1
|
Han B, Zhang Y, Liu C, Ji P, Xing Z, Geng X, Chi K, Gong M, Li Y, Zhang Y, Fu Z, Hong Q, Cai G, Chen X, Sun X. Renal inflammation combined with renal function reserve reduction accelerate kidney aging via pentose phosphate pathway. iScience 2024; 27:110045. [PMID: 38947529 PMCID: PMC11214290 DOI: 10.1016/j.isci.2024.110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/20/2024] [Accepted: 05/17/2024] [Indexed: 07/02/2024] Open
Abstract
Aging is closely associated with inflammation, which affects renal function reserve (RFR) in the kidneys. This study aims to investigate the impact of reduced RFR reduction on kidney aging and the influence of renal inflammation and RFR reduction on this process. Natural aging rats and those subjected to unilateral nephrectomy (UNX), 1/6 nephrectomy (1/6NX), and unilateral ureteral obstruction (UUO) were observed at 6, 12, 18, and 21 months. Our findings suggest that RFR reduction and renal inflammation can accelerate kidney aging, and inflammation contributes more. Metabolomics analysis revealed alterations in amino acid metabolism contribute to RFR decline. Furthermore, experiments in vitro confirmed the involvement of pentose phosphate pathway (PPP) in promoting aging though inflammation. Our research provides novel insights into for the mechanism of kidney aging and provides indirect support for clinical treatment decisions, such as addressing kidney inflammation, stones, or tumors that may necessitate partial or complete nephrectomy.
Collapse
Affiliation(s)
- Bing Han
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - YiXuan Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Chao Liu
- Department of Critical Care Medicine, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Pengcheng Ji
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Zenghui Xing
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xiaodong Geng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Kun Chi
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Ming Gong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Yingying Li
- Department of Ultrasound, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Ying Zhang
- Department of Ultrasound, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Zhangning Fu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xuefeng Sun
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| |
Collapse
|
2
|
Gollie JM, Ryan AS, Sen S, Patel SS, Kokkinos PF, Harris-Love MO, Scholten JD, Blackman MR. Exercise for patients with chronic kidney disease: from cells to systems to function. Am J Physiol Renal Physiol 2024; 326:F420-F437. [PMID: 38205546 PMCID: PMC11208028 DOI: 10.1152/ajprenal.00302.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic kidney disease (CKD) is among the leading causes of death and disability, affecting an estimated 800 million adults globally. The underlying pathophysiology of CKD is complex creating challenges to its management. Primary risk factors for the development and progression of CKD include diabetes mellitus, hypertension, age, obesity, diet, inflammation, and physical inactivity. The high prevalence of diabetes and hypertension in patients with CKD increases the risk for secondary consequences such as cardiovascular disease and peripheral neuropathy. Moreover, the increased prevalence of obesity and chronic levels of systemic inflammation in CKD have downstream effects on critical cellular functions regulating homeostasis. The combination of these factors results in the deterioration of health and functional capacity in those living with CKD. Exercise offers protective benefits for the maintenance of health and function with age, even in the presence of CKD. Despite accumulating data supporting the implementation of exercise for the promotion of health and function in patients with CKD, a thorough description of the responses and adaptations to exercise at the cellular, system, and whole body levels is currently lacking. Therefore, the purpose of this review is to provide an up-to-date comprehensive review of the effects of exercise training on vascular endothelial progenitor cells at the cellular level; cardiovascular, musculoskeletal, and neural factors at the system level; and physical function, frailty, and fatigability at the whole body level in patients with CKD.
Collapse
Affiliation(s)
- Jared M Gollie
- Research and Development Service, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, United States
- Department of Health, Human Function, and Rehabilitation Sciences, The George Washington University, Washington, District of Columbia, United States
| | - Alice S Ryan
- Department of Medicine, University of Maryland, Baltimore, Maryland, United States
- Division of Geriatrics and Palliative Medicine, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States
| | - Sabyasachi Sen
- Department of Medicine, Washington DC Veterans Affairs, Medical Center, Washington, District of Columbia, United States
- Department of Medicine, The George Washington University, Washington, District of Columbia, United States
| | - Samir S Patel
- Research and Development Service, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, United States
- Department of Medicine, Washington DC Veterans Affairs, Medical Center, Washington, District of Columbia, United States
- Department of Medicine, The George Washington University, Washington, District of Columbia, United States
| | - Peter F Kokkinos
- Division of Cardiology, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, United States
- Department of Kinesiology and Health, Rutgers University, New Brunswick, New Jersey, United States
| | - Michael O Harris-Love
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Geriatric Research Education and Clinical Center, Eastern Colorado Veterans Affairs Health Care System, Denver, Colorado, United States
| | - Joel D Scholten
- Physical Medicine and Rehabilitation Service, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, United States
| | - Marc R Blackman
- Research and Development Service, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, United States
- Department of Medicine, Washington DC Veterans Affairs, Medical Center, Washington, District of Columbia, United States
- Department of Medicine, The George Washington University, Washington, District of Columbia, United States
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
- Department of Rehabilitation Medicine, Georgetown University, Washington, District of Columbia, United States
| |
Collapse
|
3
|
Ravender R, Roumelioti ME, Schmidt DW, Unruh ML, Argyropoulos C. Chronic Kidney Disease in the Older Adult Patient with Diabetes. J Clin Med 2024; 13:348. [PMID: 38256482 PMCID: PMC10816477 DOI: 10.3390/jcm13020348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Diabetes mellitus (DM) and chronic kidney disease (CKD) are common in middle aged and older adult individuals. DM may accelerate the aging process, and the age-related declines in the estimated glomerular filtration rate (eGFR) can pose a challenge to diagnosing diabetic kidney disease (DKD) using standard diagnostic criteria especially with the absence of severe albuminuria among older adults. In the presence of CKD and DM, older adult patients may need multidisciplinary care due to susceptibility to various health issues, e.g., cognitive decline, auditory or visual impairment, various comorbidities, complex medical regimens, and increased sensitivity to medication adverse effects. As a result, it can be challenging to apply recent therapeutic advancements for the general population to older adults. We review the evidence that the benefits from these newer therapies apply equally to older and younger patients with CKD and diabetes type 2 and propose a comprehensive management. This framework will address nonpharmacological measures and pharmacological management with renin angiotensin system inhibitors (RASi), sodium glucose co-transporter 2 inhibitors (SGLT2i), non-steroidal mineralocorticoids receptor antagonists (MRAs), and glucagon like peptide 1 receptor agonists (GLP1-RAs).
Collapse
Affiliation(s)
| | | | | | | | - Christos Argyropoulos
- Division of Nephrology, Department of Internal Medicine, University of New Mexico School of Medicine, MSC 04-2785, Albuquerque, NM 87131, USA; (R.R.); (M.-E.R.); (D.W.S.); (M.L.U.)
| |
Collapse
|
4
|
Stem Cell-Based Therapeutic Strategies for Premature Ovarian Insufficiency and Infertility: A Focus on Aging. Cells 2022; 11:cells11233713. [PMID: 36496972 PMCID: PMC9738202 DOI: 10.3390/cells11233713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Reproductive aging is on the rise globally and inseparable from the entire aging process. An extreme form of reproductive aging is premature ovarian insufficiency (POI), which to date has mostly been of idiopathic etiology, thus hampering further clinical applications and associated with enormous socioeconomic and personal costs. In the field of reproduction, the important functional role of inflammation-induced ovarian deterioration and therapeutic strategies to prevent ovarian aging and increase its function are current research hotspots. This review discusses the general pathophysiology and relative causes of POI and comprehensively describes the association between the aging features of POI and infertility. Next, various preclinical studies of stem cell therapies with potential for POI treatment and their molecular mechanisms are described, with particular emphasis on the use of human induced pluripotent stem cell (hiPSC) technology in the current scenario. Finally, the progress made in the development of hiPSC technology as a POI research tool for engineering more mature and functional organoids suitable as an alternative therapy to restore infertility provides new insights into therapeutic vulnerability, and perspectives on this exciting research on stem cells and the derived exosomes towards more effective POI diagnosis and treatment are also discussed.
Collapse
|
5
|
Liao C, Liang S, Wang Y, Zhong T, Liu X. Sclerostin is a promising therapeutic target for oral inflammation and regenerative dentistry. J Transl Med 2022; 20:221. [PMID: 35562828 PMCID: PMC9102262 DOI: 10.1186/s12967-022-03417-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/28/2022] [Indexed: 11/10/2022] Open
Abstract
Sclerostin is the protein product of the SOST gene and is known for its inhibitory effects on bone formation. The monoclonal antibody against sclerostin has been approved as a novel treatment method for osteoporosis. Oral health is one of the essential aspects of general human health. Hereditary bone dysplasia syndrome caused by sclerostin deficiency is often accompanied by some dental malformations, inspiring the therapeutic exploration of sclerostin in the oral and dental fields. Recent studies have found that sclerostin is expressed in several functional cell types in oral tissues, and the expression level of sclerostin is altered in pathological conditions. Sclerostin not only exerts similar negative outcomes on the formation of alveolar bone and bone-like tissues, including dentin and cementum, but also participates in the development of oral inflammatory diseases such as periodontitis, pulpitis, and peri-implantitis. This review aims to highlight related research progress of sclerostin in oral cavity, propose necessary further research in this field, and discuss its potential as a therapeutic target for dental indications and regenerative dentistry.
Collapse
Affiliation(s)
- Chufang Liao
- School of Stomatology, Jinan University, Guangzhou, China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China.,Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shanshan Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Prosthodontics, Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yining Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Prosthodontics, Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ting Zhong
- School of Stomatology, Jinan University, Guangzhou, China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China.,Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangning Liu
- School of Stomatology, Jinan University, Guangzhou, China. .,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China. .,Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
6
|
Cohen C, Le Goff O, Soysouvanh F, Vasseur F, Tanou M, Nguyen C, Amrouche L, Le Guen J, Saltel-Fulero O, Meunier T, Nguyen-Khoa T, Rabant M, Nochy D, Legendre C, Friedlander G, Childs BG, Baker DJ, Knebelmann B, Anglicheau D, Milliat F, Terzi F. Glomerular endothelial cell senescence drives age-related kidney disease through PAI-1. EMBO Mol Med 2021; 13:e14146. [PMID: 34725920 PMCID: PMC8573606 DOI: 10.15252/emmm.202114146] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
The mechanisms underlying the development of glomerular lesions during aging are largely unknown. It has been suggested that senescence might play a role, but the pathophysiological link between senescence and lesion development remains unexplained. Here, we uncovered an unexpected role for glomerular endothelial cells during aging. In fact, we discovered a detrimental cross-talk between senescent endothelial cells and podocytes, through PAI-1. In vivo, selective inactivation of PAI-1 in endothelial cells protected glomeruli from lesion development and podocyte loss in aged mice. In vitro, blocking PAI-1 in supernatants from senescent endothelial cells prevented podocyte apoptosis. Consistently, depletion of senescent cells prevented podocyte loss in old p16 INK-ATTAC transgenic mice. Importantly, these experimental findings are relevant to humans. We showed that glomerular PAI-1 expression was predictive of poor outcomes in transplanted kidneys from elderly donors. In addition, we observed that in elderly patients, urinary PAI-1 was associated with age-related chronic kidney disease. Altogether, these results uncover a novel mechanism of kidney disease and identify PAI-1 as a promising biomarker of kidney dysfunction in allografts from elderly donors.
Collapse
Affiliation(s)
- Camille Cohen
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
| | - Océane Le Goff
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
| | - Frédéric Soysouvanh
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), Laboratoire Radiobiologie des Expositions Médicale, Fontenay-aux-Roses, France
| | - Florence Vasseur
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
| | - Marine Tanou
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
| | - Clément Nguyen
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
| | - Lucile Amrouche
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
- Service de Néphrologie-Transplantation, Hôpital Necker Enfants Malades, AP-HP centre, Université de Paris, Paris, France
| | - Julien Le Guen
- Service de Gériatrie, Hôpital Européen Georges Pompidou, AP-HP Centre, Université de Paris, Paris, France
| | - Oriana Saltel-Fulero
- Service de Gériatrie, Hôpital Européen Georges Pompidou, AP-HP Centre, Université de Paris, Paris, France
| | - Tanguy Meunier
- Service de Gériatrie, Hôpital Européen Georges Pompidou, AP-HP Centre, Université de Paris, Paris, France
| | - Thao Nguyen-Khoa
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
- Service de Biochimie, Hôpital Necker Enfants Malades, AP-HP Centre, Université de Paris, Paris, France
| | - Marion Rabant
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
- Service d'Anatomo-Pathologie, AP-HP, Hôpital Necker Enfants Malades, AP-HP Centre, Université de Paris, Paris, France
| | - Dominique Nochy
- Service d'Anatomo-Pathologie, Hôpital Européen George Pompidou, AP-HP Centre, Université de Paris, Paris, France
| | - Christophe Legendre
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
- Service de Néphrologie-Transplantation, Hôpital Necker Enfants Malades, AP-HP centre, Université de Paris, Paris, France
| | - Gérard Friedlander
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
| | - Bennett G Childs
- Department of Pediatrics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Daren J Baker
- Department of Pediatrics, Mayo Clinic College of Medicine, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Bertrand Knebelmann
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
- Service de Néphrologie-Transplantation, Hôpital Necker Enfants Malades, AP-HP centre, Université de Paris, Paris, France
| | - Dany Anglicheau
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
- Service de Néphrologie-Transplantation, Hôpital Necker Enfants Malades, AP-HP centre, Université de Paris, Paris, France
| | - Fabien Milliat
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), Laboratoire Radiobiologie des Expositions Médicale, Fontenay-aux-Roses, France
| | - Fabiola Terzi
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
| |
Collapse
|
7
|
Cohen C. [Molecular mechanisms of renal aging]. Nephrol Ther 2021; 17S:S108-S114. [PMID: 33910690 DOI: 10.1016/j.nephro.2020.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 02/06/2020] [Indexed: 11/28/2022]
Abstract
Chronic kidney disease (CKD) is characterized by the progressive decline of renal function, that occurs once a critical number of nephrons has been lost, regardless the etiology. CKD prevalence is constantly increasing, especially with age. Nevertheless, the molecular mechanisms underlying this progression are not very well known. With an increasing number of patients with CKD, especially elderly patients, it urges to better understand the pathophysiology of this progression to elaborate new therapeutic strategies. Recent works have highlighted the role of some cellular processes, such as senescence, during age-related kidney dysfunction. Senescence corresponds to a cellular state associated with a cell cycle blockade. Although the cell cannot proliferate, she is able to secrete a lot of proteins grouped under the term of senescence associated secretory phenotype (SASP). Identification of molecular mechansims involved in age related kidney dysfunction could help to determine new therapeutic targets.
Collapse
Affiliation(s)
- Camille Cohen
- Department of Growth and Signaling, Institut national de la santé et de la recherche médicale U1151, Centre national de la recherche scientifique UMR8253, université Paris Descartes, Institut Necker Enfants-Malades (INEM), 75015 Paris, France; Service de néphrologie-transplantation, hôpital Necker, 149, rue de Sèvres, 75015 Paris, France.
| |
Collapse
|
8
|
Khafaga AF, Elewa YHA, Atta MS, Noreldin AE. Aging-Related Functional and Structural Changes in Renal Tissues: Lesson from a Camel Model. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-13. [PMID: 33750511 DOI: 10.1017/s1431927621000210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Renal aging is a progressive, physiological, and anatomical change that naturally occurs in all animal species. To date, no information is available concerning the aging-related structural and functional changes in camel kidneys. A total of 25 healthy male camels (14 aged 4–6 years and 11 aged 18–22 years) were included in this study. After the camels were slaughtered, samples were collected from all the camels’ kidneys and prepared for histopathological, immunohistochemical, and gene expression evaluations. The most striking observation was the significant decline in the immunohistochemical abundance of podocin and the significant upregulation of smoothening in the aging camels’ kidneys. However, the nonsignificant changes have reported for nephrin, calbindin, autophagy 5 (ATG5), aquaporin 1, and toll-like receptor 9. Furthermore, the mRNA expressions of sirtuin 1, superoxide dismutase 1, superoxide dismutase 2, peroxisome proliferator-activated receptor alpha, B-cell lymphoma 2 (Bcl-2), and erythropoietin were significantly decreased in the aging camels’ kidneys. While the significant upregulation of Bcl-2-associated X protein and the nonsignificant increase in ATG5 expression levels were reported in the aging camels’ kidneys. The present findings provide better understanding of the complex events and initiating factors of aging, allowing for the development of a future therapeutic strategy to preserve adequate renal function throughout life.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Pathology Department, Faculty of Veterinary Medicine, Alexandria University, Edfina22758, Egypt
| | - Yaser H A Elewa
- Histology and Cytology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig44519, Egypt
| | - Mustafa S Atta
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh33516, Egypt
| | - Ahmed E Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour22511, Egypt
| |
Collapse
|
9
|
Liao C, Wang Y, Ou Y, Wu Y, Zhou Y, Liang S. Effects of sclerostin on lipopolysaccharide-induced inflammatory phenotype in human odontoblasts and dental pulp cells. Int J Biochem Cell Biol 2019; 117:105628. [PMID: 31639458 DOI: 10.1016/j.biocel.2019.105628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 01/07/2023]
Abstract
Previously we have demonstrated that sclerostin inhibits stress-induced odontogenic differentiation of odontoblasts and accelerates senescence of dental pulp cells (DPCs) Odontoblasts and DPCs are main functioning cells for inflammation resistance and tissue regeneration in dentine-pulp complex. Sclerostin is relevant for systemic inflammation and chronic periodontitis processes, but its effects on dental pulp inflammation remains unclear. In this study, we found that sclerostin expression of odontoblasts was elevated in lipopolysaccharide-induced inflammatory environment, and exogenous sclerostin increased the production of pro-inflammatory cytokines in inflamed odontoblasts. Furthermore, sclerostin activated the NF-κB signaling pathway in inflamed odontoblasts and the NF-κB inhibitor reversed the exaggerative effects of sclerostin on the pro-inflammatory cytokines production. Additionally, sclerostin promoted adhesion and migration of inflamed DPCs, while inhibiting odontoblastic differentiation of inflamed DPCs. Sclerostin also might enhance pulpal angiogenesis. Taken together, it can therefore be inferred that sclerostin is upregulated in inflamed odontoblasts under pulpal inflammatory condition to enhance inflammatory responses in dentine-pulp complex and impair reparative dentinogenesis. This indicates that sclerostin inhibition might be a therapeutic target for anti-inflammation and pro-regeneration during dental pulp inflammation.
Collapse
Affiliation(s)
- Chufang Liao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China
| | - Yining Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China; Department of Prosthodontics, Hospital of Stomatology, Wuhan University, China
| | - Yanjing Ou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China
| | - Yun Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China
| | - Yi Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China; Department of Prosthodontics, Hospital of Stomatology, Wuhan University, China
| | - Shanshan Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China; Department of Prosthodontics, Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
10
|
Yasuda H. Is immunosenesence good for kidney injury? Kidney Res Clin Pract 2019; 38:1-2. [PMID: 30897891 PMCID: PMC6481978 DOI: 10.23876/j.krcp.19.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 02/19/2018] [Accepted: 02/19/2019] [Indexed: 11/18/2022] Open
Affiliation(s)
- Hideo Yasuda
- First Department of Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
11
|
Inflamm-Aging: A New Mechanism Affecting Premature Ovarian Insufficiency. J Immunol Res 2019; 2019:8069898. [PMID: 30719458 PMCID: PMC6334348 DOI: 10.1155/2019/8069898] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 11/15/2018] [Indexed: 11/18/2022] Open
Abstract
The normal function of ovaries, along with the secretion of sex hormones, is among the most important endocrine factors that maintain the female sexual characteristics and promote follicular development and ovulation. Premature ovarian insufficiency (POI) is a common cause in the etiology of female infertility. It is defined as the loss of ovarian function before the age of 40. The characteristics of POI are menstrual disorders, including amenorrhea and delayed menstruation, accompanied by a raised gonadotrophin level and decreased estradiol level. Inflammatory aging is a new concept in the research field of aging. It refers to a chronic and low-degree proinflammatory state which occurs with increasing age. Inflammatory aging is closely associated with multiple diseases, as excessive inflammation can induce the inflammatory lesions in certain organs of the body. In recent years, studies have shown that inflammatory aging plays a significant role in the pathogenesis of POI. This paper begins with the pathogenesis of inflammatory aging and summarizes the relationship between inflammatory aging and premature ovarian insufficiency in a comprehensive way, as well as discussing the new diagnostic and therapeutic methods of POI.
Collapse
|
12
|
Toba H, Lindsey ML. Extracellular matrix roles in cardiorenal fibrosis: Potential therapeutic targets for CVD and CKD in the elderly. Pharmacol Ther 2019; 193:99-120. [PMID: 30149103 PMCID: PMC6309764 DOI: 10.1016/j.pharmthera.2018.08.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Whereas hypertension, diabetes, and dyslipidemia are age-related risk factors for cardiovascular disease (CVD) and chronic kidney disease (CKD), aging alone is an independent risk factor. With advancing age, the heart and kidney gradually but significantly undergo inflammation and subsequent fibrosis, which eventually results in an irreversible decline in organ physiology. Through cardiorenal network interactions, cardiac dysfunction leads to and responds to renal injury, and both facilitate aging effects. Thus, a comprehensive strategy is needed to evaluate the cardiorenal aging network. Common hallmarks shared across systems include extracellular matrix (ECM) accumulation, along with upregulation of matrix metalloproteinases (MMPs) including MMP-9. The wide range of MMP-9 substrates, including ECM components and inflammatory cytokines, implicates MMP-9 in a variety of pathological and age-related processes. In particular, there is strong evidence that inflammatory cell-derived MMP-9 exacerbates cardiorenal aging. This review explores the potential therapeutic targets against CVD and CKD in the elderly, focusing on ECM and MMP roles.
Collapse
Affiliation(s)
- Hiroe Toba
- Department of Clinical Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan.
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, and Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA.
| |
Collapse
|
13
|
Hypertension exaggerates renovascular resistance via miR-122-associated stress response in aging. J Hypertens 2018; 36:2226-2236. [DOI: 10.1097/hjh.0000000000001770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Higgins SP, Tang Y, Higgins CE, Mian B, Zhang W, Czekay RP, Samarakoon R, Conti DJ, Higgins PJ. TGF-β1/p53 signaling in renal fibrogenesis. Cell Signal 2017; 43:1-10. [PMID: 29191563 DOI: 10.1016/j.cellsig.2017.11.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 01/04/2023]
Abstract
Fibrotic disorders of the renal, pulmonary, cardiac, and hepatic systems are associated with significant morbidity and mortality. Effective therapies to prevent or curtail the advancement to organ failure, however, remain a major clinical challenge. Chronic kidney disease, in particular, constitutes an increasing medical burden affecting >15% of the US population. Regardless of etiology (diabetes, hypertension, ischemia, acute injury, urologic obstruction), persistently elevated TGF-β1 levels are causatively linked to the activation of profibrotic signaling networks and disease progression. TGF-β1 is the principal driver of renal fibrogenesis, a dynamic pathophysiologic process that involves tubular cell injury/apoptosis, infiltration of inflammatory cells, interstitial fibroblast activation and excess extracellular matrix synthesis/deposition leading to impaired kidney function and, eventually, to chronic and end-stage disease. TGF-β1 activates the ALK5 type I receptor (which phosphorylates SMAD2/3) as well as non-canonical (e.g., src kinase, EGFR, JAK/STAT, p53) pathways that collectively drive the fibrotic genomic program. Such multiplexed signal integration has pathophysiological consequences. Indeed, TGF-β1 stimulates the activation and assembly of p53-SMAD3 complexes required for transcription of the renal fibrotic genes plasminogen activator inhibitor-1, connective tissue growth factor and TGF-β1. Tubular-specific ablation of p53 in mice or pifithrin-α-mediated inactivation of p53 prevents epithelial G2/M arrest, reduces the secretion of fibrotic effectors and attenuates the transition from acute to chronic renal injury, further supporting the involvement of p53 in disease progression. This review focuses on the pathophysiology of TGF-β1-initiated renal fibrogenesis and the role of p53 as a regulator of profibrotic gene expression.
Collapse
Affiliation(s)
- Stephen P Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - Yi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - Craig E Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - Badar Mian
- Department of Surgery, Albany Medical College, Albany, NY 12208, United States; The Urological Institute of Northeastern New York, Albany Medical College, Albany, NY 12208, United States.
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - Ralf-Peter Czekay
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - David J Conti
- Department of Surgery, Albany Medical College, Albany, NY 12208, United States; Division of Transplantation Surgery, Albany Medical College, Albany, NY 12208, United States.
| | - Paul J Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States; Department of Surgery, Albany Medical College, Albany, NY 12208, United States; The Urological Institute of Northeastern New York, Albany Medical College, Albany, NY 12208, United States.
| |
Collapse
|
15
|
Braun F, Rinschen MM, Bartels V, Frommolt P, Habermann B, Hoeijmakers JHJ, Schumacher B, Dollé MET, Müller RU, Benzing T, Schermer B, Kurschat CE. Altered lipid metabolism in the aging kidney identified by three layered omic analysis. Aging (Albany NY) 2017; 8:441-57. [PMID: 26886165 PMCID: PMC4833139 DOI: 10.18632/aging.100900] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aging-associated diseases and their comorbidities affect the life of a constantly growing proportion of the population in developed countries. At the center of these comorbidities are changes of kidney structure and function as age-related chronic kidney disease predisposes to the development of cardiovascular diseases such as stroke, myocardial infarction or heart failure. To detect molecular mechanisms involved in kidney aging, we analyzed gene expression profiles of kidneys from adult and aged wild-type mice by transcriptomic, proteomic and targeted lipidomic methodologies. Interestingly, transcriptome and proteome analyses revealed differential expression of genes primarily involved in lipid metabolism and immune response. Additional lipidomic analyses uncovered significant age-related differences in the total amount of phosphatidylethanolamines, phosphatidylcholines and sphingomyelins as well as in subspecies of phosphatidylserines and ceramides with age. By integration of these datasets we identified Aldh1a1, a key enzyme in vitamin A metabolism specifically expressed in the medullary ascending limb, as one of the most prominent upregulated proteins in old kidneys. Moreover, ceramidase Asah1 was highly expressed in aged kidneys, consistent with a decrease in ceramide C16. In summary, our data suggest that changes in lipid metabolism are involved in the process of kidney aging and in the development of chronic kidney disease.
Collapse
Affiliation(s)
- Fabian Braun
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Valerie Bartels
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Department of Cardiology and Angiology, University of Münster, Münster, Germany
| | - Peter Frommolt
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Bianca Habermann
- Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jan H J Hoeijmakers
- Department of Cell Biology and Genetics, Medical Genetics Centre, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Björn Schumacher
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Cologne, Germany
| | - Martijn E T Dollé
- National Institute of Public Health and the Environment, Centre for Health Protection, Bilthoven, The Netherlands
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Christine E Kurschat
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Feng Y, Yu YH, Wang ST, Ren J, Camer D, Hua YZ, Zhang Q, Huang J, Xue DL, Zhang XF, Huang XF, Liu Y. Chlorogenic acid protects D-galactose-induced liver and kidney injury via antioxidation and anti-inflammation effects in mice. PHARMACEUTICAL BIOLOGY 2016; 54:1027-34. [PMID: 26810301 PMCID: PMC11132915 DOI: 10.3109/13880209.2015.1093510] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/31/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
CONTEXT Oxidative stress and inflammation are implicated in the aging process and its related hepatic and renal function decline. Chlorogenic acid (CGA) is one of the most abundant polyphenol compounds in the human diet. Recently, CGA has shown in vivo and in vitro antioxidant properties. OBJECTIVE The current study investigates the effects of protective effects of chlorogenic acid (CGA) on D-galactose-induced liver and kidney injury. MATERIALS AND METHODS Hepatic and renal injuries were induced in a mouse model by subcutaneously injection of D-galactose (D-gal; 100 mg/kg) once a day for 8 consecutive weeks and orally administered simultaneously with CGA included in the food (200 mg/kg of diet). The liver and renal functions were examined. Histological analyses of liver and kidney were done by haematoxylin and eosin staining. The oxidative stress markers and pro-inflammatory cytokines in the liver and the kidney were measured. Results CGA significantly reduced the serum aminotransferase, serum creatinine (SCr) and blood urea nitrogen (BUN) levels in D-gal mice (p <0.05). CGA also restored superoxide dismutase, catalase, and malondialdehyde levels and decreased glutathione content in the liver and kidney in D-gal mice (p <0.05). Improvements in liver and kidney were also noted in histopathological studies. CGA reduced tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) protein levels in the liver and kidney in D-gal mice (p <0.05). DISCUSSION AND CONCLUSION These findings suggest that CGA attenuates D-gal-induced chronic liver and kidney injury and that this protection may be due to its antioxidative and anti-inflammatory activities.
Collapse
Affiliation(s)
- Yan Feng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Ying-Hua Yu
- Schizophrenia Research Institute (SRI), Sydney, NSW, Australia
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, NSW, Australia
| | - Shu-Ting Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jing Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Danielle Camer
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, NSW, Australia
| | - Yu-Zhou Hua
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Qian Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jie Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Dan-Lu Xue
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Xiao-Fei Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Xu-Feng Huang
- Schizophrenia Research Institute (SRI), Sydney, NSW, Australia
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, NSW, Australia
| | - Yi Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu, China
| |
Collapse
|
17
|
O’Brown ZK, Van Nostrand EL, Higgins JP, Kim SK. The Inflammatory Transcription Factors NFκB, STAT1 and STAT3 Drive Age-Associated Transcriptional Changes in the Human Kidney. PLoS Genet 2015; 11:e1005734. [PMID: 26678048 PMCID: PMC4682820 DOI: 10.1371/journal.pgen.1005734] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/19/2015] [Indexed: 01/17/2023] Open
Abstract
Human kidney function declines with age, accompanied by stereotyped changes in gene expression and histopathology, but the mechanisms underlying these changes are largely unknown. To identify potential regulators of kidney aging, we compared age-associated transcriptional changes in the human kidney with genome-wide maps of transcription factor occupancy from ChIP-seq datasets in human cells. The strongest candidates were the inflammation-associated transcription factors NFκB, STAT1 and STAT3, the activities of which increase with age in epithelial compartments of the renal cortex. Stimulation of renal tubular epithelial cells with the inflammatory cytokines IL-6 (a STAT3 activator), IFNγ (a STAT1 activator), or TNFα (an NFκB activator) recapitulated age-associated gene expression changes. We show that common DNA variants in RELA and NFKB1, the two genes encoding subunits of the NFκB transcription factor, associate with kidney function and chronic kidney disease in gene association studies, providing the first evidence that genetic variation in NFκB contributes to renal aging phenotypes. Our results suggest that NFκB, STAT1 and STAT3 underlie transcriptional changes and chronic inflammation in the aging human kidney. The structure and function of human kidneys deteriorate steadily with age, yet little is known about the underlying causes of kidney aging. In this work, we first used a genomics approach to identify candidate regulators of gene expression changes in the aging human kidney and identified inflammation-related transcription factors NFκB, STAT1 and STAT3 as the top candidate regulators. We found that kidney aging is associated with activation of NFκB, STAT1 and STAT3 in the renal parenchyma, and that the gene expression signatures evoked by activation of these transcription factors in human renal epithelial cells mimics age-associated gene expression changes in the kidney. Furthermore, we identified specific genetic variants in the NFκB transcription factor genes RELA and NFKB1 that associate with renal function and chronic kidney disease in humans, implicating NFκB as a potential contributor to the pathogenesis of chronic kidney disease and renal dysfunction in old age. Our findings suggest that activation of the inflammatory transcription factors STAT1, STAT3 and NFκB underlie transcriptional changes and reduced renal function in the elderly.
Collapse
Affiliation(s)
- Zach K. O’Brown
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Cancer Biology Program, Stanford University, Stanford, California, United States of America
- * E-mail:
| | - Eric L. Van Nostrand
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - John P. Higgins
- Department of Pathology, Stanford University Medical Center, Stanford, California, United States of America
| | - Stuart K. Kim
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, California, United States of America
| |
Collapse
|
18
|
Katakura M, Hashimoto M, Inoue T, Mamun AA, Tanabe Y, Arita M, Shido O. Chronic Arachidonic Acid Administration Decreases Docosahexaenoic Acid- and Eicosapentaenoic Acid-Derived Metabolites in Kidneys of Aged Rats. PLoS One 2015; 10:e0140884. [PMID: 26485038 PMCID: PMC4618288 DOI: 10.1371/journal.pone.0140884] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 10/01/2015] [Indexed: 01/27/2023] Open
Abstract
Arachidonic acid (ARA) metabolites produced by cyclo-oxygenase and lipoxygenase are important mediators maintaining physiological renal function. However, the effects of exogenous ARA on kidney function in vivo remain unknown. This study examined the effects of long-term oral ARA administration on normal renal function as well as inflammation and oxidative stress in aged rats. In addition, we measured levels of renal eicosanoids and docosanoids using liquid chromatography–tandem mass spectrometry. Control or ARA oil (240 mg/kg body weight/day) was orally administered to 21-month-old Wistar rats for 13 weeks. Levels of plasma creatinine, blood urea nitrogen, inflammatory and anti-inflammatory cytokines, reactive oxygen species, and lipid peroxidation were not significantly different between the two groups. The ARA concentration in the plasma, kidney, and liver increased in the ARA-administered group. In addition, levels of free-form ARA, prostaglandin E2, and 12- and 15-hydroxyeicosatetraenoic acid increased in the ARA-administered group, whereas renal concentration of docosahexaenoic acid and eicosapentaenoic acid decreased in the ARA-administered group. Levels of docosahexaenoic acid-derived protectin D1, eicosapentaenoic acid-derived 5-, and 18-hydroxyeicosapentaenoic acids, and resolvin E2 and E3 decreased in the ARA-administered group. Our results indicate that long-term ARA administration led to no serious adverse reactions under normal conditions and to a decrease in anti-inflammatory docosahexaenoic acid- and eicosapentaenoic acid-derived metabolites in the kidneys of aged rats. These results indicate that there is a possibility of ARA administration having a reducing anti-inflammatory effect on the kidney.
Collapse
Affiliation(s)
- Masanori Katakura
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Michio Hashimoto
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
- * E-mail:
| | - Takayuki Inoue
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Abdullah Al Mamun
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Yoko Tanabe
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Osamu Shido
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| |
Collapse
|
19
|
Song F, Ma Y, Bai XY, Chen X. The Expression Changes of Inflammasomes in the Aging Rat Kidneys. J Gerontol A Biol Sci Med Sci 2015. [PMID: 26219846 DOI: 10.1093/gerona/glv078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanisms of kidney aging are not yet clear. Studies have shown that immunological inflammation is related to kidney aging. Inflammasomes are important components of innate immune system in the body. However, the function of inflammasomes and their underlying mechanisms in renal aging remain unclear. In this study, for the first time, we systematically investigated the role of the inflammasomes and the inflammatory responses activated by inflammasomes during kidney aging. We found that during kidney aging, the expression levels of the molecules associated with the activation of inflammasomes, including toll-like receptor-4 and interleukin-1 receptor (IL-1R), were significantly increased; their downstream signaling pathway molecule interleukin-1 receptor-associated kinase-4 (IRAK4) was markedly activated (Phospho-IRAK4 was obviously increased); the nuclear factor-κB (NF-κB) signaling pathway was activated (the activated NF-κB pathway molecules Phospho-IKKβ, Phospho-IκBα, and Phospho-NF-κBp65 were significantly elevated); the levels of the inflammasome components NOD-like receptor P3 (NLRP3), NLRC4, and pro-caspase-1 were prominently upregulated; and the proinflammatory cytokines IL-1β and IL-18 were notably increased in the kidneys of 24-month-old (elderly group) rats. These results showed that inflammasomes are markedly activated during the renal aging process and might induce inflamm-aging by promoting the maturation and secretion of the proinflammatory cytokines IL-1β and IL-18.
Collapse
Affiliation(s)
- Fei Song
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
| | - Yuxiang Ma
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China. Department of Internal Medicine, Beijing Chuiyangliu Hospital, Beijing 100022, China
| | - Xue-Yuan Bai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China.
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China.
| |
Collapse
|
20
|
The aging kidney: increased susceptibility to nephrotoxicity. Int J Mol Sci 2014; 15:15358-76. [PMID: 25257519 PMCID: PMC4200815 DOI: 10.3390/ijms150915358] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/12/2014] [Accepted: 08/18/2014] [Indexed: 12/13/2022] Open
Abstract
Three decades have passed since a series of studies indicated that the aging kidney was characterized by increased susceptibility to nephrotoxic injury. Data from these experimental models is strengthened by clinical data demonstrating that the aging population has an increased incidence and severity of acute kidney injury (AKI). Since then a number of studies have focused on age-dependent alterations in pathways that predispose the kidney to acute insult. This review will focus on the mechanisms that are altered by aging in the kidney that may increase susceptibility to injury, including hemodynamics, oxidative stress, apoptosis, autophagy, inflammation and decreased repair.
Collapse
|
21
|
Xi Y, Shao F, Bai XY, Cai G, Lv Y, Chen X. Changes in the expression of the Toll-like receptor system in the aging rat kidneys. PLoS One 2014; 9:e96351. [PMID: 24810370 PMCID: PMC4014502 DOI: 10.1371/journal.pone.0096351] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/05/2014] [Indexed: 11/19/2022] Open
Abstract
Background The mechanisms of kidney aging are not yet clear. Studies have shown that immunological inflammation is related to kidney aging. Toll-like receptors (TLRs) are one of the receptor types of the body's innate immune system. The function of the TLR system and the mechanisms by which it functions in renal aging remain unclear. In the present study, we, for the first time, systematically investigated the role of the TLR system and the inflammation responses activated by TLRs during kidney aging. Methods We used western blot and immunohistochemistry to systematically analyze the changes in the expression and activation of the endogenous TLR ligands HSP70 and HMGB1, the TLRs (TLR1–TLR11), their downstream signaling pathway molecules MyD88 and Phospho-IRF-3, and the NF-κB signaling pathway molecules Phospho-IKKβ, Phospho-IκBα (NF-κB inhibition factor α), NF-κBp65, and Phospho-NF-κBp65 (activated NF-κB p65) in the kidneys of 3 months old (youth group), 12 months old (middle age group), and 24 months old (elderly group) rats. We used RT-qPCR to detect the mRNA expression changes of the proinflammatory cytokines CCL3, CCL4, CCL5, CD80, TNF-α, and IL-12b in the rat renal tissues of the various age groups. Results We found that during kidney aging, the HSP70 and HMGB1 expression levels were significantly increased, and the expression levels of TLR1, 2, 3, 4, 5, and 11 and their downstream signaling pathway molecules MyD88 and Phospho-IRF-3 were markedly elevated. Further studies have shown that in the aging kidneys, the expression levels of the NF-κB signaling pathway molecules Phospho-IKKβ, Phospho-IκBα, NF-κBp65, and Phospho-NF-κBp65 were obviously increased, and those of the proinflammatory cytokines CCL3, CCL4, CCL5, CD80, TNF-α, and IL-12b were significantly upregulated. Conclusions These results showed that the TLR system might play an important role during the kidney aging process maybe by activating the NF-κB signaling pathway and promoting the high expression of inflammation factors.
Collapse
Affiliation(s)
- Yue Xi
- Department of Nephrology, Chinese PLA General Hospital (301 Hospital), Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases (2013BAI09B05), Beijing, China
| | - Feng Shao
- Department of Nephrology, Chinese PLA General Hospital (301 Hospital), Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases (2013BAI09B05), Beijing, China
| | - Xue-Yuan Bai
- Department of Nephrology, Chinese PLA General Hospital (301 Hospital), Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases (2013BAI09B05), Beijing, China
- * E-mail: (X-YB); (XC)
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital (301 Hospital), Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases (2013BAI09B05), Beijing, China
| | - Yang Lv
- Department of Nephrology, Chinese PLA General Hospital (301 Hospital), Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases (2013BAI09B05), Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital (301 Hospital), Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases (2013BAI09B05), Beijing, China
- * E-mail: (X-YB); (XC)
| |
Collapse
|
22
|
Feng X, Feng G, Xing J, Shen B, Tan W, Huang D, Lu X, Tao T, Zhang J, Li L, Gu Z. Repeated lipopolysaccharide stimulation promotes cellular senescence in human dental pulp stem cells (DPSCs). Cell Tissue Res 2014; 356:369-80. [DOI: 10.1007/s00441-014-1799-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/09/2014] [Indexed: 01/09/2023]
|
23
|
Qian Q, Nasr SH. Diagnosis and treatment of glomerular diseases in elderly patients. Adv Chronic Kidney Dis 2014; 21:228-46. [PMID: 24602472 DOI: 10.1053/j.ackd.2014.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/19/2013] [Accepted: 01/07/2014] [Indexed: 02/07/2023]
Abstract
Glomerular diseases are common in elderly patients and are a major cause of kidney failure. Most glomerular diseases in the elderly are caused by chronic systemic diseases, including arterial hypertension, diabetes, and atherosclerotic vascular diseases, although acute systemic vasculitis, especially anti-neutrophil-cytoplamic-antibody-mediated vasculitis, and membranous nephropathy related to malignancy, drug toxicity, and idiopathic form also occur often. Complex age-related changes and sensitivity to drug toxicity can render diagnosis and treatment for elderly patients challenging. As the general population is aging and the rate of CKD rising, updating knowledge on managing these patients is critical for care providers. We provide a comprehensive review and update of the diagnosis and treatment of glomerular diseases in the elderly.
Collapse
|
24
|
The aging kidney revisited: a systematic review. Ageing Res Rev 2014; 14:65-80. [PMID: 24548926 DOI: 10.1016/j.arr.2014.02.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 01/10/2023]
Abstract
As for the whole human body, the kidney undergoes age-related changes which translate in an inexorable and progressive decline in renal function. Renal aging is a multifactorial process where gender, race and genetic background and several key-mediators such as chronic inflammation, oxidative stress, the renin-angiotensin-aldosterone (RAAS) system, impairment in kidney repair capacities and background cardiovascular disease play a significant role. Features of the aging kidney include macroscopic and microscopic changes and important functional adaptations, none of which is pathognomonic of aging. The assessment of renal function in the framework of aging is problematic and the question whether renal aging should be considered as a physiological or pathological process remains a much debated issue. Although promising dietary and pharmacological approaches have been tested to retard aging processes or renal function decline in the elderly, proper lifestyle modifications, as those applicable to the general population, currently represent the most plausible approach to maintain kidney health.
Collapse
|
25
|
Postnatal early overnutrition causes long-term renal decline in aging male rats. Pediatr Res 2014; 75:259-65. [PMID: 24232634 DOI: 10.1038/pr.2013.223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/04/2013] [Indexed: 01/05/2023]
Abstract
BACKGROUND We evaluated the influence of postnatal early overnutrition on renal pathophysiological changes in aging rats. METHODS Three or 10 male pups per mother were assigned to either the small litter (SL) or normal litter (control) groups, respectively, during the first 21 d of life. The effects of early postnatal overnutrition were determined at 12 mo. RESULTS SL rats weighed more than controls between 4 d and 6 mo of age (P < 0.05). However, between 6 and 12 mo, body weights in both groups were not different. In the SL group, at 12 mo, systolic blood pressure was higher and creatinine clearance was lower than the same in controls (P < 0.05). Numbers of CD68 (ED1)-positive macrophages and apoptotic cells in renal cortex were higher in SL rats (P < 0.05). Furthermore, index scores for glomerulosclerosis and tubulointerstitial fibrosis were higher in the SL group (P < 0.05). Significantly less glomeruli per section area were found in aging SL rats (P < 0.05). Immunoblotting and immunohistochemistry showed decreased intrarenal renin expression in SL rats (P < 0.05). CONCLUSION Early postnatal overnutrition can potentiate structural and functional abnormalities in the aging kidney and can lead to systolic hypertension with reduced intrarenal renin activity.
Collapse
|
26
|
Kwekel JC, Desai VG, Moland CL, Vijay V, Fuscoe JC. Life cycle analysis of kidney gene expression in male F344 rats. PLoS One 2013; 8:e75305. [PMID: 24116033 PMCID: PMC3792073 DOI: 10.1371/journal.pone.0075305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/13/2013] [Indexed: 11/18/2022] Open
Abstract
Age is a predisposing condition for susceptibility to chronic kidney disease and progression as well as acute kidney injury that may arise due to the adverse effects of some drugs. Age-related differences in kidney biology, therefore, are a key concern in understanding drug safety and disease progression. We hypothesize that the underlying suite of genes expressed in the kidney at various life cycle stages will impact susceptibility to adverse drug reactions. Therefore, establishing changes in baseline expression data between these life stages is the first and necessary step in evaluating this hypothesis. Untreated male F344 rats were sacrificed at 2, 5, 6, 8, 15, 21, 78, and 104 weeks of age. Kidneys were collected for histology and gene expression analysis. Agilent whole-genome rat microarrays were used to query global expression profiles. An ANOVA (p<0.01) coupled with a fold-change>1.5 in relative mRNA expression, was used to identify 3,724 unique differentially expressed genes (DEGs). Principal component analyses of these DEGs revealed three major divisions in life-cycle renal gene expression. K-means cluster analysis identified several groups of genes that shared age-specific patterns of expression. Pathway analysis of these gene groups revealed age-specific gene networks and functions related to renal function and aging, including extracellular matrix turnover, immune cell response, and renal tubular injury. Large age-related changes in expression were also demonstrated for the genes that code for qualified renal injury biomarkers KIM-1, Clu, and Tff3. These results suggest specific groups of genes that may underlie age-specific susceptibilities to adverse drug reactions and disease. This analysis of the basal gene expression patterns of renal genes throughout the life cycle of the rat will improve the use of current and future renal biomarkers and inform our assessments of kidney injury and disease.
Collapse
Affiliation(s)
- Joshua C. Kwekel
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
- * E-mail: (JCK); (JCF)
| | - Varsha G. Desai
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Carrie L. Moland
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Vikrant Vijay
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - James C. Fuscoe
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
- * E-mail: (JCK); (JCF)
| |
Collapse
|
27
|
Duan ZY, Cai GY, Chen YZ, Liang S, Liu SW, Wu J, Qiu Q, Lin SP, Zhang XG, Chen XM. Aging promotes progression of IgA nephropathy: a systematic review and meta-analysis. Am J Nephrol 2013; 38:241-52. [PMID: 24021632 DOI: 10.1159/000354646] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/19/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND There has been considerable interest in whether old age is associated with IgA nephropathy (IgAN) progression, which is still controversial. METHODS We searched multiple databases for studies published from 1980 to 2012. The inclusion criteria were case-control, cohort studies published in any language. The included studies needed to have an older group. IgAN was proven by biopsy. RESULTS We included 9 studies with a total of 6,543 patients. The meta-analyses of other risk factors between the older group (>50 years old) and the non-older group (15-50 years old) found significant differences in the presence of hypertension, proteinuria, serum cholesterol levels and baseline renal function. In the overall analysis, compared to the non-older group, older age significantly increased the incidence of developing end-stage renal disease [ESRD; relative risk (RR) random model 1.95; 95% CI: 1.27-3.01]. In the subgroup analyses, we found the age limit and traditional risk factors of IgAN may be the sources of heterogeneity between studies. Moreover, the RR (2.56) of the Asian countries was much higher than the RR (1.11) of the European countries. CONCLUSIONS This comprehensive review revealed that old age is a real risk factor for IgAN progression to ESRD. The incidence of ESRD in the older IgAN patients was 1.95 times higher than that in the non-older IgAN patients. Moreover, the risk of IgAN progression to ESRD of the older patients in Asia was higher than that of the older patients in Europe.
Collapse
Affiliation(s)
- Zhi-Yu Duan
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Schermer B, Bartels V, Frommolt P, Habermann B, Braun F, Schultze JL, Roodbergen M, Hoeijmakers JH, Schumacher B, Nürnberg P, Dollé ME, Benzing T, Müller RU, Kurschat CE. Transcriptional profiling reveals progeroid Ercc1(-/Δ) mice as a model system for glomerular aging. BMC Genomics 2013; 14:559. [PMID: 23947592 PMCID: PMC3751413 DOI: 10.1186/1471-2164-14-559] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 08/09/2013] [Indexed: 12/26/2022] Open
Abstract
Background Aging-related kidney diseases are a major health concern. Currently, models to study renal aging are lacking. Due to a reduced life-span progeroid models hold the promise to facilitate aging studies and allow examination of tissue-specific changes. Defects in genome maintenance in the Ercc1-/Δ progeroid mouse model result in premature aging and typical age-related pathologies. Here, we compared the glomerular transcriptome of young and aged Ercc1-deficient mice to young and aged WT mice in order to establish a novel model for research of aging-related kidney disease. Results In a principal component analysis, age and genotype emerged as first and second principal components. Hierarchical clustering of all 521 genes differentially regulated between young and old WT and young and old Ercc1-/Δ mice showed cluster formation between young WT and Ercc1-/Δ as well as old WT and Ercc1-/Δ samples. An unexpectedly high number of 77 genes were differentially regulated in both WT and Ercc1-/Δ mice (p < 0.0001). GO term enrichment analysis revealed these genes to be involved in immune and inflammatory response, cell death, and chemotaxis. In a network analysis, these genes were part of insulin signaling, chemokine and cytokine signaling and extracellular matrix pathways. Conclusion Beyond insulin signaling, we find chemokine and cytokine signaling as well as modifiers of extracellular matrix composition to be subject to major changes in the aging glomerulus. At the level of the transcriptome, the pattern of gene activities is similar in the progeroid Ercc1-/Δ mouse model constituting a valuable tool for future studies of aging-associated glomerular pathologies.
Collapse
Affiliation(s)
- Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Persistent low level of osterix accelerates interleukin-6 production and impairs regeneration after tissue injury. PLoS One 2013; 8:e69859. [PMID: 23922826 PMCID: PMC3724732 DOI: 10.1371/journal.pone.0069859] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/13/2013] [Indexed: 11/23/2022] Open
Abstract
Osterix (Osx) is an essential transcription factor for osteoblast differentiation and bone formation. Osx knockout show a complete absence of bone formation, whereas Osx conditional knockout in osteoblasts produce an osteopenic phenotype after birth. Here, we questioned whether Osx has a potential role in regulating physiological homeostasis. In Osx heterozygotes expressing low levels of Osx in bones, the expression levels of pro-inflammatory cytokines were significantly elevated, indicating that reduced Osx expression may reflect an inflammatory-prone state. In particular, the expression of interleukin-6, a key mediator of chronic inflammation, was increased in Osx heterozygotes and decreased in Osx overexpressing osteoblasts, and transcriptionally down-regulated by Osx. Although no significant differences were revealed in renal morphology and function between Osx heterozygotes and wild-type under normoxic conditions, recovery of kidneys after ischemic damage was remarkably delayed in Osx heterozygotes, as indicated by elevated blood urea nitrogen and creatinine levels, and by morphological alterations consistent with acute tubular necrosis. Eventually, protracted low Osx expression level caused an inflammatory-prone state in the body, resulting in the enhanced susceptibility to renal injury and the delayed renal repair after ischemia/reperfusion. This study suggests that the maintenance of Osx expression in bone is important in terms of preventing the onset of an inflammatory-prone state.
Collapse
|
30
|
Hu G, Liu J, Zhen YZ, Xu R, Qiao Y, Wei J, Tu P, Lin YJ. Rhein lysinate increases the median survival time of SAMP10 mice: protective role in the kidney. Acta Pharmacol Sin 2013; 34:515-21. [PMID: 23474705 DOI: 10.1038/aps.2012.177] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIM To investigate the protective effects of rhein lysinate (RHL), a major bioactive constituent of the rhizome of rhubarb (Rheum palmatum Linn or Rheum tanguticum Maxim), against kidney impairment in senescence-prone inbred strain 10 (SAMP10) mice. METHODS SAMP10 mice were orally administered RHL (25 or 50 mg/kg) daily until 50% of the mice died. Senescence-resistant inbred strain 1 (SAMR1) mice administered no drug were taken as control. The kidneys were harvested after animal death, and examined morphologically and with immunochemical assays. The levels of MAD, SOD and GSH-px in the kidneys were measured with a photometric method. The expression of inflammatory factors and related proteins in the kidneys was analyzed using Western blotting. RESULTS Treatment of SAMP10 mice with RHL had no effect on the body weight or phenotype. However, RHL significantly prolonged the median survival time of SAMP10 mice by approximately 25%, as compared to untreated SAMP10 mice. Compared SAMR1 mice, SAMP10 mice had a significantly lower level of SOD in the kidneys, but had no significant difference in the MDA or GSH-px levels. Treatment of SAMP10 mice with RHL significantly reduced the MAD level, and increased the SOD and GSH-px levels in the kidneys. Glomerulonephritis was observed in SAMP10 mice but not in SAMR1 mice. RHL decreased the incidence of glomerulonephritis, and significantly decreased the levels of TNF-α, IL-6, NF-κB, collagen types I and III in the kidneys. CONCLUSION Accelerated senescence is associated with glomerulonephritis in SAMP10 mice, and RHL prolongs their median survival time by reducing the severity of glomerulonephritis.
Collapse
|
31
|
Abstract
The treatment of diabetic nephropathy in elderly individuals is based primarily on data from younger age groups. However, the assumption that the same treatment approaches for the younger age groups can be uniformly applied to elderly individuals is likely to be incorrect. The cornerstones of aggressive therapy for diabetic kidney disease in general may have drawbacks in elderly patients. For example, significant risks of tight glycemic control have emerged in recent studies. Excessive decrease of blood pressure to existing targets may be unsafe in elderly individuals. Limited data do indicate that renin-angiotensin blockade may be as effective and no riskier than in middle-aged diabetic kidney patients. Until further studies are carried out, it is prudent to treat the elderly patient with similar approaches as in younger patients, but tempered by the issues reviewed in this article. There is a growing need for the development of clinical guidelines to retool CKD management in the elderly diabetic population using both current and emerging therapies.
Collapse
|
32
|
Yu HM, Zhao YM, Luo XG, Feng Y, Ren Y, Shang H, He ZY, Luo XM, Chen SD, Wang XY. Repeated lipopolysaccharide stimulation induces cellular senescence in BV2 cells. Neuroimmunomodulation 2012; 19:131-6. [PMID: 22248729 DOI: 10.1159/000330254] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 06/17/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND AIM The dual action of microglia in neurodegenerating diseases has been controversial for some time. Recent studies indicate that microglia senescence might be the key determinant. When microglia age, they function abnormally and fail to respond correctly to stimuli, which eventually promotes neurodegeneration. Accumulating evidence has shown a close relationship between inflammation and aging. Since neuroinflammation is characterized by microglia activation, we assessed if the repeated activation of microglia would lead to senescence. METHOD The microglia cell line BV2 was repeatedly stimulated every 48 h with lipopolysaccharide (LPS; 10 ng/ml) and senescence was evaluated by β-galactosidase staining and the presence of senescence-associated heterochromatic foci as well as by cell cycle arrest detection by flow cytometry. The senescence-associated protein p53 was also detected by Western blot. RESULTS β-galactosidase staining was barely detectable in control cells, while it tended to increase with repeated LPS stimulation and was positive in most cells after stimulation with LPS 6 times. Similarly, senescence-associated heterochromatic foci were most prominent in cells repeatedly stimulated with LPS, while almost undetectable in control cells or cells receiving a single stimulation. p53 expression was highest in the cells that received LPS stimulation 6 times, and the largest number of cells arrested in the G0/G1 phase was observed in this same group. CONCLUSION Microglial cells tend to undergo senescence after repeated activation, implying that microglia senescence may start after multiple inflammatory challenges.
Collapse
Affiliation(s)
- Hong-Mei Yu
- Department of Laboratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Semba RD, Fink JC, Sun K, Cappola AR, Dalal M, Crasto C, Ferrucci L, Fried LP. Serum fibroblast growth factor-23 and risk of incident chronic kidney disease in older community-dwelling women. Clin J Am Soc Nephrol 2011; 7:85-91. [PMID: 22076875 DOI: 10.2215/cjn.08070811] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Elevated circulating fibroblast growth factor 23 (FGF23) predicts progression of CKD, but it is unknown whether circulating FGF23 independently predicts incident CKD. This study aimed to determine whether circulating FGF23 predicts incident CKD in community-dwelling women. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS This study examined the relationship of intact serum FGF23, 1,25-dihydroxyvitamin D(3) (1,25[OH](2)D), 25-hydroxyvitamin D (25[OH]D), parathyroid hormone, calcium, and phosphate with prevalent and incident CKD in 701 disabled women, ≥65 years of age, from the Women's Health and Aging Study I in Baltimore, Maryland, from 1993 to 1997. Incident CKD was defined as a low estimated GFR (eGFR) <60 ml/min per 1.73 m(2) only, low eGFR <60 ml/min per 1.73 m(2) and a ≥25% decline in eGFR from baseline, and an increase in serum creatinine (≥0.4 mg/dl) at follow-up. RESULTS At baseline, 381 women (54.3%) had stage 3 CKD. Of 307 women without CKD at baseline, 63 (20.5%) developed stage 3 CKD over 24 months of follow-up. After excluding prevalent cases of CKD, FGF23 (per 1 SD increase) was associated with incident stage 3 CKD (hazard ratio [HR], 1.51; 95% confidence interval [95% CI], 1.06, 2.16; P=0.02), low and declining eGFR (HR, 3.69; 95% CI, 1.68, 8.11; P=0.001), and increase in serum creatinine (HR, 5.35; 95% CI, 1.27, 22.54; P=0.02) in respective multivariable Cox proportional hazards models adjusting for baseline eGFR, age, race, phosphate, 1,25-dihydroxyvitamin D(3), parathyroid hormone, and other potential confounders. CONCLUSIONS Elevated FGF23 is an independent risk factor for incident CKD in older, disabled, community-dwelling women.
Collapse
Affiliation(s)
- Richard D Semba
- Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The aging process affects all organs, including the kidneys. As part of this process, progressive scarring and a measurable decline in renal function occur in most people over time. The improved understanding of the processes that can lead to and/or hasten scarring and loss of renal function over time parallels advances in our understanding of the aging process. Clinical factors, including hypertension, diabetes mellitus, obesity, abnormal lipid levels and vitamin D deficiency, have been associated with increasing renal sclerosis with age. In addition, tissue factors such as angiotensin II, advanced glycation end products, oxidative stress and Klotho are associated with renal aging. These associations and possible interventions, including the control of blood pressure, blood sugar, weight, diet and calorie restriction might make renal aging more preventable than inevitable.
Collapse
|
35
|
Accumulation of long-chain glycosphingolipids during aging is prevented by caloric restriction. PLoS One 2011; 6:e20411. [PMID: 21687659 PMCID: PMC3110726 DOI: 10.1371/journal.pone.0020411] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/02/2011] [Indexed: 12/11/2022] Open
Abstract
Background Chronic kidney disease and end-stage renal disease are major causes of morbidity and mortality that are seen far more commonly in the aged population. Interestingly, kidney function declines during aging even in the absence of underlying renal disease. Declining renal function has been associated with age-related cellular damage and dysfunction with reports of increased levels of apoptosis, necrosis, and inflammation in the aged kidney. Bioactive sphingolipids have been shown to regulate these same cellular processes, and have also been suggested to play a role in aging and cellular senescence. Methodology/Principal Findings We hypothesized that alterations in kidney sphingolipids play a role in the declining kidney function that occurs during aging. To begin to address this, the sphingolipid profile was measured in young (3 mo), middle aged (9 mo) and old (17 mo) C57BL/6 male mice. Interestingly, while modest changes in ceramides and sphingoid bases were evident in kidneys from older mice, the most dramatic elevations were seen in long-chain hexosylceramides (HexCer) and lactosylceramides (LacCer), with C14- and C16-lactosylceramides elevated as much as 8 and 12-fold, respectively. Increases in long-chain LacCers during aging are not exclusive to the kidney, as they also occur in the liver and brain. Importantly, caloric restriction, previously shown to prevent the declining kidney function seen in aging, inhibits accumulation of long-chain HexCer/LacCers and prevents the age-associated elevation of enzymes involved in their synthesis. Additionally, long-chain LacCers are also significantly elevated in human fibroblasts isolated from elderly individuals. Conclusion/Significance This study demonstrates accumulation of the glycosphingolipids HexCer and LacCer in several different organs in rodents and humans during aging. In addition, data demonstrate that HexCer and LacCer metabolism is regulated by caloric restriction. Taken together, data suggest that HexCer/LacCers are important mediators of cellular processes fundamental to mammalian aging.
Collapse
|
36
|
Anderson S, Eldadah B, Halter JB, Hazzard WR, Himmelfarb J, Horne FM, Kimmel PL, Molitoris BA, Murthy M, O'Hare AM, Schmader KE, High KP. Acute kidney injury in older adults. J Am Soc Nephrol 2011; 22:28-38. [PMID: 21209252 DOI: 10.1681/asn.2010090934] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aging kidneys undergo structural and functional changes that decrease autoregulatory capacity and increase susceptibility to acute injury. Acute kidney injury associates with duration and location of hospitalization, mortality risk, progression to chronic kidney disease, and functional status in daily living. Definition and diagnosis of acute kidney injury are based on changes in creatinine, which is an inadequate marker and might identify patients when it is too late. The incidence of acute kidney injury is rising and increases with advancing age, yet clinical studies have been slow to address geriatric issues or the heterogeneity in etiologies, outcomes, or patient preferences among the elderly. Here we examine some of the current literature, identify knowledge gaps, and suggest potential research questions regarding acute kidney injury in older adults. Answering these questions will facilitate the integration of geriatric issues into future mechanistic and clinical studies that affect management and care of acute kidney injury.
Collapse
Affiliation(s)
- Sharon Anderson
- Section on Infectious Diseases, Department of Internal Medicine, Wake Forest University School of Medicine, 100 Medical Center Boulevard, Winston-Salem, NC 27157-1042, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|