-321. [PMID: 39670445 DOI: 10.1080/1744666x.2024.2441246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/04/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Acute graft versus host disease (aGVHD) is a potentially lethal complication after allogeneic stem cell transplantation. Biomarkers are used to estimate the risk of aGVHD and evaluate response to treatment. The most widely used biomarkers are systemic levels of various protein mediators involved in immunoregulation or reflecting tissue damage. However, systemic levels of other molecular markers such as nucleic acids or metabolites, levels of immunocompetent cells or endothelial cell markers may also be useful biomarkers in aGVHD. AREAS COVERED This review is based on selected articles from the PubMed database. We review and discuss the scientific basis for further studies to evaluate nucleic acids, metabolites, circulating immunocompetent cell subsets or endothelial markers as biomarkers in aGVHD. EXPERT OPINION A wide range of interacting and communicating cells are involved in the complex pathogenesis of aGVHD. Both nucleic acids and metabolites function as soluble mediators involved in communication between various subsets of immunocompetent cells and between immunocompetent cells and other neighboring cells. Clinical and experimental studies suggest that both neutrophils, monocytes, and endothelial cells are involved in the early stages of aGVHD pathogenesis. In our opinion, the possible clinical use of these molecular and cellular biomarkers warrants further investigation.
Collapse
Affiliation(s)
- Håkon Reikvam
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Division for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kimberley Hatfield
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Miriam Sandnes
- Division for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Vaxevanis C, Bachmann M, Seliger B. Immune modulatory microRNAs in tumors, their clinical relevance in diagnosis and therapy. J Immunother Cancer 2024; 12:e009774. [PMID: 39209767 PMCID: PMC11367391 DOI: 10.1136/jitc-2024-009774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
The importance of the immune system in regulating tumor growth by inducing immune cell-mediated cytotoxicity associated with patients' outcomes has been highlighted in the past years by an increasing life expectancy in patients with cancer on treatment with different immunotherapeutics. However, tumors often escape immune surveillance, which is accomplished by different mechanisms. Recent studies demonstrated an essential role of small non-coding RNAs, such as microRNAs (miRNAs), in the post-transcriptional control of immune modulatory molecules. Multiple methods have been used to identify miRNAs targeting genes involved in escaping immune recognition including miRNAs targeting CTLA-4, PD-L1, HLA-G, components of the major histocompatibility class I antigen processing machinery (APM) as well as other immune response-relevant genes in tumors. Due to their function, these immune modulatory miRNAs can be used as (1) diagnostic and prognostic biomarkers allowing to discriminate between tumor stages and to predict the patients' outcome as well as response and resistance to (immuno) therapies and as (2) therapeutic targets for the treatment of tumor patients. This review summarizes the role of miRNAs in tumor-mediated immune escape, discuss their potential as diagnostic, prognostic and predictive tools as well as their use as therapeutics including alternative application methods, such as chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Christoforos Vaxevanis
- Institute for Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Institute of Translational Immunology, Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
| |
Collapse
|
4
|
Sabbaghian M, Gheitasi H, Fadaee M, Javadi Henafard H, Tavakoli A, Shekarchi AA, Poortahmasebi V. Human cytomegalovirus microRNAs: strategies for immune evasion and viral latency. Arch Virol 2024; 169:157. [PMID: 38969819 DOI: 10.1007/s00705-024-06080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/17/2024] [Indexed: 07/07/2024]
Abstract
Viruses use various strategies and mechanisms to deal with cells and proteins of the immune system that form a barrier against infection. One of these mechanisms is the encoding and production of viral microRNAs (miRNAs), whose function is to regulate the gene expression of the host cell and the virus, thus creating a suitable environment for survival and spreading viral infection. miRNAs are short, single-stranded, non-coding RNA molecules that can regulate the expression of host and viral proteins, and due to their non-immunogenic nature, they are not eliminated by the cells of the immune system. More than half of the viral miRNAs are encoded and produced by Orthoherpesviridae family members. Human cytomegalovirus (HCMV) produces miRNAs that mediate various processes in infected cells to contribute to HCMV pathogenicity, including immune escape, viral latency, and cell apoptosis. Here, we discuss which cellular and viral proteins or cellular pathways and processes these mysterious molecules target to evade immunity and support viral latency in infected cells. We also discuss current evidence that their function of bypassing the host's innate and adaptive immune system is essential for the survival and multiplication of the virus and the spread of HCMV infection.
Collapse
Affiliation(s)
- Mohammad Sabbaghian
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Gheitasi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | | | - Ahmad Tavakoli
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Alshahrani SH, Al-Hadeithi ZSM, Almalki SG, Malviya J, Hjazi A, Mustafa YF, Alawady AHR, Alsaalamy AH, Joshi SK, Alkhafaji AT. LncRNA-miRNA interaction is involved in colorectal cancer pathogenesis by modulating diverse signaling pathways. Pathol Res Pract 2023; 251:154898. [PMID: 37924797 DOI: 10.1016/j.prp.2023.154898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 11/06/2023]
Abstract
LncRNAs function as molecular sponges for miRNAs to control their availability for targeting mRNA molecules. This procedure indirectly regulates the expression of cancer-related genes. Some lncRNAs also directly interact with miRNAs, leading to their degradation or sequestration, which can negatively impact gene expression. miRNAs, on the other hand, play a critical role in controlling the expression of genes, including oncogenes and tumor suppressor genes. Multiple types of cancer have been linked to the onset and progression of miRNA dysregulation. Even though there is a lot of potential for treating CRC by targeting the LncRNA-miRNA axis, several challenges remain to be overcome. The specificity of the targeting approach, delivery methods, resistance, safety, and cost-effectiveness are critical research areas that must be addressed to advance this field and improve treatment outcomes for people with CRC.
Collapse
Affiliation(s)
| | | | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia.
| | - Jitendra Malviya
- Department of Life Sciences and Biological Sciences, IES University Bhopal, Madhya Pradesh, India
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Ahmed Hussien Radie Alawady
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Ali Hashiem Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - S K Joshi
- Mechanical Engineering Department, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | | |
Collapse
|
6
|
Mastoridis S, Patel V, Christakoudi S, Lozano JJ, Salehi S, Kurt A, Grossart C, Kodela E, Martinez-Llordella M, Sanchez-Fueyo A. Impact of liver failure on the circulating extracellular vesicle miRNA repertoire. Hepatol Res 2023; 53:771-785. [PMID: 37060575 DOI: 10.1111/hepr.13909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/19/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND & AIMS Cell-derived small extracellular vesicles (sEVs) participate in cell-cell communication via the transfer of molecular cargo including selectively enriched microRNAs (miRNAs). Utilizing advances in sEV isolation and characterization, this study investigates the impact of liver injury and dysfunction on the circulating EV-miRNA profile. METHODS High-throughput screening of 799 sEV-miRNAs isolated from plasma was performed in patients across a spectrum of liver disorders including compensated and decompensated chronic liver disease, acute-on-chronic liver failure (ACLF), and acute liver failure, in addition to healthy controls and those with severe sepsis. miRNA levels were compared with clinical and biochemical parameters, composite scores of liver disease, and patient outcomes. RESULTS miRNA screening revealed the degree of hepatic dysfunction to be the main determinant of changes in circulating sEV-miRNA profile, with liver-specific miRNA-122 being among the most highly dysregulated in severe injury. Principal components analyses of the 215 differentially expressed miRNAs showed differing profiles, particularly among those with acute liver injury and ACLF. A distinct profile of dysregulated miRNA, but not circulating cytokines, was shown to characterize ACLF, with four consensus miRNAs identified-miR-320e, miR-374-5p, miR-202-3p, and miR-1910-5p. High miR-320e was associated with poorer 90-day survival (p = 0.014) and regulated the functional gene targets IK, RPS5, MANBAL, and PEBP1. CONCLUSIONS This first comprehensive analysis to the best of our knowledge of patients with varying degrees and stages of liver failure demonstrates miRNA profiles specifically within the sEV compartment to be significantly altered in progressive liver disease and highlights the diagnostic and prognostic potential of sEV-miRNA in ACLF while also establishing downstream gene targets.
Collapse
Affiliation(s)
- Sotiris Mastoridis
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Vishal Patel
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
- The Roger Williams Institute of Hepatology (Foundation for Liver Research), London, UK
| | - Sofia Christakoudi
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Juan Jose Lozano
- Bioinformatic Platform, Biomedical Research Centre in Hepatic and Digestive Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Siamak Salehi
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Ada Kurt
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Cathleen Grossart
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Elisavet Kodela
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
| | - Marc Martinez-Llordella
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Alberto Sanchez-Fueyo
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
7
|
Salvati E, Lewinska A, Dassi E, Wnuk M, D’Agostino VG. Editorial: RNA recognition landscapes and anticancer drug targeting. Front Oncol 2023; 13:1222883. [PMID: 37404766 PMCID: PMC10315894 DOI: 10.3389/fonc.2023.1222883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Affiliation(s)
- Erica Salvati
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Anna Lewinska
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Maciej Wnuk
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Vito G. D’Agostino
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
8
|
Sharma T, Nisar S, Masoodi T, Macha MA, Uddin S, Akil AAS, Pandita TK, Singh M, Bhat AA. Current and emerging biomarkers in ovarian cancer diagnosis; CA125 and beyond. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:85-114. [PMID: 36707207 DOI: 10.1016/bs.apcsb.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ovarian cancer (OC) is one of the most common causes of cancer-related death in women worldwide. Its five-year survival rates are worse than the two most common gynecological cancers, cervical and endometrial. This is because it is asymptomatic in the early stages and usually detected in the advanced metastasized stage. Thus, survival is increasingly dependent on timely diagnosis. The delay in detection is contributed partly by the occurrence of non-specific clinical symptoms in the early stages and the lack of effective biomarkers and detection approaches. This underlines the need for biomarker identification and clinical validation, enabling earlier diagnosis, effective prognosis, and response to therapy. Apart from the traditional diagnostic biomarkers for OC, several new biomarkers have been delineated using advanced high-throughput molecular approaches in recent years. They are currently being clinically evaluated for their true diagnostic potential. In this chapter, we document the commonly utilized traditional screening markers and recently identified emerging biomarkers in OC diagnosis, focusing on secretory and protein biomarkers. We also briefly reviewed the recent advances and prospects in OC diagnosis.
Collapse
Affiliation(s)
- Tarang Sharma
- Department of Medical Oncology, Dr. B.R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Sabah Nisar
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Tariq Masoodi
- Laboratory of Cancer immunology and genetics, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Jammu and Kashmir, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Ammira Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Tej K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX, United States
| | - Mayank Singh
- Department of Medical Oncology, Dr. B.R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
9
|
Affiliation(s)
- Afsar Raza Naqvi
- College of Dentistry, University of Illinois, 801 S. Paulina St., Chicago, IL 60612, United States.
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida 201313, Uttar Pradesh, India.
| |
Collapse
|
10
|
Rebmann V, Schwich E, Michita RT, Grüntkemeier L, Bittner AK, Rohn H, Horn PA, Hoffmann O, Kimmig R, Kasimir-Bauer S. Systematic Evaluation of HLA-G 3'Untranslated Region Variants in Locally Advanced, Non-Metastatic Breast Cancer Patients: UTR-1, 2 or UTR-4 are Predictors for Therapy and Disease Outcome. Front Immunol 2022; 12:817132. [PMID: 35095919 PMCID: PMC8790528 DOI: 10.3389/fimmu.2021.817132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Despite major improvements in diagnostics and therapy in early as well as in locally advanced breast cancer (LABC), metastatic relapse occurs in about 20% of patients, often explained by early micro-metastatic spread into bone marrow by disseminated tumor cells (DTC). Although neoadjuvant chemotherapy (NACT) has been a successful tool to improve overall survival (OS), there is growing evidence that various environmental factors like the non-classical human leukocyte antigen-G (HLA-G) promotes cancer invasiveness and metastatic progression. HLA-G expression is associated with regulatory elements targeting certain single-nucleotide polymorphisms (SNP) in the HLA-G 3’ untranslated region (UTR), which arrange as haplotypes. Here, we systematically evaluated the impact of HLA-G 3’UTR polymorphisms on disease status, on the presence of DTC, on soluble HLA-G levels, and on therapy and disease outcome in non-metastatic LABC patients. Although haplotype frequencies were similar in patients (n = 142) and controls (n = 204), univariate analysis revealed that the UTR-7 haplotype was related to patients with low tumor burden, whereas UTR-4 was associated with tumor sizes >T1. Furthermore, UTR-4 was associated with the presence of DTC, but UTR-3 and UTR-7 were related to absence of DTC. Additionally, increased levels of soluble HLA-G molecules were found in patients carrying UTR-7. Regarding therapy and disease outcome, univariate and multivariate analysis highlighted UTR-1 or UTR-2 as a prognostic parameter indicative for a beneficial course of disease in terms of complete response towards NACT or progression-free survival (PFS). At variance, UTR-4 was an independent risk factor for a reduced OS besides already known parameters. Taken into account the most common HLA-G 3’UTR haplotypes (UTR-1–UTR-7, UTR-18), deduction of the UTR-1/2/4 haplotypes to specific SNPs revealed that the +3003C variant, unique for UTR-4, seemed to favor a detrimental disease outcome, while the +3187G and +3196G variants, unique for UTR-1 or UTR-2, were prognostic parameters for a beneficial course of disease. In conclusion, these data suggest that the HLA-G 3’UTR variants +3003C, +3187G, and +3196G are promising candidates for the prediction of therapy and disease outcome in LABC patients.
Collapse
Affiliation(s)
- Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Esther Schwich
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Rafael Tomoya Michita
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Medicine, Baylor College of Medicine (BCMC), Houston, TX, United States
| | - Lisa Grüntkemeier
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ann-Kathrin Bittner
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hana Rohn
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Oliver Hoffmann
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
11
|
Regulation of Immune Cells by microRNAs and microRNA-Based Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1385:75-108. [DOI: 10.1007/978-3-031-08356-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Chauhan R, Bhat AA, Masoodi T, Bagga P, Reddy R, Gupta A, Sheikh ZA, Macha MA, Haris M, Singh M. Ubiquitin-specific peptidase 37: an important cog in the oncogenic machinery of cancerous cells. J Exp Clin Cancer Res 2021; 40:356. [PMID: 34758854 PMCID: PMC8579576 DOI: 10.1186/s13046-021-02163-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
Protein ubiquitination is one of the most crucial posttranslational modifications responsible for regulating the stability and activity of proteins involved in homeostatic cellular function. Inconsistencies in the ubiquitination process may lead to tumorigenesis. Ubiquitin-specific peptidases are attractive therapeutic targets in different cancers and are being evaluated for clinical development. Ubiquitin-specific peptidase 37 (USP37) is one of the least studied members of the USP family. USP37 controls numerous aspects of oncogenesis, including stabilizing many different oncoproteins. Recent work highlights the role of USP37 in stimulating the epithelial-mesenchymal transition and metastasis in lung and breast cancer by stabilizing SNAI1 and stimulating the sonic hedgehog pathway, respectively. Several aspects of USP37 biology in cancer cells are yet unclear and are an active area of research. This review emphasizes the importance of USP37 in cancer and how identifying its molecular targets and signalling networks in various cancer types can help advance cancer therapeutics.
Collapse
Affiliation(s)
- Ravi Chauhan
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Tariq Masoodi
- Department of Genomic Medicine, Genetikode, Mumbai, India
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Ashna Gupta
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Zahoor Ahmad Sheikh
- Department of Surgical Oncology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, India
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| | - Mayank Singh
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
13
|
Ahmad A. Epigenetic regulation of immunosuppressive tumor-associated macrophages through dysregulated microRNAs. Semin Cell Dev Biol 2021; 124:26-33. [PMID: 34556420 DOI: 10.1016/j.semcdb.2021.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/02/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023]
Abstract
Macrophages are immune cells that play different roles under different physiological conditions. They are present in all tissues where they primarily protect from bacteria and pathogens in addition to assisting in tissue repair. During tumor progression, macrophages can exert contrasting effects based on the M1 vs. M2 polarization. The M2 macrophages support tumor growth through mechanisms that help suppress immune responses and/or circumvent immune-surveillance. A number of such mechanisms such as production of IL-10 and arginase, and expression of PD-L1, V-domain Ig suppressor of T cell activation and B7 family molecule B7-H4 are now believed central to the immunosuppressive effects of tumor-associated macrophages (TAMs). Emerging data has identified epigenetic regulation of these immunosuppressive mechanisms by small non-coding RNAs, the microRNAs (miRNAs). This review discusses the available literature on the subject, including the exosomes mediated transfer of miRNAs between cancer cells and the macrophages within the tumor microenvironment. A number of miRNAs are now believed to be involved in TAMs' production of IL-10 and expression of PD-L1 while the information on such regulation of other immunosuppressive mechanisms is slowly emerging. A better understanding of epigenetic regulation of macrophages-mediated immunosuppressive effect can help identify novel targets for therapy and aid the design of future studies aimed at sensitizing tumors to immune responses.
Collapse
Affiliation(s)
- Aamir Ahmad
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|