1
|
Dubois J, Grotheer M, Yang JYM, Tournier JD, Beaulieu C, Lebel C. Small brains but big challenges: white matter tractography in early life samples. Brain Struct Funct 2025; 230:58. [PMID: 40293528 DOI: 10.1007/s00429-025-02922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Accepted: 04/19/2025] [Indexed: 04/30/2025]
Abstract
In the human brain, white matter development is a complex and long-lasting process involving intermingling micro- and macrostructural mechanisms, such as fiber growth, pruning and myelination. Did you know that all these neurodevelopmental changes strongly affect MRI signals, with consequences on tractography performances and reliability? This communication aims to elaborate on these aspects, highlighting the importance of tracking and studying the developing connections with dedicated approaches.
Collapse
Affiliation(s)
- Jessica Dubois
- Université Paris Cité, Inserm, Paris, F-75019, NeuroDiderot, France.
- Université Paris-Saclay, CEA, UNIACT, Gif-sur-Yvette, F-91191, NeuroSpin, France.
| | - Mareike Grotheer
- Department of Psychology, Phillips-Universität Marburg, 35039, Marburg, Germany
- Center for Mind, Brain and Behavior, Phillips-Universität Marburg, Justus-Liebig Universität Giessen, Technische Universität Darmstadt, 35039, Marburg, Germany
| | - Joseph Yuan-Mou Yang
- Department of Neurosurgery, Neuroscience Advanced Clinical Imaging Service (NACIS), The Royal Children's Hospital, Melbourne, Australia
- Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Jacques-Donald Tournier
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - Christian Beaulieu
- Departments of Radiology and Diagnostic Imaging & Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, Canada
| |
Collapse
|
2
|
Kjer HM, Andersson M, He Y, Pacureanu A, Daducci A, Pizzolato M, Salditt T, Robisch AL, Eckermann M, Töpperwien M, Bjorholm Dahl A, Elkjær ML, Illes Z, Ptito M, Andersen Dahl V, Dyrby TB. Bridging the 3D geometrical organisation of white matter pathways across anatomical length scales and species. eLife 2025; 13:RP94917. [PMID: 40019134 PMCID: PMC11870653 DOI: 10.7554/elife.94917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
We used diffusion MRI and x-ray synchrotron imaging on monkey and mice brains to examine the organisation of fibre pathways in white matter across anatomical scales. We compared the structure in the corpus callosum and crossing fibre regions and investigated the differences in cuprizone-induced demyelination in mouse brains versus healthy controls. Our findings revealed common principles of fibre organisation that apply despite the varying patterns observed across species; small axonal fasciculi and major bundles formed laminar structures with varying angles, according to the characteristics of major pathways. Fasciculi exhibited non-straight paths around obstacles like blood vessels, comparable across the samples of varying fibre complexity and demyelination. Quantifications of fibre orientation distributions were consistent across anatomical length scales and modalities, whereas tissue anisotropy had a more complex relationship, both dependent on the field-of-view. Our study emphasises the need to balance field-of-view and voxel size when characterising white matter features across length scales.
Collapse
Affiliation(s)
- Hans Martin Kjer
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and HvidovreHvidovreDenmark
- Department of Applied Mathematics and Computer Science, Technical University of DenmarkKongens LyngbyDenmark
| | - Mariam Andersson
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and HvidovreHvidovreDenmark
- Department of Applied Mathematics and Computer Science, Technical University of DenmarkKongens LyngbyDenmark
| | - Yi He
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and HvidovreHvidovreDenmark
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhaiChina
| | | | | | - Marco Pizzolato
- Department of Applied Mathematics and Computer Science, Technical University of DenmarkKongens LyngbyDenmark
| | - Tim Salditt
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-PlatzGöttingenGermany
| | - Anna-Lena Robisch
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-PlatzGöttingenGermany
| | - Marina Eckermann
- ESRF - The European SynchrotronGrenobleFrance
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-PlatzGöttingenGermany
| | - Mareike Töpperwien
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-PlatzGöttingenGermany
| | - Anders Bjorholm Dahl
- Department of Applied Mathematics and Computer Science, Technical University of DenmarkKongens LyngbyDenmark
| | - Maria Louise Elkjær
- Department of Neurology, Odense University HospitalOdenseDenmark
- Institute of Molecular Medicine, University of Southern DenmarkOdenseDenmark
| | - Zsolt Illes
- Department of Neurology, Odense University HospitalOdenseDenmark
- Institute of Molecular Medicine, University of Southern DenmarkOdenseDenmark
- BRIDGE—Brain Research—Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern DenmarkOdenseDenmark
- Rheumatology Research Unit, Odense University HospitalOdenseDenmark
| | - Maurice Ptito
- Department of Applied Mathematics and Computer Science, Technical University of DenmarkKongens LyngbyDenmark
- School of Optometry, University of MontrealMontrealCanada
| | - Vedrana Andersen Dahl
- Department of Applied Mathematics and Computer Science, Technical University of DenmarkKongens LyngbyDenmark
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and HvidovreHvidovreDenmark
- Department of Applied Mathematics and Computer Science, Technical University of DenmarkKongens LyngbyDenmark
| |
Collapse
|
3
|
Tignard P, Pottin K, Geeverding A, Doulazmi M, Cabrera M, Fouquet C, Liffran M, Fouchard J, Rosello M, Albadri S, Del Bene F, Trembleau A, Breau MA. Basement membranes are crucial for proper olfactory placode shape, position and boundary with the brain, and for olfactory axon development. eLife 2024; 12:RP92004. [PMID: 39713923 DOI: 10.7554/elife.92004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Despite recent progress, the complex roles played by the extracellular matrix in development and disease are still far from being fully understood. Here, we took advantage of the zebrafish sly mutation which affects Laminin γ1, a major component of basement membranes, to explore its role in the development of the olfactory system. Following a detailed characterisation of Laminin distribution in the developing olfactory circuit, we analysed basement membrane integrity, olfactory placode and brain morphogenesis, and olfactory axon development in sly mutants, using a combination of immunochemistry, electron microscopy and quantitative live imaging of cell movements and axon behaviours. Our results point to an original and dual contribution of Laminin γ1-dependent basement membranes in organising the border between the olfactory placode and the adjacent brain: they maintain placode shape and position in the face of major brain morphogenetic movements, they establish a robust physical barrier between the two tissues while at the same time allowing the local entry of the sensory axons into the brain and their navigation towards the olfactory bulb. This work thus identifies key roles of Laminin γ1-dependent basement membranes in neuronal tissue morphogenesis and axon development in vivo.
Collapse
Affiliation(s)
- Pénélope Tignard
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8246), Inserm U1130, Institut de Biologie Paris-Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - Karen Pottin
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
| | - Audrey Geeverding
- Imaging Facility, Institut de Biologie Paris-Seine (IBPS), Paris, France
| | - Mohamed Doulazmi
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8256), Institut de Biologie Paris-Seine (IBPS), Adaptation Biologique et Vieillissement, Paris, France
| | - Mélody Cabrera
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
| | - Coralie Fouquet
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
| | - Mathilde Liffran
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8246), Inserm U1130, Institut de Biologie Paris-Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - Jonathan Fouchard
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
| | - Marion Rosello
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Shahad Albadri
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Filippo Del Bene
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Alain Trembleau
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8246), Inserm U1130, Institut de Biologie Paris-Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - Marie Anne Breau
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| |
Collapse
|
4
|
Vulić K, Amos G, Ruff T, Kasm R, Ihle SJ, Küchler J, Vörös J, Weaver S. Impact of microchannel width on axons for brain-on-chip applications. LAB ON A CHIP 2024; 24:5155-5166. [PMID: 39440578 PMCID: PMC11497309 DOI: 10.1039/d4lc00440j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024]
Abstract
Technologies for axon guidance for in vitro disease models and bottom up investigations are increasingly being used in neuroscience research. One of the most prevalent patterning methods is using polydimethylsiloxane (PDMS) microstructures due to compatibility with microscopy and electrophysiology which enables systematic tracking of axon development with precision and efficiency. Previous investigations of these guidance platforms have noted axons tend to follow edges and avoid sharp turns; however, the specific impact of spatial constraints remains only partially explored. We investigated the influence of microchannel width beyond a constriction point, as well as the number of available microchannels, on axon growth dynamics. Further, by manipulating the size of micron/submicron-sized PDMS tunnels we investigated the space restriction that prevents growth cone penetration showing that restrictions smaller than 350 nm were sufficient to exclude axons. This research offers insights into the interplay of spatial constraints, axon development, and neural behavior. The findings are important for designing in vitro platforms and in vivo neural interfaces for both fundamental neuroscience and translational applications in rapidly evolving neural implant technologies.
Collapse
Affiliation(s)
- Katarina Vulić
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Giulia Amos
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Tobias Ruff
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Revan Kasm
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Stephan J Ihle
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Joël Küchler
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Sean Weaver
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| |
Collapse
|
5
|
Tignard P, Pottin K, Geeverding A, Doulazmi M, Cabrera M, Fouquet C, Liffran M, Fouchard J, Rosello M, Albadri S, Del Bene F, Trembleau A, Breau MA. Laminin γ1-dependent basement membranes are instrumental to ensure proper olfactory placode shape, position and boundary with the brain, as well as olfactory axon development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.29.547040. [PMID: 39253416 PMCID: PMC11383033 DOI: 10.1101/2023.06.29.547040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Despite recent progress, the complex roles played by the extracellular matrix in development and disease are still far from being fully understood. Here, we took advantage of the zebrafish sly mutation which affects Laminin γ1, a major component of basement membranes, to explore its role in the development of the olfactory system. Following a detailed characterisation of Laminin distribution in the developing olfactory circuit, we analysed basement membrane integrity, olfactory placode and brain morphogenesis, and olfactory axon development in sly mutants, using a combination of immunochemistry, electron microscopy and quantitative live imaging of cell movements and axon behaviours. Our results point to an original and dual contribution of Laminin γ1-dependent basement membranes in organising the border between the olfactory placode and the adjacent brain: they maintain placode shape and position in the face of major brain morphogenetic movements, they establish a robust physical barrier between the two tissues while at the same time allowing the local entry of the sensory axons into the brain and their navigation towards the olfactory bulb. This work thus identifies key roles of Laminin γ1-dependent basement membranes in neuronal tissue morphogenesis and axon development in vivo .
Collapse
|
6
|
Nakashima A, Takeuchi H. Roles of odorant receptors during olfactory glomerular map formation. Genesis 2024; 62:e23610. [PMID: 38874301 DOI: 10.1002/dvg.23610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
The organization of the olfactory glomerular map involves the convergence of olfactory sensory neurons (OSNs) expressing the same odorant receptor (OR) into glomeruli in the olfactory bulb (OB). A remarkable feature of the olfactory glomerular map formation is that the identity of OR instructs the topography of the bulb, resulting in thousands of discrete glomeruli in mice. Several lines of evidence indicate that ORs control the expression levels of various kinds of transmembrane proteins to form glomeruli at appropriate regions of the OB. In this review, we will discuss how the OR identity is decoded by OSNs into gene expression through intracellular regulatory mechanisms.
Collapse
Affiliation(s)
- Ai Nakashima
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Haruki Takeuchi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Mitchell KJ. Variability in Neural Circuit Formation. Cold Spring Harb Perspect Biol 2024; 16:a041504. [PMID: 38253418 PMCID: PMC10910361 DOI: 10.1101/cshperspect.a041504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The study of neural development is usually concerned with the question of how nervous systems get put together. Variation in these processes is usually of interest as a means of revealing these normative mechanisms. However, variation itself can be an object of study and is of interest from multiple angles. First, the nature of variation in both the processes and the outcomes of neural development is relevant to our understanding of how these processes and outcomes are encoded in the genome. Second, variation in the wiring of the brain in humans may underlie variation in all kinds of psychological and behavioral traits, as well as neurodevelopmental disorders. And third, genetic variation that affects circuit development provides the raw material for evolutionary change. Here, I examine these different aspects of variation in circuit development and consider what they may tell us about these larger questions.
Collapse
Affiliation(s)
- Kevin J Mitchell
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin D02 PN40, Ireland
| |
Collapse
|
8
|
Zhang M, Liu C, Zhao L, Zhang X, Su Y. The Emerging Role of Protein Phosphatase in Regeneration. Life (Basel) 2023; 13:life13051216. [PMID: 37240861 DOI: 10.3390/life13051216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Maintaining normal cellular behavior is essential for the survival of organisms. One of the main mechanisms to control cellular behavior is protein phosphorylation. The process of protein phosphorylation is reversible under the regulation of protein kinases and protein phosphatases. The importance of kinases in numerous cellular processes has been well recognized. In recent years, protein phosphatases have also been demonstrated to function actively and specifically in various cellular processes and thus have gained more and more attention from researchers. In the animal kingdom, regeneration frequently occurs to replace or repair damaged or missing tissues. Emerging evidence has revealed that protein phosphatases are crucial for organ regeneration. In this review, after providing a brief overview of the classification of protein phosphatases and their functions in several representative developmental processes, we highlight the critical roles that protein phosphatases play in organ regeneration by summarizing the most recent research on the function and underlying mechanism of protein phosphatase in the regeneration of the liver, bone, neuron, and heart in vertebrates.
Collapse
Affiliation(s)
- Meiling Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Chenglin Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Long Zhao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Xuejiao Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Ying Su
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|