1
|
Witkop EM, Van Wassenbergh S, Heideman PD, Sanderson SL. Biomimetic models of fish gill rakers as lateral displacement arrays for particle separation. BIOINSPIRATION & BIOMIMETICS 2023; 18:056009. [PMID: 37487501 DOI: 10.1088/1748-3190/acea0e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Ram suspension-feeding fish, such as herring, use gill rakers to separate small food particles from large water volumes while swimming forward with an open mouth. The fish gill raker function was tested using 3D-printed conical models and computational fluid dynamics simulations over a range of slot aspect ratios. Our hypothesis predicting the exit of particles based on mass flow rates, dividing streamlines (i.e. stagnation streamlines) at the slots between gill rakers, and particle size was supported by the results of experiments with physical models in a recirculating flume. Particle movement in suspension-feeding fish gill raker models was consistent with the physical principles of lateral displacement arrays ('bump arrays') for microfluidic and mesofluidic separation of particles by size. Although the particles were smaller than the slots between the rakers, the particles skipped over the vortical region that was generated downstream from each raker. The particles 'bumped' on anterior raker surfaces during posterior transport. Experiments in a recirculating flume demonstrate that the shortest distance between the dividing streamline and the raker surface preceding the slot predicts the maximum radius of a particle that will exit the model by passing through the slot. This theoretical maximum radius is analogous to the critical separation radius identified with reference to the stagnation streamlines in microfluidic and mesofluidic devices that use deterministic lateral displacement and sieve-based lateral displacement. These conclusions provide new perspectives and metrics for analyzing cross-flow and cross-step filtration in fish with applications to filtration engineering.
Collapse
Affiliation(s)
- Erin M Witkop
- Department of Biology, William and Mary, 540 Landrum Dr, Williamsburg, VA 23185, United States of America
| | - Sam Van Wassenbergh
- Departement Biologie, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium
| | - Paul D Heideman
- Department of Biology, William and Mary, 540 Landrum Dr, Williamsburg, VA 23185, United States of America
| | - S Laurie Sanderson
- Department of Biology, William and Mary, 540 Landrum Dr, Williamsburg, VA 23185, United States of America
| |
Collapse
|
2
|
Hymel SJ, Fujioka H, Khismatullin DB. Modeling of Deformable Cell Separation in a Microchannel with Sequenced Pillars. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Scott J. Hymel
- Department of Biomedical Engineering Tulane University New Orleans LA 70118 USA
| | - Hideki Fujioka
- Center for Computational Science Tulane University New Orleans LA 70118 USA
| | - Damir B. Khismatullin
- Department of Biomedical Engineering Tulane University New Orleans LA 70118 USA
- Center for Computational Science Tulane University New Orleans LA 70118 USA
| |
Collapse
|
3
|
Particle capture of special cross-section matrices in axial high gradient magnetic separation: A 3D simulation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116375] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Zhou J, Mukherjee P, Gao H, Luan Q, Papautsky I. Label-free microfluidic sorting of microparticles. APL Bioeng 2019; 3:041504. [PMID: 31832577 PMCID: PMC6906121 DOI: 10.1063/1.5120501] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Massive growth of the microfluidics field has triggered numerous advances in focusing, separating, ordering, concentrating, and mixing of microparticles. Microfluidic systems capable of performing these functions are rapidly finding applications in industrial, environmental, and biomedical fields. Passive and label-free methods are one of the major categories of such systems that have received enormous attention owing to device operational simplicity and low costs. With new platforms continuously being proposed, our aim here is to provide an updated overview of the state of the art for passive label-free microparticle separation, with emphasis on performance and operational conditions. In addition to the now common separation approaches using Newtonian flows, such as deterministic lateral displacement, pinched flow fractionation, cross-flow filtration, hydrodynamic filtration, and inertial microfluidics, we also discuss separation approaches using non-Newtonian, viscoelastic flow. We then highlight the newly emerging approach based on shear-induced diffusion, which enables direct processing of complex samples such as untreated whole blood. Finally, we hope that an improved understanding of label-free passive sorting approaches can lead to sophisticated and useful platforms toward automation in industrial, environmental, and biomedical fields.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Prithviraj Mukherjee
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Hua Gao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Qiyue Luan
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Ian Papautsky
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
5
|
Salafi T, Zhang Y, Zhang Y. A Review on Deterministic Lateral Displacement for Particle Separation and Detection. NANO-MICRO LETTERS 2019; 11:77. [PMID: 34138050 PMCID: PMC7770818 DOI: 10.1007/s40820-019-0308-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/25/2019] [Indexed: 05/03/2023]
Abstract
The separation and detection of particles in suspension are essential for a wide spectrum of applications including medical diagnostics. In this field, microfluidic deterministic lateral displacement (DLD) holds a promise due to the ability of continuous separation of particles by size, shape, deformability, and electrical properties with high resolution. DLD is a passive microfluidic separation technique that has been widely implemented for various bioparticle separations from blood cells to exosomes. DLD techniques have been previously reviewed in 2014. Since then, the field has matured as several physics of DLD have been updated, new phenomena have been discovered, and various designs have been presented to achieve a higher separation performance and throughput. Furthermore, some recent progress has shown new clinical applications and ability to use the DLD arrays as a platform for biomolecules detection. This review provides a thorough discussion on the recent progress in DLD with the topics based on the fundamental studies on DLD models and applications for particle separation and detection. Furthermore, current challenges and potential solutions of DLD are also discussed. We believe that a comprehensive understanding on DLD techniques could significantly contribute toward the advancements in the field for various applications. In particular, the rapid, low-cost, and high-throughput particle separation and detection with DLD have a tremendous impact for point-of-care diagnostics.
Collapse
Affiliation(s)
- Thoriq Salafi
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119077, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Yi Zhang
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Yong Zhang
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119077, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore.
| |
Collapse
|
6
|
Selective Particle Filtering in a Large Acoustophoretic Serpentine Channel. Sci Rep 2019; 9:7156. [PMID: 31073160 PMCID: PMC6509347 DOI: 10.1038/s41598-019-43711-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/25/2019] [Indexed: 11/18/2022] Open
Abstract
The objective of this study is to investigate the performance of a serpentine channel for acoustically driven selective particle filtering. The channel consists of sharp corners and straight sections, and the acoustic field is affecting the particles throughout the channel. A prototype of the separator channel is manufactured using 3D printing. Acoustic waves are generated by a piezoelectric transducer operating near 2 MHz. Computer simulations are carried out to explore and visualize the flow field and acoustic field in the separator. Selective particle trapping is aimed to be achieved in the hairpin sections, which is confirmed by experiments. Spherical polyethylene particles of 34 µm, 70 µm and 100 µm diameter are used to demonstrate selective trapping by adjusting the flow rate in the channel or voltage input to the transducer. In addition, wheat beer containing yeast up to 20 µm size is selectively filtered by adjusting the flow rate to the channel. Experiments demonstrate that selective particle filtering is possible in the serpentine channel as both methods yield clear separation thresholds.
Collapse
|
7
|
|
8
|
Dijkshoorn JP, de Valença JC, Wagterveld RM, Boom RM, Schutyser MAI. Visualizing the hydrodynamics in sieve-based lateral displacement systems. Sci Rep 2018; 8:12861. [PMID: 30150611 PMCID: PMC6110767 DOI: 10.1038/s41598-018-31104-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/07/2018] [Indexed: 12/03/2022] Open
Abstract
Deterministic lateral displacement (DLD) systems structure suspension flow in so called flow lanes. The width of these flow lanes is crucial for separation of particles and determines whether particles with certain size are displaced or not. In previous research, separation was observed in simplified DLD systems that did not meet the established DLD geometric design criteria, by adjusting the outflow conditions. We here investigated why these simplified DLD systems are able to displace particles, by experimentally investigating the hydrodynamics in the device. Flow lanes were visualized and the local flow velocities were measured using µPIV and compared with 2D fluid dynamics simulations. The size of the flow lanes strongly correlates with the local flow velocity (Vy and Vx), which depends on the hydrodynamics. Therefore, the geometric design criteria of DLD devices is in fact just one method to control the local hydrodynamics, which may also be influenced by other means. These findings give a new perspective on the separation principle, which makes the technique more flexible and easier to translate to industrial scale.
Collapse
Affiliation(s)
- J P Dijkshoorn
- Laboratory of Food Process Engineering, Wageningen University, Bornse Weilanden 9, 6708WG, Wageningen, The Netherlands.,Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911MA, Leeuwarden, The Netherlands
| | - J C de Valença
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911MA, Leeuwarden, The Netherlands
| | - R M Wagterveld
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911MA, Leeuwarden, The Netherlands
| | - R M Boom
- Laboratory of Food Process Engineering, Wageningen University, Bornse Weilanden 9, 6708WG, Wageningen, The Netherlands
| | - M A I Schutyser
- Laboratory of Food Process Engineering, Wageningen University, Bornse Weilanden 9, 6708WG, Wageningen, The Netherlands.
| |
Collapse
|
9
|
Dijkshoorn JP, Schutyser MAI, Sebris M, Boom RM, Wagterveld RM. Reducing the critical particle diameter in (highly) asymmetric sieve-based lateral displacement devices. Sci Rep 2017; 7:14162. [PMID: 29074981 PMCID: PMC5658425 DOI: 10.1038/s41598-017-14391-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/09/2017] [Indexed: 11/14/2022] Open
Abstract
Deterministic lateral displacement technology was originally developed in the realm of microfluidics, but has potential for larger scale separation as well. In our previous studies, we proposed a sieve-based lateral displacement device inspired on the principle of deterministic lateral displacement. The advantages of this new device is that it gives a lower pressure drop, lower risk of particle accumulation, higher throughput and is simpler to manufacture. However, until now this device has only been investigated for its separation of large particles of around 785 µm diameter. To separate smaller particles, we investigate several design parameters for their influence on the critical particle diameter. In a dimensionless evaluation, device designs with different geometry and dimensions were compared. It was found that sieve-based lateral displacement devices are able to displace particles due to the crucial role of the flow profile, despite of their unusual and asymmetric design. These results demonstrate the possibility to actively steer the velocity profile in order to reduce the critical diameter in deterministic lateral displacement devices, which makes this separation principle more accessible for large-scale, high throughput applications.
Collapse
Affiliation(s)
- J P Dijkshoorn
- Laboratory of Food Process Engineering, Wageningen University, Bornse Weilanden 9, 6708WG, Wageningen, The Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911MA, Leeuwarden, The Netherlands
| | - M A I Schutyser
- Laboratory of Food Process Engineering, Wageningen University, Bornse Weilanden 9, 6708WG, Wageningen, The Netherlands.
| | - M Sebris
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911MA, Leeuwarden, The Netherlands
| | - R M Boom
- Laboratory of Food Process Engineering, Wageningen University, Bornse Weilanden 9, 6708WG, Wageningen, The Netherlands
| | - R M Wagterveld
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911MA, Leeuwarden, The Netherlands
| |
Collapse
|