1
|
Zhang C, Zhang S, Xu H, Wang G, Zhang H, Di T, Tian L, Chang M, Gao F, Li M, Yang G. HOXD1 regulates neural crest cells differentiation and polycerate development in sheep. Sci Rep 2025; 15:13140. [PMID: 40240791 PMCID: PMC12003793 DOI: 10.1038/s41598-025-97865-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
The polycerate trait in sheep is a complex phenotype regulated by polygenes. However, the mechanism behind multi-horned traits development and growth remains unclear. In this study, neural crest cells (NCCs) were isolated from mouse embryos, and the HOXD1 (Homeobox D1) gene was overexpressed in these cells to identify its function. Transcriptome analysis was performed to explore the key signaling pathway involved in forming the multi-horned traits in sheep. The results showed that the HOXD1 induced epithelial-to-mesenchymal transition (EMT) in mouse neural crest primary cells, affecting their migration but without significantly influencing proliferation. Furthermore, signaling pathway analysis suggested that HOXD1 may inhibit NCC proliferation by modulating Wnt rather than TGF-β signaling. Transcriptome analysis revealed that the HOXD1 gene affected the extracellular matrix of CXC family regulatory cells and promoted NCC differentiation. These findings provide a theoretical basis for further investigation into the regulation of multi-horned traits growth and development in sheep.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shuhong Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Huifeng Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guan Wang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Huan Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tenggang Di
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Liming Tian
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Menghan Chang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Fengyi Gao
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Guangli Yang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China.
| |
Collapse
|
2
|
He Q, Zhang F, Zhang X, Yao W, Wu J, Niu H, Wang Y, Luo J. Chromosome-level dairy goat genome reveals the regulatory landscape of lactation. Int J Biol Macromol 2024; 280:135968. [PMID: 39322167 DOI: 10.1016/j.ijbiomac.2024.135968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Goat milk is rich in various nutrients that are beneficial for human health. However, the genomic evolution and genetic basis underlying the nutritional value and unique flavor formation in dairy goats remain poorly understood. In the present study, we generate a chromosome-level genome assembly for dairy goats comprising 2.63 Gb with a contig N50 of 43 Mb and a scaffold N50 of 101 Mb. Genome quality comparisons revealed that the dairy goat genome has higher integrity and continuity than the published goat and sheep genomes. The identification of genes under positive selection in dairy goats highlights potential candidates to explain their high milk production. Comparative genomic analysis elucidates the adaptive evolutionary mechanisms of dairy goats such as strong disease resistance, broad adaptability, and unique milk flavor. Moreover, we demonstrate the conservation of the lactation gene network and identify new potential regulators associated with lipid metabolism. Additionally, we establish the regulatory landscape of lactation for the first time in dairy goats, revealing its unique gene regulatory characteristics. Hence, our study not only provides the first chromosome-level reference genome for dairy goat, but also offers potential research directions for dairy production and genetic improvement.
Collapse
Affiliation(s)
- Qiuya He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Fuhong Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xianglei Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Huimin Niu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yaling Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
3
|
David OG, Arce AV, Costa-da-Silva AL, Bellantuono AJ, DeGennaro M. Fertility decline in Aedes aegypti (Diptera: Culicidae) mosquitoes is associated with reduced maternal transcript deposition and does not depend on female age. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1064-1070. [PMID: 38757780 PMCID: PMC11239790 DOI: 10.1093/jme/tjae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
Female mosquitoes undergo multiple rounds of reproduction known as gonotrophic cycles (GC). A gonotrophic cycle spans the period from blood meal intake to egg laying. Nutrients from vertebrate host blood are necessary for completing egg development. During oogenesis, a female prepackages mRNA into her oocytes, and these maternal transcripts drive the first 2 h of embryonic development prior to zygotic genome activation. In this study, we profiled transcriptional changes in 1-2 h of Aedes aegypti (Diptera: Culicidae) embryos across 2 GC. We found that homeotic genes which are regulators of embryogenesis are downregulated in embryos from the second gonotrophic cycle. Interestingly, embryos produced by Ae. aegypti females progressively reduced their ability to hatch as the number of GC increased. We show that this fertility decline is due to increased reproductive output and not the mosquitoes' age. Moreover, we found a similar decline in fertility and fecundity across 3 GC in Aedes albopictus. Our results are useful for predicting mosquito population dynamics to inform vector control efforts.
Collapse
Affiliation(s)
- Olayinka G David
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Andrea V Arce
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Andre Luis Costa-da-Silva
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Anthony J Bellantuono
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Matthew DeGennaro
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
4
|
López-Fernández H, Pinto M, Vieira CP, Duque P, Reboiro-Jato M, Vieira J. Auto-phylo v2 and auto-phylo-pipeliner: building advanced, flexible, and reusable pipelines for phylogenetic inferences, estimation of variability levels and identification of positively selected amino acid sites. J Integr Bioinform 2024; 21:jib-2023-0046. [PMID: 38529929 PMCID: PMC11378518 DOI: 10.1515/jib-2023-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/31/2024] [Indexed: 03/27/2024] Open
Abstract
The vast amount of genome sequence data that is available, and that is predicted to drastically increase in the near future, can only be efficiently dealt with by building automated pipelines. Indeed, the Earth Biogenome Project will produce high-quality reference genome sequences for all 1.8 million named living eukaryote species, providing unprecedented insight into the evolution of genes and gene families, and thus on biological issues. Here, new modules for gene annotation, further BLAST search algorithms, further multiple sequence alignment methods, the adding of reference sequences, further tree rooting methods, the estimation of rates of synonymous and nonsynonymous substitutions, and the identification of positively selected amino acid sites, have been added to auto-phylo (version 2), a recently developed software to address biological problems using phylogenetic inferences. Additionally, we present auto-phylo-pipeliner, a graphical user interface application that further facilitates the creation and running of auto-phylo pipelines. Inferences on S-RNase specificity, are critical for both cross-based breeding and for the establishment of pollination requirements. Therefore, as a test case, we develop an auto-phylo pipeline to identify amino acid sites under positive selection, that are, in principle, those determining S-RNase specificity, starting from both non-annotated Prunus genomes and sequences available in public databases.
Collapse
Affiliation(s)
- Hugo López-Fernández
- CINBIO, Department of Computer Science, ESEI-Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Miguel Pinto
- 26706 Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- 26706 Faculdade de Ciências da Universidade do Porto (FCUP) , Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Cristina P Vieira
- 26706 Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Pedro Duque
- 26706 Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- 26706 Faculdade de Ciências da Universidade do Porto (FCUP) , Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), Porto University, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Miguel Reboiro-Jato
- CINBIO, Department of Computer Science, ESEI-Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Jorge Vieira
- 26706 Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|
5
|
Kulakova MA, Maslakov GP, Poliushkevich LO. Irreducible Complexity of Hox Gene: Path to the Canonical Function of the Hox Cluster. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:987-1001. [PMID: 38981695 DOI: 10.1134/s0006297924060014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 07/11/2024]
Abstract
The evolution of major taxa is often associated with the emergence of new gene families. In all multicellular animals except sponges and comb jellies, the genomes contain Hox genes, which are crucial regulators of development. The canonical function of Hox genes involves colinear patterning of body parts in bilateral animals. This general function is implemented through complex, precisely coordinated mechanisms, not all of which are evolutionarily conserved and fully understood. We suggest that the emergence of this regulatory complexity was preceded by a stage of cooperation between more ancient morphogenetic programs or their individual elements. Footprints of these programs may be present in modern animals to execute non-canonical Hox functions. Non-canonical functions of Hox genes are involved in maintaining terminal nerve cell specificity, autophagy, oogenesis, pre-gastrulation embryogenesis, vertical signaling, and a number of general biological processes. These functions are realized by the basic properties of homeodomain protein and could have triggered the evolution of ParaHoxozoa and Nephrozoa subsequently. Some of these non-canonical Hox functions are discussed in our review.
Collapse
Affiliation(s)
- Milana A Kulakova
- Department of Embryology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia.
| | - Georgy P Maslakov
- Department of Embryology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Liudmila O Poliushkevich
- Department of Embryology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
6
|
Tendolkar A, Mazo-Vargas A, Livraghi L, Hanly JJ, Van Horne KC, Gilbert LE, Martin A. Cis-regulatory modes of Ultrabithorax inactivation in butterfly forewings. eLife 2024; 12:RP90846. [PMID: 38261357 PMCID: PMC10945631 DOI: 10.7554/elife.90846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Hox gene clusters encode transcription factors that drive regional specialization during animal development: for example the Hox factor Ubx is expressed in the insect metathoracic (T3) wing appendages and differentiates them from T2 mesothoracic identities. Hox transcriptional regulation requires silencing activities that prevent spurious activation and regulatory crosstalks in the wrong tissues, but this has seldom been studied in insects other than Drosophila, which shows a derived Hox dislocation into two genomic clusters that disjoined Antennapedia (Antp) and Ultrabithorax (Ubx). Here, we investigated how Ubx is restricted to the hindwing in butterflies, amidst a contiguous Hox cluster. By analysing Hi-C and ATAC-seq data in the butterfly Junonia coenia, we show that a Topologically Associated Domain (TAD) maintains a hindwing-enriched profile of chromatin opening around Ubx. This TAD is bordered by a Boundary Element (BE) that separates it from a region of joined wing activity around the Antp locus. CRISPR mutational perturbation of this BE releases ectopic Ubx expression in forewings, inducing homeotic clones with hindwing identities. Further mutational interrogation of two non-coding RNA encoding regions and one putative cis-regulatory module within the Ubx TAD cause rare homeotic transformations in both directions, indicating the presence of both activating and repressing chromatin features. We also describe a series of spontaneous forewing homeotic phenotypes obtained in Heliconius butterflies, and discuss their possible mutational basis. By leveraging the extensive wing specialization found in butterflies, our initial exploration of Ubx regulation demonstrates the existence of silencing and insulating sequences that prevent its spurious expression in forewings.
Collapse
Affiliation(s)
- Amruta Tendolkar
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
| | - Anyi Mazo-Vargas
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
| | - Luca Livraghi
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
| | - Joseph J Hanly
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
- Smithsonian Tropical Research InstitutePanama CityPanama
| | - Kelsey C Van Horne
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
| | - Lawrence E Gilbert
- Department of Integrative Biology, University of Texas – AustinAustinUnited States
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
| |
Collapse
|
7
|
Mann RS, Glassford WJ. Hox genes: The original body builders. Semin Cell Dev Biol 2024; 152-153:1-3. [PMID: 37291029 PMCID: PMC10949336 DOI: 10.1016/j.semcdb.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, United States; Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, United States; Department of Systems Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, United States.
| | - William J Glassford
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, United States; Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, United States; Department of Systems Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, United States
| |
Collapse
|