1
|
Shafie NFS, Nurul Bashar NK, Abd Aziz NA, Dasiman R, Hashim NH. Protective role of Cocos nucifera L. water on BPA-mediated oxidative stress and reproductive damage in male rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-13. [PMID: 40152287 DOI: 10.1080/09603123.2025.2484782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Bisphenol A (BPA) may impair male fertility by inducing oxidative stress in the testis, though its effects on spermatogenesis and sperm quality remain unclear. Conversely, Cocos nucifera L. (coconut) water, rich in antioxidants, effectively inhibits oxidative stress. The aim of the study is to evaluate the protective effect of Cocos nucifera L. water against BPA-mediated oxidative stress in male rats. Thirty Sprague-Dawley rats were divided into control (C) received distilled water (0.5 mL/day), vehicle (V) received corn oil (0.5 mL/day), Bisphenol A (B) (50 mg/kg/day), Cocos nucifera L. water (CW) (10 mL/kg/day) and Cocos nucifera L. water plus bisphenol A (CW+B) groups. The testes and epididymis were harvested on day 31 for oxidative stress analysis, histological examination, immunofluorescence assay, and sperm motility. BPA administration reduced glutathione levels, increased malondialdehyde levels, and caused histopathological changes in the testis. Additionally, the grayscale intensity of actin and tubulin immunofluorescence, along with sperm motility, significantly decreased in the B group (p < 0.001). However, these parameters were notably improved by the administration of coconut water in CW+B group (p < 0.001). Conclusively, this study suggests that coconut water enhances antioxidant defences and supports male reproductive health in rats, potentially preventing BPA-induced reproductive damage.
Collapse
Affiliation(s)
| | | | - Nor Azlina Abd Aziz
- Glami Lemi Biotechnology Research Centre, Universiti Malaya, Jelebu, Malaysia
- Centre for Foundation Studies in Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Razif Dasiman
- Faculty of Health Sciences, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
| | - Noor Hashida Hashim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- Glami Lemi Biotechnology Research Centre, Universiti Malaya, Jelebu, Malaysia
| |
Collapse
|
2
|
Yang F, Gao Y, Han B, Zhu W, Wang G, Liu L, Shen Q, Song B, Lv M, Wu H, Tang D, Zhou P, Wei Z, Xu Y, Cao Y, He X. Aberrant acetylation caused by a CDYL splicing mutation contributes to thin mid-piece related asthenoteratozoospermia and male infertility. Andrology 2025. [PMID: 39823157 DOI: 10.1111/andr.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/24/2024] [Accepted: 12/06/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVES Acetylated tubulin is a hallmark of flagellar stability in spermatozoa, and studies have demonstrated the ability of CDYL to function as a tubulin acetyltransferase in spermatozoa. Of note, germline conditional knockout of Cdyl can lead to asthenoteratozoospermia and infertility in male mice. However, the role of CDYL gene in human fertility remains uncharacterized. MATERIALS AND METHODS Data were collected through in silico analysis for an infertile man with asthenoteratozoospermia of Han Chinese descent by performing whole-exome sequencing. Light and electron microscopy were used to characterize the sperm cells of the proband, and the pathogenicity of the genetic factors was determined by functional experiments. To overcome fertility problems, intracytoplasmic sperm injections were performed in the couple. MAIN RESULTS Here, we recruited an infertile proband, born to first-cousin parents, displaying idiopathic asthenoteratozoospermia. Whole-exome sequencing identified a splicing mutation (c.103+1G>A) in CDYL, recessively cosegregating in the family. In vitro minigene assays demonstrated that the mutation resulted in aberrant alternative splicing. We found that CDYL co-localizes with Ac-tubulin along the flagella of human spermatozoa. In addition, the expression of Ac-tubulin was severely reduced in spermatozoa from the patient with CDYL mutation. Disruption in CDYL results in thin mid-piece related abnormal flagella morphology and decreased sperm motility. The primary manifestation of sperm ultrastructural abnormalities under the electron microscope is primarily characterized by disorder of axonemal protein complex and anulus. DISCUSSION AND CONCLUSION We demonstrated that a homozygous CDYL splicing mutation specifically induces a decrease in microtubule acetylation, resulting in thin mid-piece related asthenoteratozoospermia, providing a novel marker for genetic counseling and diagnosis of male infertility.
Collapse
Affiliation(s)
- Fan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Engineering Research Center of Biopreservation and Artificial Organs, Hefei, China
| | - Yang Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Engineering Research Center of Biopreservation and Artificial Organs, Hefei, China
| | - Bing Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Engineering Research Center of Biopreservation and Artificial Organs, Hefei, China
| | - Wen Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Engineering Research Center of Biopreservation and Artificial Organs, Hefei, China
| | - Guanxiong Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Engineering Research Center of Biopreservation and Artificial Organs, Hefei, China
| | - Liting Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Engineering Research Center of Biopreservation and Artificial Organs, Hefei, China
| | - Qunshan Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Human Sperm Bank, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bing Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Engineering Research Center of Biopreservation and Artificial Organs, Hefei, China
| | - Mingrong Lv
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Huan Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Engineering Research Center of Biopreservation and Artificial Organs, Hefei, China
| | - Dongdong Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Engineering Research Center of Biopreservation and Artificial Organs, Hefei, China
| | - Ping Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Engineering Research Center of Biopreservation and Artificial Organs, Hefei, China
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Engineering Research Center of Biopreservation and Artificial Organs, Hefei, China
| | - Yuping Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Engineering Research Center of Biopreservation and Artificial Organs, Hefei, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Engineering Research Center of Biopreservation and Artificial Organs, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Xiaojin He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Wloga D, Joachimiak E, Osinka A, Ahmadi S, Majhi S. Motile Cilia in Female and Male Reproductive Tracts and Fertility. Cells 2024; 13:1974. [PMID: 39682722 PMCID: PMC11639810 DOI: 10.3390/cells13231974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Motile cilia are evolutionarily conserved organelles. In humans, multiciliated cells (MCCs), assembling several hundred motile cilia on their apical surface, are components of the monolayer epithelia lining lower and upper airways, brain ventricles, and parts of the reproductive tracts, the fallopian tube and uterus in females, and efferent ductules in males. The coordinated beating of cilia generates a force that enables a shift of the tubular fluid, particles, or cells along the surface of the ciliated epithelia. Uncoordinated or altered cilia motion or cilia immotility may result in subfertility or even infertility. Here, we summarize the current knowledge regarding the localization and function of MCCs in the human reproductive tracts, discuss how cilia and cilia beating-generated fluid flow directly and indirectly contribute to the processes in these organs, and how lack or improper functioning of cilia influence human fertility.
Collapse
Affiliation(s)
- Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (E.J.); (A.O.); (S.A.); (S.M.)
| | | | | | | | | |
Collapse
|
4
|
Saez Lancellotti TE, Avena MV, Funes AK, Bernal-López MR, Gómez-Huelgas R, Fornes MW. Exploring the impact of lipid stress on sperm cytoskeleton: insights and prospects. Nat Rev Urol 2024:10.1038/s41585-024-00952-1. [PMID: 39528754 DOI: 10.1038/s41585-024-00952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The decline in male fertility correlates with the global rise in obesity and dyslipidaemia, representing significant public health challenges. High-fat diets induce metabolic alterations, including hypercholesterolaemia, hepatic steatosis and atherosclerosis, with detrimental effects on testicular function. Testicular tissue, critically dependent on lipids for steroidogenesis, is particularly vulnerable to these metabolic disruptions. Excessive lipid accumulation within the testes, including cholesterol, triglycerides and specific fatty acids, disrupts essential sperm production processes such as membrane formation, maturation, energy metabolism and cell signalling. This leads to apoptosis, impaired spermatogenesis, and abnormal sperm morphology and function, ultimately compromising male fertility. During spermiogenesis, round spermatids undergo extensive reorganization, including the formation of the acrosome, manchette and specialized filamentous structures, which are essential for defining the final sperm cell shape. In this Perspective, we examine the impact of high-fat diets on the cytoskeleton of spermatogenic cells and its consequences to identify the mechanisms underlying male infertility associated with dyslipidaemia. Understanding these processes may facilitate the development of therapeutic strategies, such as dietary interventions or natural product supplementation, that aim to address infertility in men with obesity and hypercholesterolaemia. The investigation of cytoskeleton response to lipid stress extends beyond male reproduction, offering insights with broader implications.
Collapse
Affiliation(s)
- Tania E Saez Lancellotti
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina.
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain.
| | - María V Avena
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Abi K Funes
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María-Rosa Bernal-López
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo Gómez-Huelgas
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel W Fornes
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
5
|
Sanzhaeva U, Wonsettler NR, Rhodes SB, Ramamurthy V. TUBB4B is essential for the expansion of differentiating spermatogonia. Sci Rep 2024; 14:20889. [PMID: 39244620 PMCID: PMC11380678 DOI: 10.1038/s41598-024-71303-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Microtubules, polymers of αβ-tubulin heterodimers, are essential for various cellular processes. The incorporation of different tubulin isotypes, each encoded by distinct genes, is proposed to contribute to the functional diversity observed in microtubules. However, the functional roles of each tubulin isotype are not completely understood. In this study, we investigated the role of the β4B-tubulin isotype (Tubb4b) in spermatogenesis, utilizing a Tubb4b knockout mouse model. We showed that β4B-tubulin is expressed in the germ cells throughout spermatogenesis. β4B-tubulin was localized to cytoplasmic microtubules, mitotic spindles, manchette, and axonemes of sperm flagella. We found that the absence of β4B-tubulin resulted in male infertility and failure to produce sperm cells. Our findings demonstrate that a lack of β4B-tubulin leads to defects in the initial stages of spermatogenesis. Specifically, β4B-tubulin is needed for the expansion of differentiating spermatogonia, which is essential for the subsequent progression of spermatogenesis.
Collapse
Affiliation(s)
- Urikhan Sanzhaeva
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Natalie R Wonsettler
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Scott B Rhodes
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Visvanathan Ramamurthy
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, WV, 26506, USA.
- Department of Ophthalmology and Visual Sciences, West Virginia University School of Medicine, Morgantown, WV, 26506, USA.
| |
Collapse
|
6
|
Tian Y, Wang H, Pan T, Hu X, Ding J, Chen Y, Li J, Chen H, Luo T. Global proteomic analyses of lysine acetylation, malonylation, succinylation, and crotonylation in human sperm reveal their involvement in male fertility. J Proteomics 2024; 303:105213. [PMID: 38797435 DOI: 10.1016/j.jprot.2024.105213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Protein lysine modifications (PLMs) are hotspots of post-translational modifications and are involved in many diseases; however, their role in human sperm remains obscure. This study examined the presence and functional roles of a classical PLM (lysine acetylation, Kac) and three novel PLMs (lysine malonylation, Kmal; lysine succinylation, Ksucc; lysine crotonylation, Kcr) in human sperm. Immunoblotting and immunofluorescence assays revealed modified proteins (15-150 kDa) in the tails of human sperm. An immunoaffinity approach coupled with liquid chromatography/tandem mass spectrometry revealed 1423 Kac sites in 680 proteins, 196 Kmal sites in 118 proteins, 788 Ksucc sites in 251 proteins, and 1836 Kcr sites in 645 proteins. These modified proteins participate in a variety of biological processes and metabolic pathways. Crosstalk analysis demonstrated that proteins involved in the sperm energy pathways of glycolysis, oxidative phosphorylation, the citrate cycle, fatty acid oxidation, and ketone body metabolism were modified by at least one of these modifications. In addition, these modifications were found in 62 male fertility-related proteins that weave a protein-protein interaction network associated with asthenoteratozoospermia, asthenozoospermia, globozoospermia, spermatogenic failure, hypogonadotropic hypogonadism, and polycystic kidney disease. Our findings shed light on the functional role of PLMs in male reproduction. SIGNIFICANCE: Protein lysine modifications (PLMs) are hotspots of posttranslational modifications and are involved in many diseases. This study revealed the presence of a classical PLM (lysine acetylation) and three novel PLMs (lysine malonylation, lysine succinylation, and lysine crotonylation) in human sperm tails. The modified proteins participate in a variety of biological processes and metabolic pathways. In addition, these modifications were found in 62 male infertility-associated proteins and could serve as potential diagnostic markers and therapeutic targets for male infertility.
Collapse
Affiliation(s)
- Yan Tian
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Hao Wang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Tingting Pan
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xiaonian Hu
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jing Ding
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Ying Chen
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jia Li
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Houyang Chen
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Reproductive Health, Nanchang 330006, Jiangxi, China.
| | - Tao Luo
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China; Jiangxi Key Laboratory of Reproductive Health, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
7
|
Wang X, Li T, Xu J, Zhang F, Liu L, Wang T, Wang C, Ren H, Zhang Y. Distinct functions of microtubules and actin filaments in the transportation of the male germ unit in pollen. Nat Commun 2024; 15:5448. [PMID: 38937444 PMCID: PMC11211427 DOI: 10.1038/s41467-024-49323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/02/2024] [Indexed: 06/29/2024] Open
Abstract
Flowering plants rely on the polarized growth of pollen tubes to deliver sperm cells (SCs) to the embryo sac for double fertilization. In pollen, the vegetative nucleus (VN) and two SCs form the male germ unit (MGU). However, the mechanism underlying directional transportation of MGU is not well understood. In this study, we provide the first full picture of the dynamic interplay among microtubules, actin filaments, and MGU during pollen germination and tube growth. Depolymerization of microtubules and inhibition of kinesin activity result in an increased velocity and magnified amplitude of VN's forward and backward movement. Pharmacological washout experiments further suggest that microtubules participate in coordinating the directional movement of MGU. In contrast, suppression of the actomyosin system leads to a reduced velocity of VN mobility but without a moving pattern change. Moreover, detailed observation shows that the direction and velocity of VN's movement are in close correlations with those of the actomyosin-driven cytoplasmic streaming surrounding VN. Therefore, we propose that while actomyosin-based cytoplasmic streaming influences on the oscillational movement of MGU, microtubules and kinesins avoid MGU drifting with the cytoplasmic streaming and act as the major regulator for fine-tuning the proper positioning and directional migration of MGU in pollen.
Collapse
Affiliation(s)
- Xiangfei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Tonghui Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Jiuting Xu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Fanfan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Lifang Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Ting Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Chun Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China.
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Joint Biotech Laboratory, Beijing Normal University, 519087, Zhuhai, China.
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China.
| |
Collapse
|
8
|
Ferrero G, Festa R, Follia L, Lettieri G, Tarallo S, Notari T, Giarra A, Marinaro C, Pardini B, Marano A, Piaggeschi G, Di Battista C, Trifuoggi M, Piscopo M, Montano L, Naccarati A. Small noncoding RNAs and sperm nuclear basic proteins reflect the environmental impact on germ cells. Mol Med 2024; 30:12. [PMID: 38243211 PMCID: PMC10799426 DOI: 10.1186/s10020-023-00776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Molecular techniques can complement conventional spermiogram analyses to provide new information on the fertilizing potential of spermatozoa and to identify early alterations due to environmental pollution. METHODS Here, we present a multilevel molecular profiling by small RNA sequencing and sperm nuclear basic protein analysis of male germ cells from 33 healthy young subjects residing in low and high-polluted areas. RESULTS Although sperm motility and sperm concentration were comparable between samples from the two sites, those from the high-pollution area had a higher concentration of immature/immune cells, a lower protamine/histone ratio, a reduced ability of sperm nuclear basic proteins to protect DNA from oxidative damage, and an altered copper/zinc ratio in sperm. Sperm levels of 32 microRNAs involved in intraflagellar transport, oxidative stress response, and spermatogenesis were different between the two areas. In parallel, a decrease of Piwi-interacting RNA levels was observed in samples from the high-polluted area. CONCLUSIONS This comprehensive analysis provides new insights into pollution-driven epigenetic alterations in sperm not detectable by spermiogram.
Collapse
Affiliation(s)
- Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
- Department of Computer Science, University of Turin, Corso Svizzera, 185, 10149, Turin, Italy
| | - Rosaria Festa
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Laura Follia
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Sonia Tarallo
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| | - Tiziana Notari
- Check-Up PolyDiagnostic and Research Laboratory, Andrology Unit, Viale Andrea De Luca 5, 84131, Salerno, Italy
| | - Antonella Giarra
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Carmela Marinaro
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| | - Alessandra Marano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Giulia Piaggeschi
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| | - Carla Di Battista
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy.
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), S. Francesco di Assisi Hospital, 84020, Oliveto Citra, Salerno, Italy.
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| |
Collapse
|
9
|
Das P, Mekonnen B, Alkhofash R, Ingle A, Workman EB, Feather A, Liu P, Lechtreck KF. Small Interactor of PKD2 (SIP), a novel PKD2-related single-pass transmembrane protein, is required for proteolytic processing and ciliary import of Chlamydomonas PKD2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544839. [PMID: 37398320 PMCID: PMC10312728 DOI: 10.1101/2023.06.13.544839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
In Chlamydomonas cilia, the ciliopathy-relevant TRP channel PKD2 is spatially compartmentalized into a distal region, in which PKD2 binds the axoneme and extracellular mastigonemes, and a smaller proximal region, in which PKD2 is more mobile and lacks mastigonemes. Here, we show that the two PKD2 regions are established early during cilia regeneration and increase in length as cilia elongate. In abnormally long cilia, only the distal region elongated whereas both regions adjusted in length during cilia shortening. In dikaryon rescue experiments, tagged PKD2 rapidly entered the proximal region of PKD2-deficient cilia whereas assembly of the distal region was hindered, suggesting that axonemal docking of PKD2 requires de novo ciliary assembly. We identified Small Interactor of PKD2 (SIP), a small PKD2-related protein, as a novel component of the PKD2-mastigoneme complex. In sip mutants, stability and proteolytic processing of PKD2 in the cell body were reduced and PKD2-mastigoneme complexes were absent from mutant cilia. Like the pkd2 and mst1 mutants, sip swims with reduced velocity. Cilia of the pkd2 mutant beat with normal frequency and bending pattern but were less efficient in moving cells supporting a passive role of the PKD2-SIP-mastigoneme complexes in increasing the effective surface of Chlamydomonas cilia.
Collapse
Affiliation(s)
- Poulomi Das
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Betlehem Mekonnen
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Rama Alkhofash
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Abha Ingle
- Department of Computer Science, University of Georgia, Athens, GA 30602
| | - E. Blair Workman
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Alec Feather
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | | | - Karl F. Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| |
Collapse
|
10
|
The Male Mouse Meiotic Cilium Emanates from the Mother Centriole at Zygotene Prior to Centrosome Duplication. Cells 2022; 12:cells12010142. [PMID: 36611937 PMCID: PMC9818220 DOI: 10.3390/cells12010142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Cilia are hair-like projections of the plasma membrane with an inner microtubule skeleton known as axoneme. Motile cilia and flagella beat to displace extracellular fluids, playing important roles in the airways and reproductive system. On the contrary, primary cilia function as cell-type-dependent sensory organelles, detecting chemical, mechanical, or optical signals from the extracellular environment. Cilia dysfunction is associated with genetic diseases called ciliopathies and with some types of cancer. Cilia have been recently identified in zebrafish gametogenesis as an important regulator of bouquet conformation and recombination. However, there is little information about the structure and functions of cilia in mammalian meiosis. Here we describe the presence of cilia in male mouse meiotic cells. These solitary cilia formed transiently in 20% of zygotene spermatocytes and reached considerable lengths (up to 15-23 µm). CEP164 and CETN3 localization studies indicated that these cilia emanate from the mother centriole prior to centrosome duplication. In addition, the study of telomeric TFR2 suggested that cilia are not directly related to the bouquet conformation during early male mouse meiosis. Instead, based on TEX14 labeling of intercellular bridges in spermatocyte cysts, we suggest that mouse meiotic cilia may have sensory roles affecting cyst function during prophase I.
Collapse
|
11
|
Maliekal TT, Dharmapal D, Sengupta S. Tubulin Isotypes: Emerging Roles in Defining Cancer Stem Cell Niche. Front Immunol 2022; 13:876278. [PMID: 35693789 PMCID: PMC9179084 DOI: 10.3389/fimmu.2022.876278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Although the role of microtubule dynamics in cancer progression is well-established, the roles of tubulin isotypes, their cargos and their specific function in the induction and sustenance of cancer stem cells (CSCs) were poorly explored. But emerging reports urge to focus on the transport function of tubulin isotypes in defining orchestrated expression of functionally critical molecules in establishing a stem cell niche, which is the key for CSC regulation. In this review, we summarize the role of specific tubulin isotypes in the transport of functional molecules that regulate metabolic reprogramming, which leads to the induction of CSCs and immune evasion. Recently, the surface expression of GLUT1 and GRP78 as well as voltage-dependent anion channel (VDAC) permeability, regulated by specific isotypes of β-tubulins have been shown to impart CSC properties to cancer cells, by implementing a metabolic reprogramming. Moreover, βIVb tubulin is shown to be critical in modulating EphrinB1signaling to sustain CSCs in oral carcinoma. These tubulin-interacting molecules, Ephrins, GLUT1 and GRP78, are also important regulators of immune evasion, by evoking PD-L1 mediated T-cell suppression. Thus, the recent advances in the field implicate that tubulins play a role in the controlled transport of molecules involved in CSC niche. The indication of tubulin isotypes in the regulation of CSCs offers a strategy to specifically target those tubulin isotypes to eliminate CSCs, rather than the general inhibition of microtubules, which usually leads to therapy resistance.
Collapse
Affiliation(s)
- Tessy Thomas Maliekal
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Regional Centre for Biotechnology, Faridabad, India
- *Correspondence: Tessy Thomas Maliekal, ; Suparna Sengupta,
| | - Dhrishya Dharmapal
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- University of Kerala, Department of Biotechnology, Thiruvananthapuram, India
| | - Suparna Sengupta
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Regional Centre for Biotechnology, Faridabad, India
- University of Kerala, Department of Biotechnology, Thiruvananthapuram, India
- *Correspondence: Tessy Thomas Maliekal, ; Suparna Sengupta,
| |
Collapse
|
12
|
Lu YM, Zheng C. The Expression and Function of Tubulin Isotypes in Caenorhabditis elegans. Front Cell Dev Biol 2022; 10:860065. [PMID: 35399537 PMCID: PMC8987236 DOI: 10.3389/fcell.2022.860065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubules, made from the polymerization of the highly conserved α/β-tubulin heterodimers, serve as important components of the cytoskeleton in all eukaryotic cells. The existence of multiple tubulin isotypes in metazoan genomes and a dazzling variety of tubulin posttranslational modifications (PTMs) prompted the “tubulin code” hypothesis, which proposed that microtubule structure and functions are determined by the tubulin composition and PTMs. Evidence for the tubulin code has emerged from studies in several organisms with the characterization of specific tubulins for their expression and functions. The studies of tubulin PTMs are accelerated by the discovery of the enzymes that add or remove the PTMs. In tubulin research, the use of simple organisms, such as Caenorhabditis elegans, has been instrumental for understanding the expression and functional specialization of tubulin isotypes and the effects of their PTMs. In this review, we summarize the current understanding of the expression patterns and cellular functions of the nine α-tubulin and six β-tubulin isotypes. Expression studies are greatly facilitated by the CRISPR/Cas9-mediated endogenous GFP knock-in reporters and the organism-wide single cell transcriptomic studies. Meanwhile, functional studies benefit from the ease of genetic manipulation and precise gene replacement in C. elegans. These studies identified both ubiquitously expressed tubulin isotypes and tissue-specific isotypes. The isotypes showed functional redundancy, as well as functional specificity, which is likely caused by the subtle differences in their amino acid sequences. Many of these differences concentrate at the C-terminal tails that are subjected to several PTMs. Indeed, tubulin PTM, such as polyglutamylation, is shown to modulate microtubule organization and properties in both ciliated and non-ciliated neurons. Overall, studies from C. elegans support the distinct expression and function patterns of tubulin isotypes and the importance of their PTMs and offer the promise of cracking the tubulin code at the whole-genome and the whole-organism level.
Collapse
|