1
|
Meng L, Wen W. Mitochondrial Dysfunction in Diabetic Periodontitis: Mechanisms and Therapeutic Potential. J Inflamm Res 2025; 18:115-126. [PMID: 39810976 PMCID: PMC11730282 DOI: 10.2147/jir.s492041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/05/2024] [Indexed: 01/16/2025] Open
Abstract
Diabetic periodontitis is a common oral complication of diabetes characterized by progressive destruction of periodontal tissues. Recent evidence suggests that mitochondrial dysfunction plays a crucial role in the pathogenesis and progression of this condition. This review aims to systematically summarize the role and potential mechanisms of mitochondrial dysfunction in diabetic periodontitis. We first explore the relationship between diabetes and mitochondrial dysfunction, then analyze the specific manifestations of mitochondrial dysfunction in diabetic periodontitis, including morphological changes, energy metabolism disorders, increased oxidative stress, and enhanced apoptosis. We further delve into the connections between mitochondrial dysfunction and the pathogenic mechanisms of diabetic periodontitis, such as exacerbated inflammatory responses, decreased tissue repair capacity, and autophagy dysregulation. Finally, we discuss potential therapeutic targets based on mitochondrial function, including antioxidant strategies, mitochondria-targeted drugs, and autophagy regulators. We also propose future research directions, emphasizing the need for in-depth exploration of molecular mechanisms, development of new diagnostic markers and therapeutic strategies, and personalized treatment approaches. This review provides new insights into understanding the pathogenic mechanisms of diabetic periodontitis and offers a theoretical basis for developing targeted prevention and treatment strategies to improve oral health in diabetic patients.
Collapse
Affiliation(s)
- Leilei Meng
- Anhui Province Engineering Research Center for Dental Materials and Application, School of Stomatology, Wannan Medical College, Wuhu, 241002, People’s Republic of China
- Department of Pathophysiology, Anhui Medical University, Hefei, 230000, People’s Republic of China
| | - Wenjie Wen
- Anhui Province Engineering Research Center for Dental Materials and Application, School of Stomatology, Wannan Medical College, Wuhu, 241002, People’s Republic of China
| |
Collapse
|
2
|
Xu M, Zuo D, Wang Q, Lv L, Zhang Y, Jiao H, Zhang X, Yang Y, Song G, Cheng H. Identification and molecular evolution of the GLX genes in 21 plant species: a focus on the Gossypium hirsutum. BMC Genomics 2023; 24:474. [PMID: 37608304 PMCID: PMC10464159 DOI: 10.1186/s12864-023-09524-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/19/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND The glyoxalase system includes glyoxalase I (GLXI), glyoxalase II (GLXII) and glyoxalase III (GLXIII), which are responsible for methylglyoxal (MG) detoxification and involved in abiotic stress responses such as drought, salinity and heavy metal. RESULTS In this study, a total of 620 GLX family genes were identified from 21 different plant species. The results of evolutionary analysis showed that GLX genes exist in all species from lower plants to higher plants, inferring that GLX genes might be important for plants, and GLXI and GLXII account for the majority. In addition, motif showed an expanding trend in the process of evolution. The analysis of cis-acting elements in 21 different plant species showed that the promoter region of the GLX genes were rich in phytohormones and biotic and abiotic stress-related elements, indicating that GLX genes can participate in a variety of life processes. In cotton, GLXs could be divided into two groups and most GLXIs distributed in group I, GLXIIs and GLXIIIs mainly belonged to group II, indicating that there are more similarities between GLXII and GLXIII in cotton evolution. The transcriptome data analysis and quantitative real-time PCR analysis (qRT-PCR) show that some members of GLX family would respond to high temperature treatment in G.hirsutum. The protein interaction network of GLXs in G.hirsutum implied that most members can participate in various life processes through protein interactions. CONCLUSIONS The results elucidated the evolutionary history of GLX family genes in plants and lay the foundation for their functions analysis in cotton.
Collapse
Affiliation(s)
- Menglin Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qiaolian Wang
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Limin Lv
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Youping Zhang
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Huixin Jiao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiang Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Yi Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Guoli Song
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Hailiang Cheng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
3
|
Deo P, McCullough CL, Almond T, Jaunay EL, Donnellan L, Dhillon VS, Fenech M. Dietary sugars and related endogenous advanced glycation end-products increase chromosomal DNA damage in WIL2-NS cells, measured using cytokinesis-block micronucleus cytome assay. Mutagenesis 2020; 35:169-177. [PMID: 31971590 DOI: 10.1093/mutage/geaa002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/07/2020] [Indexed: 01/11/2023] Open
Abstract
This study investigated the effect of glucose and fructose, and advanced glycation end-products (AGEs) on genome damage in WIL2-NS cells, measured using the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay. The effect of AGEs was investigated using the bovine serum albumin (AGE-BSA) model system induced either with glucose (Glu-BSA) or with fructose (Fru-BSA). Liquid chromatography-mass spectrometry (LC-MS/MS) analysis showed higher Nε-carboxymethyllysine (CML; 26.76 ± 1.09 nmol/mg BSA) levels in the Glu-BSA model. Nε-Carboxyethyllysine (CEL; 7.87 ± 0.19 nmol/mg BSA) and methylglyoxal-derived hydroimidazolone-1 (MG-H1; 69.77 ± 3.74 nmol/mg BSA) levels were higher in the Fru-BSA model. Genotoxic effects were measured using CBMN-Cyt assay biomarkers [binucleated(BN) cells with micronuclei (MNi), BN with nucleoplasmic bridges (NPBs) and BN with nuclear buds (NBuds)] following 9 days of treatment with either glucose, fructose, Glu-BSA or Fru-BSA. Fructose treatment exerted a significant genotoxic dose-response effect including increases of BN with MNi (R2 = 0.7704; P = 0.0031), BN with NPBs (R2 = 0.9311; P < 0.0001) and BN with NBuds (R2 = 0.7118; P = 0.0091) on cells, whereas the DNA damaging effects of glucose were less evident. High concentrations of AGEs (400-600 µg/ml) induced DNA damage; however, there was no effect on cytotoxicity indices (necrosis and apoptosis). In conclusion, this study demonstrates a potential link between physiologically high concentrations of reducing sugars or AGEs with increased chromosomal damage which is an important emerging aspect of the pathology that may be induced by diabetes. Ultimately, loss of genome integrity could accelerate the rate of ageing and increase the risk of age-related diseases over the long term. These findings indicate the need for further research on the effects of glycation on chromosomal instability and to establish whether this effect is replicated in humans in vivo.
Collapse
Affiliation(s)
- Permal Deo
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Caitlin L McCullough
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | | | - Emma L Jaunay
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Leigh Donnellan
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Varinderpal S Dhillon
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Michael Fenech
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Genome Health Foundation, North Brighton, Australia
| |
Collapse
|
4
|
Gandhi G, Mehta T, Contractor P, Tung G. Genotoxic damage in end-stage renal disease. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 835:1-10. [DOI: 10.1016/j.mrgentox.2018.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/11/2018] [Accepted: 08/12/2018] [Indexed: 01/24/2023]
|
5
|
Oxidative Stress in Kidney Diseases: The Cause or the Consequence? Arch Immunol Ther Exp (Warsz) 2017; 66:211-220. [PMID: 29214330 PMCID: PMC5956016 DOI: 10.1007/s00005-017-0496-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/11/2017] [Indexed: 12/20/2022]
Abstract
Exaggerated oxidative stress (OS) is usually considered as a disturbance in regular function of an organism. The excessive levels of OS mediators may lead to major damage within the organism’s cells and tissues. Therefore, the OS-associated biomarkers may be considered as new diagnostic tools of various diseases. In nephrology, researchers are looking for alternative methods replacing the renal biopsy in patients with suspicion of chronic kidney disease (CKD). Currently, CKD is a frequent health problem in world population, which can lead to progressive loss of kidney function and eventually to end-stage renal disease. The course of CKD depends on the primary disease. It is assumed that one of the factors influencing the course of CKD might be OS. In the current work, we review whether monitoring the OS-associated biomarkers in nephrology patients can support the decision-making process regarding diagnosis, prognostication and treatment initiation.
Collapse
|
6
|
Batar B, Guven G, Eroz S, Bese NS, Guven M. Decreased DNA repair gene XRCC1 expression is associated with radiotherapy-induced acute side effects in breast cancer patients. Gene 2016; 582:33-7. [DOI: 10.1016/j.gene.2016.01.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 12/11/2022]
|
7
|
Sung CC, Hsu YC, Chen CC, Lin YF, Wu CC. Oxidative stress and nucleic acid oxidation in patients with chronic kidney disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:301982. [PMID: 24058721 PMCID: PMC3766569 DOI: 10.1155/2013/301982] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/16/2013] [Accepted: 07/22/2013] [Indexed: 12/19/2022]
Abstract
Patients with chronic kidney disease (CKD) have high cardiovascular mortality and morbidity and a high risk for developing malignancy. Excessive oxidative stress is thought to play a major role in elevating these risks by increasing oxidative nucleic acid damage. Oxidative stress results from an imbalance between reactive oxygen/nitrogen species (RONS) production and antioxidant defense mechanisms and can cause vascular and tissue injuries as well as nucleic acid damage in CKD patients. The increased production of RONS, impaired nonenzymatic or enzymatic antioxidant defense mechanisms, and other risk factors including gene polymorphisms, uremic toxins (indoxyl sulfate), deficiency of arylesterase/paraoxonase, hyperhomocysteinemia, dialysis-associated membrane bioincompatibility, and endotoxin in patients with CKD can inhibit normal cell function by damaging cell lipids, arachidonic acid derivatives, carbohydrates, proteins, amino acids, and nucleic acids. Several clinical biomarkers and techniques have been used to detect the antioxidant status and oxidative stress/oxidative nucleic acid damage associated with long-term complications such as inflammation, atherosclerosis, amyloidosis, and malignancy in CKD patients. Antioxidant therapies have been studied to reduce the oxidative stress and nucleic acid oxidation in patients with CKD, including alpha-tocopherol, N-acetylcysteine, ascorbic acid, glutathione, folic acid, bardoxolone methyl, angiotensin-converting enzyme inhibitor, and providing better dialysis strategies. This paper provides an overview of radical production, antioxidant defence, pathogenesis and biomarkers of oxidative stress in patients with CKD, and possible antioxidant therapies.
Collapse
Affiliation(s)
- Chih-Chien Sung
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu, Taipei 114, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Chuan Hsu
- Division of Neurology, Department of Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan
| | - Chun-Chi Chen
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu, Taipei 114, Taiwan
| | - Yuh-Feng Lin
- Division of Nephrology, Department of Medicine, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City 235, Taiwan
- Graduate Institute of Clinical Medical, Taipei Medical University, Taipei 110, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu, Taipei 114, Taiwan
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
8
|
Stoyanova E, Pastor S, Coll E, Azqueta A, Collins AR, Marcos R. Base excision repair capacity in chronic renal failure patients undergoing hemodialysis treatment. Cell Biochem Funct 2013; 32:177-82. [PMID: 23873307 DOI: 10.1002/cbf.2989] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/22/2013] [Accepted: 06/06/2013] [Indexed: 01/28/2023]
Abstract
The aim of this study was to determine if the differences observed in the levels of DNA damage in a group of patients suffering from chronic renal failure are due to differences in the repair capability. DNA damage was initially measured with the comet assay in 106 hemodialysis patients. A selected group of 21 patients representing high (ten patients) and low (11 patients) levels of DNA damage were obtained for determination of base excision repair capacity. This was measured in an in vitro assay where protein extracts from lymphocytes were incubated with a substrate of DNA containing 8-oxoguanine, and the rate of incision was measured with the comet assay. Patients with high levels of genomic damage showed, as an average, significantly lower repair capacity (12·73 ± 1·84) in comparison with patients with low levels of genomic damage (18·13 ± 1·13). Nevertheless, the correlation coefficient between repair ability and levels of genomic damage was found to be only close to the significance value (r:-0·423, p: 0·056). Although DNA damage was clearly related to time on hemodialysis, base excision repair capacity was not. This is one of the few studies providing information on the repair capacity of chronic renal failure patients undergoing hemodialysis. As a summary, our results would indicate that DNA damage levels are in part associated to the repair capacity of the patients, and this repair capacity is not associated with the duration of hemodialysis treatment.
Collapse
Affiliation(s)
- Elitsa Stoyanova
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Edifici Cn, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Guven GS, Altiparmak MR, Trabulus S, Yalin AS, Batar B, Tunckale A, Guven M. Relationship Between Genomic Damage and Clinical Features in Dialysis Patients. Genet Test Mol Biomarkers 2013; 17:202-6. [DOI: 10.1089/gtmb.2012.0301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gulgun S. Guven
- Department of Medical Genetics, Istanbul University, Istanbul, Turkey
| | | | - Sinan Trabulus
- Department of Nephrology, Istanbul University, Istanbul, Turkey
| | - Ayse S. Yalin
- Department of Nephrology, Istanbul University, Istanbul, Turkey
| | - Bahadir Batar
- Department of Medical Biology, Istanbul University, Istanbul, Turkey
| | - Aydin Tunckale
- Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Mehmet Guven
- Department of Medical Biology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
10
|
Schupp N, Rutkowski P, Sebeková K, Klassen A, Bahner U, Grupp C, Heidland A, Stopper H. AT1 receptor antagonist candesartan attenuates genomic damage in peripheral blood lymphocytes of patients on maintenance hemodialysis treatment. Kidney Blood Press Res 2011; 34:167-72. [PMID: 21474964 DOI: 10.1159/000326805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 02/25/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Angiotensin II (ANG II) and advanced glycation end products (AGEs) exert genotoxic effects in vitro which were prevented by the ANG II type 1 (AT1) receptor blocker, candesartan. In end-stage renal disease (ESRD) the incidence of genomic damage is increased. A stimulation of the renin-angiotensin system and accumulation of AGEs could be involved. METHODS We tested whether oral co-administration of candesartan modulates enhanced DNA damage in ESRD patients. Fifteen maintenance hemodialysis (MHD) patients with mild hypertension were treated with candesartan for 4.5 months. Fourteen MHD patients served as conventionally treated uremic controls. DNA damage was measured as micronucleus frequency (MNF) in peripheral blood lymphocytes and evaluated three times before candesartan therapy and afterwards every 6 weeks. RESULTS Compared to 14 healthy controls, MNF at baseline was significantly elevated in MHD patients. While in the conventionally treated MHD patients the enhanced DNA damage persisted, the co-administration of candesartan ameliorated the genomic damage significantly and independently of blood pressure changes. CONCLUSION Blockade of AT1 receptors with candesartan can reduce DNA damage in MHD patients. Long-term studies in larger patient groups are needed to investigate whether the improved genomic damage lowers atherosclerotic complications and cancer development.
Collapse
Affiliation(s)
- Nicole Schupp
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, Würzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hamurcu Z, Bayram F, Kahriman G, Dönmez-Altuntas H, Baskol G. Micronucleus frequency in lymphocytes and 8-hydroxydeoxyguanosine level in plasma of women with polycystic ovary syndrome. Gynecol Endocrinol 2010; 26:590-5. [PMID: 20170347 DOI: 10.3109/09513591003632142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) has recently been linked with genomic instability and DNA damage. The aim of this study was to test genomic damage in women PCOS, using two different methods for assessing damage in both chromosome and base level. The study was performed on 36 newly diagnosed women with PCOS and 29 healthy women as controls. The micronucleus (MN) analysis used as a biomarker of chromosomal/DNA damage was performed in peripheral lymphocytes by cytokinesis-block method. 8-hydroxydeoxyguanosine (8-OHdG) levels used as a reliable marker of oxidative DNA damage were measured in plasma using an ELISA kit. We found that MN frequencies obtained from lymphocytes of the women with PCOS were significantly higher than those of controls (4.1 +/- 1.0 vs. 2.1 +/- 0.6, P = 0.001), whereas, no differences in 8-OHdG level were found between the patients with PCOS and controls (0.5 +/- 0.3 vs. 0.5 +/- 0.2, P = 0.858). These findings indicate that women with PCOS seem to have increased genomic instability, but do not appear to have oxidative DNA damage despite the increased oxidative stress associated with PCOS.
Collapse
Affiliation(s)
- Zuhal Hamurcu
- Department of Medical Biology, Medical Faculty, Erciyes University, Kayseri, Turkey.
| | | | | | | | | |
Collapse
|
12
|
Maier CS, Chavez J, Wang J, Wu J. Protein adducts of aldehydic lipid peroxidation products identification and characterization of protein adducts using an aldehyde/keto-reactive probe in combination with mass spectrometry. Methods Enzymol 2010; 473:305-30. [PMID: 20513485 DOI: 10.1016/s0076-6879(10)73016-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This chapter describes a mass spectrometry-based strategy that facilitates the unambiguous identification and characterization of proteins modified by lipid peroxidation-derived 2-alkenals. The approach employs a biotinylated hydroxyl amine derivative as an aldehyde/keto-reactive probe in conjunction with selective enrichment and tandem mass spectrometric analysis. Methodological details are given for model studies involving a distinct protein and 4-hydroxy-2-nonenal (HNE). The method was also evaluated for an exposure study of a cell culture system with HNE that yielded the major protein targets of HNE in human monocytic THP-1 cells. The application of the approach to complex biological systems is demonstrated for the identification and characterization of endogenous protein targets of aldehydic lipid peroxidation products present in cardiac mitochondria.
Collapse
Affiliation(s)
- Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, Oregon, USA
| | | | | | | |
Collapse
|
13
|
Herman M, Ori Y, Chagnac A, Korzets A, Weinstein T, Malachi T, Gafter U. Spontaneous DNA Repair Increases during Hemodialysis. ACTA ACUST UNITED AC 2008; 108:c188-93. [DOI: 10.1159/000118941] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 11/14/2007] [Indexed: 11/19/2022]
|
14
|
Lapolla A, Ragazzi E, Andretta B, Fedele D, Tubaro M, Seraglia R, Molin L, Traldi P. Multivariate analysis of matrix-assisted laser desorption/ionization mass spectrometric data related to glycoxidation products of human globins in nephropathic patients. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1018-23. [PMID: 17398112 DOI: 10.1016/j.jasms.2007.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 02/14/2007] [Accepted: 02/14/2007] [Indexed: 05/14/2023]
Abstract
To clarify the possible pathogenetic role of oxidation products originated from the glycation of proteins, human globins from nephropathic patients have been studied by matrix-assisted laser desorption/ionization mass spectrometry (MALDI), revealing not only unglycated and monoglycated globins, but also a series of different species. For the last ones, structural assignments were tentatively done on the basis of observed masses and expectations for the Maillard reaction pattern. Consequently, they must be considered only propositive, and the discussion which will follow must be considered in this view. In our opinion this approach does not seem to compromise the intended diagnostic use of the data because distinctions are valid even if the assignments are uncertain. We studied nine healthy subjects and 19 nephropathic patients and processed the data obtained from the MALDI spectra using a multivariate analysis. Our results showed that multivariate analytical techniques enable differential aspects of the profile of molecular species to be identified in the blood of end stage nephropathic patients. A correct grouping can be achieved by principal component analysis (PCA) and the results suggest that several products involved in carbonyl stress exist in nephropathic patients. These compounds may have a relevant role as specific markers of the pathological state.
Collapse
Affiliation(s)
- Annunziata Lapolla
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Padova, Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
McKiernan SH, Tuen VC, Baldwin K, Wanagat J, Djamali A, Aiken JM. Adult-onset calorie restriction delays the accumulation of mitochondrial enzyme abnormalities in aging rat kidney tubular epithelial cells. Am J Physiol Renal Physiol 2007; 292:F1751-60. [PMID: 17344189 DOI: 10.1152/ajprenal.00307.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adult-onset calorie restriction (A-CR) is an experimental model of life extension and healthy aging less explored, compared with calorie restriction begun at early ages, but one more realistic for human application. We examined the effect of A-CR on the aging rat kidney with respect to common structural age-dependent changes and the accumulation of mitochondrial enzyme abnormalities in tubular epithelial cells. A 40% calorie restriction was initiated in middle-aged rats, before the onset of significant age-related changes in the Fischer x Brown Norway rat kidney. This dietary intervention effectively reduced glomerulosclerosis and tubular atrophy within 6 mo and changed the rate of interstitial fibrosis formation within 1 yr and vascular wall thickening and the expression cytochrome c oxidase (COX)-deficient tubular epithelial cells in 18 mo compared with age-matched ad libitum-fed rats. Our histological approach (histochemical staining for mitochondrial enzyme activity and laser capture microdissection) coupled with mitochondrial DNA (mtDNA) PCR analyses demonstrated that COX-deficient renal tubular epithelial cells accumulated mtDNA deletion mutations and that these cells contained unique, clonally expanded mtDNA deletion mutations. Renal tubular epithelial cells with mitochondrial abnormalities presented cellular characteristics indicative of physiological dysfunction.
Collapse
Affiliation(s)
- Susan H McKiernan
- Department of Animal Health and Biomedical Sciences, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | | | |
Collapse
|
16
|
DNA damage during glycation of lysine by methylglyoxal: assessment of vitamins in preventing damage. Amino Acids 2007; 33:615-21. [DOI: 10.1007/s00726-007-0498-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Accepted: 12/06/2006] [Indexed: 11/28/2022]
|
17
|
Schupp N, Schinzel R, Heidland A, Stopper H. Genotoxicity of Advanced Glycation End Products: Involvement of Oxidative Stress and of Angiotensin II Type 1 Receptors. Ann N Y Acad Sci 2006; 1043:685-95. [PMID: 16037294 DOI: 10.1196/annals.1333.079] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In patients with chronic renal failure, cancer incidence is increased. This may be related to an elevated level of genomic damage, which has been demonstrated by micronuclei formation as well as by comet assay analysis. Advanced glycation end products (AGEs) are markedly elevated in renal failure. In the comet assay, the model AGEs methylglyoxal- and carboxy(methyl)lysine-modified bovine serum albumin (BSA) induced significant DNA damage in colon, kidney, and liver cells. The addition of antioxidants prevented AGE-induced DNA damage, suggesting enhanced formation of reactive oxygen species (ROS). The coincubation with dimethylfumarate (DMF), an inhibitor of NF-kappaB translocation, reduced the genotoxic effect, thereby underscoring the key role of NF-kappaB in this process. One of the genes induced by NF-kappaB is angiotensinogen. The ensuing proteolytic activity yields angiotensin II, which evokes oxidative stress as well as proinflammatory responses. A modulator of the renin-angiotensin system (RAS), the angiotensin II (Ang II) receptor 1 antagonist, candesartan, yielded a reduction of the AGE-induced DNA damage, connecting the two signal pathways, RAS and AGE signaling. We were able to identify important participants in AGE-induced DNA damage: ROS, NF-kappaB, and Ang II, as well as modulators to prevent this DNA damage: antioxidants, DMF, and AT1 antagonists.
Collapse
Affiliation(s)
- Nicole Schupp
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany.
| | | | | | | |
Collapse
|