1
|
Mechanistic study of electrooxidation of coexisting chloramphenicol and natural organic matter: Performance, DFT calculation and removal route. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
2
|
Zheng X, Han R, Jiang X, Mei J, Gao Y, Yang J, Li Y, Cui S. Fabrication of ternary UiO-66(Ce)/Ag/BiOBr heterojunction for enhanced photocatalytic degradation of ketoprofen via effective electron transfer process: Pathways, DFT calculation and mechanism. CHEMOSPHERE 2022; 305:135352. [PMID: 35714950 DOI: 10.1016/j.chemosphere.2022.135352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Photocatalytic oxidation technique is considered as one of the most prospective approaches to solve the problem of environmental pollution. Herein, the novel ternary nanocomposite UiO-66(Ce)/Ag/BiOBr was fabricated via simple synthetic strategy. The obtained UiO-66(Ce)/Ag/BiOBr exhibited an excellent performance and photocatalytic efficiency of ketoprofen reached 93.5% after 180 min illumination. The ·OH and ·O2- were main active species and play an important role during the photocatalytic reaction. Furthermore, intermediate products and degradation pathways of ketoprofen were analyzed based on the 3D-EEM, DFT calculation and LC-MS. The possible reaction mechanism was proposed as follows: (1) the successful construction of heterojunction broadened the light absorption range to the visible light region; (2) the design of Ce-based MOFs provided more chances for electron transfer due to the Ce4+/Ce3+ cycling; (3) the combination of plasmon resonance effect, Schottky junction and effect of Ag bridge was an important strategy to accelerate charge transfer and improve photocatalytic efficiency.
Collapse
Affiliation(s)
- Xiaoni Zheng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Rui Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xinyu Jiang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jie Mei
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China; Nanjing Normal University Taizhou College, Taizhou, 225300, China
| | - Yinuo Gao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jing Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| | - Yafei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| | - Shihai Cui
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
3
|
Yan B, Wang S, Liu Z, Wang D, Shi W, Cui F. Degradation mechanisms of cyanobacteria neurotoxin β-N-methylamino-l-alanine (BMAA) during UV 254/H 2O 2 process: Kinetics and pathways. CHEMOSPHERE 2022; 302:134939. [PMID: 35561764 DOI: 10.1016/j.chemosphere.2022.134939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
In this work, the UV254/H2O2 process was utilized to remove β-N-methylamino-l-alanine (BMAA), a kind of cyanobacteria neurotoxin, and the influence of reaction parameters and environmental factors on the degradation of BMAA has been systematically investigated. The results showed that BMAA could be effectively removed in the UV254/H2O2 system compared to UV or H2O2 alone and OH was confirmed as the main ROS to degrade BMAA. The degradation rate of BMAA increased first and then decreased with the increase of pH and the maximum kobs was 0.1545 min-1 obtained at pH 9. The removal of BMAA in the UV254/H2O2 system was inhibited in actual water, while the degradation rate of BMAA in actual water could still exceed 90% by appropriately extending the reaction time. The decrease in the degradation efficiency of BMAA in actual water was primarily due to the ultraviolet light absorption and competition effects of NOM, and anions (Cl- and HCO3-) would also inhibit the degradation of BMAA. Five by-products ([M - H]- = 118, 103, 88, 87 and 59) were identified in this study and the degradation pathways of BMAA were proposed. The production of by-products was attributed to the fracture of the C-N bond and hydroxylation reaction. This study is worthwhile to deepen the understanding of the degradation mechanism of BMAA in the UV254/H2O2 system.
Collapse
Affiliation(s)
- Boyin Yan
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Songxue Wang
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Zhiquan Liu
- Institute of Environmental Research at Greater Bay, Key Laboratory by Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Da Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of an Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Wenxin Shi
- School of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Fuyi Cui
- School of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
4
|
Lin CC, Zhong YH. Performance of nZVC/H2O2 process in degrading chloramphenicol in water. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Shmychkova O, Zahorulko S, Luk'yanenko T, Velichenko A. Electrochemical oxidation of chloramphenicol with lead dioxide-surfactant composites. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2716-2726. [PMID: 34415641 DOI: 10.1002/wer.1628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The PbO2 -2 wt.% sodium dodecyl sulfate composite formed from methanesulfonate electrolyte consists of 93.1% of α-phase PbO2 in contrast to the similar one synthesized from nitrate electrolyte, which contains 73.3% of β phase. The electrocatalytic activity of the obtained composites in the oxygen evolution reaction and oxidation of chloramphenicol was investigated. It was found that the Tafel slope significantly exceeds the theoretical value, which indicates a decrease in the degree of filling of the electrode surface with oxygen-containing particles. In the presence of organic compound and chloride ions in the solution, irreversible adsorption of the intermediate is observed, which leads to additional blocking of active centers on the oxide surface, which are involved in the oxidation of organic substance. It was established that the maximum rate of chloramphenicol conversion is 83.5% and 85% at 50 and 80 mA cm-2 , respectively, under kinetic control. The heterogeneous oxidation rate constant of chloramphenicol is 0.0035 min-1 . Oxidation of chloramphenicol occurs through the formation of 4-(-2-amino-1,3-dihydroxy-propanyl)-nitrobenzene with cleavage of dichloroacetic acid. Next, the amino group is oxidized to the nitro group to form 4-(2-nitro-1,3-dihydroxy-propanyl)-nitrobenzene. Subsequent electrolysis produces nitrobenzoic acid, which is oxidized to benzoic acid, later hydroquinone, then benzoquinone and a set of aliphatic compounds. PRACTITIONER POINTS: The PbO2 -2 wt.% SDS composite consists of 93.1% of α phase of PbO2 in contrast to those synthesized from nitrate electrolyte. The Tafel slope indicates a decrease of surface filling with oxygen-containing particles. Irreversible adsorption of the intermediate is observed in the presence of chloride ions.
Collapse
Affiliation(s)
- Olesia Shmychkova
- Physical Chemistry Department, Ukrainian State University of Chemical Technology, Dnipro, Ukraine
| | - Svitlana Zahorulko
- Physical Chemistry Department, Ukrainian State University of Chemical Technology, Dnipro, Ukraine
| | - Tatiana Luk'yanenko
- Physical Chemistry Department, Ukrainian State University of Chemical Technology, Dnipro, Ukraine
| | - Alexander Velichenko
- Physical Chemistry Department, Ukrainian State University of Chemical Technology, Dnipro, Ukraine
| |
Collapse
|
6
|
Huo L, Zhao S, Shi B, Wang H, He S. Bacterial community change and antibiotic resistance promotion after exposure to sulfadiazine and the role of UV/H 2O 2-GAC treatment. CHEMOSPHERE 2021; 283:131214. [PMID: 34147982 DOI: 10.1016/j.chemosphere.2021.131214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
Effects of sulfadiazine on bacterial community and antibiotic resistance genes (ARGs) in drinking water distribution systems (DWDSs) were investigated in this study. Three DWDSs, including sand filtered (SF) DWDSs, granular active carbon (GAC) filtration DWDSs, and UV/H2O2-GAC DWDSs, were used to deliver sand filtered water, GAC filtered water, and UV/H2O2-GAC treated water, respectively. UV/H2O2-GAC filtration can remove the dissolved organic matter effectively, which resulted in the lowest bacterial diversity, biomass and ARGs in effluents and biofilm of DWDSs. When sulfadiazine was added to the sand filtered water, the dehydrogenase concentration and bacterial activity of bacterial community increased in effluents and biofilm of different DWDSs, inducing more extracellular polymeric substances (EPS) production. The proteins increasement percentage was 26.9%, 11.7% and 19.1% in biofilm of three DWDSs, respectively. And the proteins increased to 830.30 ± 20.56 μg cm-2, 687.04 ± 18.65 μg cm-2 and 586.07 ± 16.24 μg cm-2, respectively. The increase of EPS promoted biofilm formation and increased the chlorine-resistance capability of bacteria. Therefore, the relative abundance of Clostridium_sensu_stricto_1 increased to 12.22%, 10.41% and 0.33% in biofilm of the three DWDSs, respectively. Candidatus_Odyssella also increased in the effluents and biofilm of the three DWDSs. These antibiotic resistance bacteria increase in DWDSs also induced the ARGs promotion, including sul1, sul2, sul3, mexA and class 1 integrons (int1). However, UV/H2O2-GAC filtration induced the lowest increase of dehydrogenase and EPS production through sulfadiazine removal efficiently, resulting in the least bacterial community change and ARGs promotion in UV/H2O2-GAC DWDSs.
Collapse
Affiliation(s)
- Lixin Huo
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shehang Zhao
- Qingdao University of Technology, Qingdao, 266033, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shouyang He
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
7
|
Wu M, Tang Y, Liu Q, Tan Z, Wang M, Xu B, Xia S, Mao S, Gao N. Highly efficient chloramphenicol degradation by UV and UV/H 2 O 2 processes based on LED light source. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:2049-2059. [PMID: 32474955 DOI: 10.1002/wer.1365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
In this study, UV-LED was employed as a novel light source to investigate the degradation of a representative antibiotic compound, chloramphenicol (CAP), in the absence or presence of H2 O2 . The UV-LED irradiation showed a higher capability for degradation of CAP than conventional UV-Hg vapor lamps. Effects of the initial CAP concentration, UV wavelength, and light intensity on the degradation of CAP by UV-LED were evaluated. Introduction of H2 O2 evidently enhanced the degradation efficiency of CAP due to the production of reactive hydroxyl radicals. Results showed that the UV-LED/H2 O2 removed CAP by up to 95% within 60 min at pH 5.0, which was twice as that achieved by the UV-LED alone. The degradation products were identified to propose plausible degradation pathways. Moreover, the formation potentials of typical carbonaceous disinfection by-products (C-DBPs) and nitrogenous disinfection by-products (N-DBPs) were assessed for the CAP polluted water treated by the UV-LED alone and UV-LED/H2 O2 processes. Results indicate unintended formation of certain DBPs, thereby highlighting the importance of health risk assessments before practical application. This study opens a new avenue for developing environment-friendly and high-performance UV-LED photocatalytic reactors for abatement of CAP pollution in water. PRACTITIONER POINTS: UV-LED bore higher capability to degrade CAP than low-pressure Hg lamp. The optimal performance to degrade CAP can be achieved at the UV wavelength of 280 nm. The degradation efficiency under UV-LED/H2 O2 process was double of that under UV-LED process. TCM, DCAN, and TCNM formation were higher under the existence of UV-LED radiation. The addition of H2 O2 had greater influence on the formation of DCAcAm than the introduction of UV-LED.
Collapse
Affiliation(s)
- Mengyi Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, China
| | - Yulin Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Qianhong Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, China
| | - Zhenjiao Tan
- Wuxi Public Utilities Environment Testing Research Institute Co. Ltd., Wuxi, China
| | - Mu Wang
- Wuxi Public Utilities Environment Testing Research Institute Co. Ltd., Wuxi, China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Shun Mao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Miao S, Zhang H, Cui S, Yang J. Improved photocatalytic degradation of ketoprofen by Pt/MIL-125(Ti)/Ag with synergetic effect of Pt-MOF and MOF-Ag double interfaces: Mechanism and degradation pathway. CHEMOSPHERE 2020; 257:127123. [PMID: 32505037 DOI: 10.1016/j.chemosphere.2020.127123] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/11/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
It is a central issue to improve the separation efficiency of photogenerated charge carriers and the utilization of visible light in the field of photocatalysis. Herein, taking MIL-125(Ti) as a host material, the Pt/MIL-125(Ti) was first prepared by solvothermal method to build the interface of Schottky junction. Ag was then introduced onto the surface of Pt/MIL-125(Ti) to form the interface with the surface plasmon resonance effect. These double interfaces in the composite play a synergistic role on the photodagradation. The morphology, crystallinity and photochemical properties of the material were tested. By comparison, Pt/MIL-125(Ti)/Ag (4 wt% Ag) exhibited the best performance in the photodegradation of ketoprofen (KP, 10 mg/L) and the degradation process conformed to the pseudo-first-order kinetics. The photodegradation rate is 0.0253 min-1, which was higher than MIL-125(Ti) (0.0009 min-1). The TOC removal efficiency of KP reached approximately 51.5%. The electron paramagnetic resonance (EPR) and free radical capture tests verified that h+ and ·OH played the prominent roles during the reaction system. The degradation process, possible pathways and reaction mechanism were proposed. The design of the double interfaces between semiconductor and noble metals is a novel strategy to enhance the photocatalytic performance.
Collapse
Affiliation(s)
- Shengchao Miao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Houhu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, 8 Jiangwangmiao street, Nanjing, 210042, China
| | - Shihai Cui
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| | - Jing Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
9
|
Zheng X, Wang K, Huang Z, Liu Y, Wen J, Peng H. MgO nanosheets with N-doped carbon coating for the efficient visible-light photocatalysis. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.03.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Sun Y, Cho DW, Graham NJD, Hou D, Yip ACK, Khan E, Song H, Li Y, Tsang DCW. Degradation of antibiotics by modified vacuum-UV based processes: Mechanistic consequences of H 2O 2 and K 2S 2O 8 in the presence of halide ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:312-321. [PMID: 30743124 DOI: 10.1016/j.scitotenv.2019.02.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 05/21/2023]
Abstract
In this work, the degradation of cefalexin, norfloxacin, and ofloxacin was examined via various advanced oxidation processes (AOPs). Direct photolysis by ultraviolet (UV) and vacuum ultra violet (VUV) was less effective for the degradation of fluoroquinolone antibiotics such as norfloxacin and ofloxacin than that of cefalexin. Both hydrogen peroxide (H2O2) and potassium persulfate (K2S2O8) assisted UV/VUV process remarkably enhanced fluoroquinolone degradation. The addition of K2S2O8 was superior to H2O2 under VUV irradiation, with the best removal efficiency of norfloxacin and ofloxacin being almost 100% within 3 min in the presence of VUV/K2S2O8. The ofloxacin degradation rate was accelerated as concentrations of H2O2 and K2S2O8 was increased to 3 mM, but the degradation rate was slightly decreased with excess H2O2 (>3 mM). The performance of modified VUV processes (i.e., VUV/H2O2 and VUV/K2S2O8) was inhibited at highly alkaline condition (pH 11). The co-existence of halides (Cl- and Br-) enhanced antibiotics degradation via the modified VUV processes, but the reaction was almost unaffected in the presence of single halides. This study demonstrated that modified VUV processes (especially VUV/K2S2O8) are efficient for eliminating fluoroquinolone antibiotics from water, which can be considered as a clean and green method for the treatment of antibiotics-containing industrial wastewater.
Collapse
Affiliation(s)
- Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Dong-Wan Cho
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, South Korea
| | - Nigel J D Graham
- Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Deyi Hou
- School of Environment and Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Alex C K Yip
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV 89154, USA
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Yaru Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
11
|
Xiao M, Yin X, Gai H, Ma H, Qi Y, Li K, Hua X, Sun M, Song H. Effect of hydroxypropyl-β-cyclodextrin on the cometabolism of phenol and phenanthrene by a novel Chryseobacterium sp. BIORESOURCE TECHNOLOGY 2019; 273:56-62. [PMID: 30408644 DOI: 10.1016/j.biortech.2018.10.087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 06/08/2023]
Abstract
Cometabolic degradation is an effective method to remove the polycyclic aromatic hydrocarbons (PAHs) with phenol as growth substrate from coal chemical wastewater (CCW). Unfortunately, the toxicity and low solubility of PAHs always restrict their degradation. In this study, Chryseobacterium sp. H202 was firstly isolated from the aerobic segment of CCW. Then, to improve the cometabolic degradation of PAHs, the effects of hydroxypropyl-β-cyclodextrin (HPCD) were investigated. Phenanthrene removal was accelerated in the presence of phenol; however, the degradation of phenol was inhibited because of the toxicity of phenanthrene. Addition of 50 mg/L HPCD accelerated the degradation of phenol and effectively improved the phenanthrene removal rate by about 55%. Inclusion of HPCD appeared to increase the apparent solubility and reduce the toxicity of phenanthrene, thereby improving the cometabolic degradation of phenol and phenanthrene. Therefore, HPCD can enhance the degradation of phenanthrene with phenol as the growth substrate during CCW treatment.
Collapse
Affiliation(s)
- Meng Xiao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiangyang Yin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hengjun Gai
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Honglei Ma
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yanfeng Qi
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Kun Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xia Hua
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Meng Sun
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hongbing Song
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|