1
|
Liu X, Yuan M, Zhao D, Zeng Q, Li W, Li T, Li Q, Zhuo Y, Luo M, Chen P, Wang L, Feng W, Zhou Z. Single-Nucleus Transcriptomic Atlas of Human Pericoronary Epicardial Adipose Tissue in Normal and Pathological Conditions. Arterioscler Thromb Vasc Biol 2024; 44:1628-1645. [PMID: 38813696 PMCID: PMC11208064 DOI: 10.1161/atvbaha.124.320923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Pericoronary epicardial adipose tissue (EAT) is a unique visceral fat depot that surrounds the adventitia of the coronary arteries without any anatomic barrier. Clinical studies have demonstrated the association between EAT volume and increased risks for coronary artery disease (CAD). However, the cellular and molecular mechanisms underlying the association remain elusive. METHODS We performed single-nucleus RNA sequencing on pericoronary EAT samples collected from 3 groups of subjects: patients undergoing coronary bypass surgery for severe CAD (n=8), patients with CAD with concomitant type 2 diabetes (n=8), and patients with valvular diseases but without concomitant CAD and type 2 diabetes as the control group (n=8). Comparative analyses were performed among groups, including cellular compositional analysis, cell type-resolved transcriptomic changes, gene coexpression network analysis, and intercellular communication analysis. Immunofluorescence staining was performed to confirm the presence of CAD-associated subclusters. RESULTS Unsupervised clustering of 73 386 nuclei identified 15 clusters, encompassing all known cell types in the adipose tissue. Distinct subpopulations were identified within primary cell types, including adipocytes, adipose stem and progenitor cells, and macrophages. CD83high macrophages and FOSBhigh adipocytes were significantly expanded in CAD. In comparison to normal controls, both disease groups exhibited dysregulated pathways and altered secretome in the primary cell types. Nevertheless, minimal differences were noted between the disease groups in terms of cellular composition and transcriptome. In addition, our data highlight a potential interplay between dysregulated circadian clock and altered physiological functions in adipocytes of pericoronary EAT. ANXA1 (annexin A1) and SEMA3B (semaphorin 3B) were identified as important adipokines potentially involved in functional changes of pericoronary EAT and CAD pathogenesis. CONCLUSIONS We built a complete single-nucleus transcriptomic atlas of human pericoronary EAT in normal and diseased conditions of CAD. Our study lays the foundation for developing novel therapeutic strategies for treating CAD by targeting and modifying pericoronary EAT functions.
Collapse
Affiliation(s)
- Xuanyu Liu
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| | - Meng Yuan
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| | - Danni Zhao
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| | - Qingyi Zeng
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| | - Wenke Li
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| | - Tianjiao Li
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| | - Qi Li
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Department of Cardiac Surgery (Q.L., P.C., L.W., W.F.), Fuwai Hospital, Beijing, China
| | - Yue Zhuo
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Center of Vascular Surgery (Y.Z., M.L.), Fuwai Hospital, Beijing, China
| | - Mingyao Luo
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Center of Vascular Surgery (Y.Z., M.L.), Fuwai Hospital, Beijing, China
- Department of Vascular Surgery, Central-China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, China (M.L.)
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, China (M.L.)
| | - Pengfei Chen
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Department of Cardiac Surgery (Q.L., P.C., L.W., W.F.), Fuwai Hospital, Beijing, China
| | - Liqing Wang
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Department of Cardiac Surgery (Q.L., P.C., L.W., W.F.), Fuwai Hospital, Beijing, China
| | - Wei Feng
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Department of Cardiac Surgery (Q.L., P.C., L.W., W.F.), Fuwai Hospital, Beijing, China
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| |
Collapse
|
3
|
Zhang K, Liu Y, Zhao Y, Guo Q, An S, Wu S. Oxymatrine blocks the NLRP3 inflammasome pathway, partly downregulating the inflammatory responses of M1 macrophages differentiated from THP-1 monocytes. Biochem Biophys Rep 2023; 34:101482. [PMID: 37215292 PMCID: PMC10196785 DOI: 10.1016/j.bbrep.2023.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Many chronic inflammatory diseases, such as autoimmune inflammation, are associated with M1 macrophages, and the key to their treatment is blocking inflammation. Oxymatrine (OMT), a traditional Chinese medicine, has a marked anti-inflammatory effect. However, its anti-inflammatory target and mechanism in M1 cells remain unclear, which limits its clinical application. In this study, we investigated the anti-inflammatory effects of oxymatrine (OMT) on the M1 inflammatory response. We also determined the relationship between OMT treatment and the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) pathway with OMT treatment. To this end, we induced the differentiation of human peripheral blood monocytes (THP-1) into M1 cells. THP-1 cells were induced with a phorbol ester (phorbol-12-myristate-13-acetate (PMA)) and differentiated into naïve M0 macrophages. M0 cells were induced into M1 cells using lipopolysaccharide (LPS). The experimental groups were divided into the M0 macrophage group (NC), M1 inflammatory response group (LPS group), and M1 group treated with different concentrations of OMT (LPS + OMT-L, LPS + OMT-M, LPS + OMT-H). The cells in the OMT-treated groups were treated with OMT for 6 h, followed by LPS for 24 h, and the LPS group was treated with LPS only. The resulting supernatants and cells were collected. The secretion levels of NO were detected by the Griess method and the secretion levels of TNF-α and IL-1β in the supernatants were detected by the ELISA method. The secretion levels of these inflammatory factors were reduced in every OMT-treated group compared to the LPS group (P < 0.01), and the most significant reductions were found in the OMT-H group (P < 0.0001). By western blotting, the protein expression levels of TLR4, NF-κB, NLRP3, and Caspase-1 were all found to be downregulated in the cells of OMT-treated groups compared to the LPS group (P < 0.0001). In situ changes in NLRP3 expression were observed using immunofluorescence. The fluorescence intensity of NLRP3 in M1 cells was weaker in all OMT intervention groups than in the LPS group (P < 0.001). In conclusion, OMT has significant anti-inflammatory effects on the M1 inflammatory responses, and the TLR4/NF-κB/NLRP3 pathway was blocked proportional to the concentration of OMT.
Collapse
Affiliation(s)
- Ke Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Youyang Liu
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Yunlu Zhao
- Department of Cardiovascular Diseases, Shinnshu University Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Qi Guo
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Shengjun An
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, No. 326 Xinshi South Road, Qiaoxi District, Shi Jiazhuang, 050090, Hebei, China
| | - Shuhui Wu
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, No. 326 Xinshi South Road, Qiaoxi District, Shi Jiazhuang, 050090, Hebei, China
| |
Collapse
|
7
|
Sowers ML, Tang H, Singh VK, Khan A, Mishra A, Restrepo BI, Jagannath C, Zhang K. Multi-OMICs analysis reveals metabolic and epigenetic changes associated with macrophage polarization. J Biol Chem 2022; 298:102418. [PMID: 36030823 PMCID: PMC9525912 DOI: 10.1016/j.jbc.2022.102418] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Macrophages (MФ) are an essential immune cell for defense and repair that travel to different tissues and adapt based on local stimuli. A critical factor that may govern their polarization is the crosstalk between metabolism and epigenetics. However, simultaneous measurements of metabolites, epigenetics, and proteins (phenotype) have been a major technical challenge. To address this, we have developed a novel triomics approach using mass spectrometry to comprehensively analyze metabolites, proteins, and histone modifications in a single sample. To demonstrate this technique, we investigated the metabolic-epigenetic-phenotype axis following polarization of human blood–derived monocytes into either ‘proinflammatory M1-’ or ‘anti-inflammatory M2-’ MФs. We report here a complex relationship between arginine, tryptophan, glucose, and the citric acid cycle metabolism, protein and histone post-translational modifications, and human macrophage polarization that was previously not described. Surprisingly, M1-MФs had globally reduced histone acetylation levels but high levels of acetylated amino acids. This suggests acetyl-CoA was diverted, in part, toward acetylated amino acids. Consistent with this, stable isotope tracing of glucose revealed reduced usage of acetyl-CoA for histone acetylation in M1-MФs. Furthermore, isotope tracing also revealed MФs uncoupled glycolysis from the tricarboxylic acid cycle, as evidenced by poor isotope enrichment of succinate. M2-MФs had high levels of kynurenine and serotonin, which are reported to have immune-suppressive effects. Kynurenine is upstream of de novo NAD+ metabolism that is a necessary cofactor for Sirtuin-type histone deacetylases. Taken together, we demonstrate a complex interplay between metabolism and epigenetics that may ultimately influence cell phenotype.
Collapse
Affiliation(s)
- Mark L Sowers
- Dept. of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX
| | - Hui Tang
- Dept. of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX
| | - Vipul K Singh
- Dept. of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX
| | - Arshad Khan
- Dept. of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX
| | - Abhishek Mishra
- Dept. of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX
| | | | - Chinnaswamy Jagannath
- Dept. of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX.
| | - Kangling Zhang
- Dept. of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX.
| |
Collapse
|
9
|
Ordaz-Arias MA, Díaz-Alvarez L, Zúñiga J, Martinez-Sánchez ME, Balderas-Martínez YI. Cyclic Attractors Are Critical for Macrophage Differentiation, Heterogeneity, and Plasticity. Front Mol Biosci 2022; 9:807228. [PMID: 35480895 PMCID: PMC9035596 DOI: 10.3389/fmolb.2022.807228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/11/2022] [Indexed: 01/27/2023] Open
Abstract
Adaptability, heterogeneity, and plasticity are the hallmarks of macrophages. How these complex properties emerge from the molecular interactions is an open question. Thus, in this study we propose an actualized regulatory network of cytokines, signaling pathways, and transcription factors to survey the differentiation, heterogeneity, and plasticity of macrophages. The network recovers attractors, which in regulatory networks correspond to cell types, that correspond to M0, M1, M2a, M2b, M2c, M2d, M2-like, and IL-6 producing cells, including multiple cyclic attractors that are stable to perturbations. These cyclic attractors reproduce experimental observations and show that oscillations result from the structure of the network. We also study the effect of the environment in the differentiation and plasticity of macrophages, showing that the observed heterogeneity in macrophage populations is a result of the regulatory network and its interaction with the micro-environment. The macrophage regulatory network gives a mechanistic explanation to the heterogeneity and plasticity of macrophages seen in vivo and in vitro, and offers insights into the mechanism that allows the immune system to react to a complex dynamic environment.
Collapse
Affiliation(s)
- Manuel Azaid Ordaz-Arias
- Laboratorio de Biopatología Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Licenciatura en Ciencias Genómicas, UNAM, Cuernavaca, Mexico
| | - Laura Díaz-Alvarez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, UNAM, Mexico City, Mexico
| | - Joaquín Zúñiga
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias Biomédicas, Mexico City, Mexico
| | - Mariana Esther Martinez-Sánchez
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- *Correspondence: Mariana Esther Martinez-Sánchez, ; Yalbi Itzel Balderas-Martínez,
| | - Yalbi Itzel Balderas-Martínez
- Laboratorio de Biopatología Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- *Correspondence: Mariana Esther Martinez-Sánchez, ; Yalbi Itzel Balderas-Martínez,
| |
Collapse
|